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1. INTR~~WCTION 

The classical theorem of E. Noether [l] on invariant variational problems 
states briefly that if the variational integral is invariant under an infinitesimal 
group of transformations, then a certain number of identities hold true. 
Under the additional assumption that the Euler equations for the system are 
satisfied, these identities reduce to expressions which are constant along the 
extremals. In different words, the Noether identities lead to conservation 
laws for the system. In this manner, E. Bessel-Hagen [2] in 1921 applied 
the Noether theorem using the ten parameter Galilean group to derive the 
ten conservation laws for the classical n-body problem involving gravitational 
forces. 

In this paper we shall consider a type of converse problem, namely how 
the Noether theorem can be used to deduce the general form of a Lagrangian 
which has specified invariance properties. In particular, we shall characterize 
the Lagrangians which possess the same invariance properties under the 
Galilean group as the Lagrangian for the n-body problem. Interestingly 
enough, there is a large class of Lagrangians which possess these properties. 
We shall show in Section 3 that these Lagrangians can be written as the dif- 
ference between the classical kinetic energy and a scalar potential which 
depends upon the magnitudes of the relative positions, the magnitudes of the 
relative velocities, and scalar products between the relative positions and 
velocities. 

2. NOFTHER’S THEOREM 

In this section we state those facts which will be necessary in later discus- 
sions and at the same time establish the notation that will be used. We shall 
often make use of the summation convention of summing repeated indices 
that appear on different levels. 
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We consider the variational integral 

/ = j;;qt, q(t), q’(t)) & (2.1) 

where q(t) and q’(t) are 3n-dimensional vectors with q’(t) being the derivative 
of q(t). The total variation AJ of J with respect to the infinitesimal trans- 
formation 

t = t + At, 
qk _ qk + Aqk, R = 1, 2 ,...) 372, 

is given by (see for example Gelfand and Fomin [3]), 

AJ[At, A@] = f’ @,(A@ - q”“dt) dt 
tn 

(2.2) 

+ j:: ; [(L - tfk &) At + $ A@] dt, 

where 

@ 
k 

=E-d aL 
aqk - dt ap ’ 

k = I,..., 3n, 

are the variational derivatives. The following definition makes precise the 
notion of invariance of J under a p-parameter infinitesimal group of trans- 
formations. Let l , 01 = 1, 2,..., p be independent parameters. 

DEFINITION 2.1. J is divergence-invariant under the transformation 

f = t + E”T&, q, q’), 

q” = qk + +a”(t, q, q’), 
(2.3) 

a = l,..., CL, if there exist functions #,(t, q, q’) for which 

Aj[&, , ~~~~~~ = s ‘l d 
to z (+k) 4 (2.4) 

for every to and t, . If #a = 0 for all CX, then we say J is absolutely invariant. 
The following theorem then holds true. Its proof consists of equating (2.2) 

and (2.4) and then using the independence of the parameters and the arbi- 
trariness of the limits of integration. 
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THEOREM 2.1 (Noether). If _J is divergence-invariant under the cl-param- 
eter group of transformations (2.3), and ;f Dk = 0, k = I,..., 3n, then 

(L - $“(XJ&j’“)) 7, + (Z/&j’“) xak - +, = constant, (2.5) 

a = l,..., p. 

The expressions given by (2.5) are constant along the extremals (solutions 
to Dk = 0) and, consequently, are regarded as conservation laws for the 
system. The article by Hill [4] can be consulted for details. 

The application of Theorem 2.1 to the n-body problem gives the ten con- 
servation laws of the problem. To carry out a discussion of this application, 
we adhere to the following notation: Let 

qk = Xk fork = l,..., n, 

qk = Yk-n 

qk = Zk-2n 

for k = n + l,..., 2f2, 

fork = 2n + l,..., 3n. 

P-6) 

The Lagrangian L will have the meaning: 

L=T-U, 

where 

T = f t m,(xi2 + yi2 + zi2) 
i-l 

(2.7) 

cw 

and 

u = - C G(mimj/rij), 1 < i <j < n (2.9) 

are the kinetic and potential energies of the system, and mi is the mass of the 
i-th body with position (xi , yi , zi). G is the gravitational constant, and 

Yij = [(Xi - Xj)" + (yi - yj)2 + (Zi - Zj)2]1'2. 

The ten-parameter Galilean group is given by: 

(i) Time translation 

i = t + El, 
- 
xi = xi ) yi =yi 9 .q = zi . 

(ii) Spatial translation 

t‘ = t, 

q = xi + 2, Pi = Yi + E3, 4 = zi + 8. 



194 LOGAN 

(iii) Galilean transformations 

t = t, 

x, = xi + &, ri = yi + E-2, q == ,q + gt. 

(iv) Spatial rotations 

Bessel-Hagen showed that / = sz (T - U) dt is absolutely invariant with 
respect to time translations, spatial translations, and spatial rotations. This 
means 

Pa = 0 for OL = 1, 2, 3, 4, 8, 9, 10. (2.10) 

On the other hand, J is only divergence-invariant with respect to the Galilean 
transformations with the divergence terms given by 

Q& = i mixi 9 & = f mini 9 *, = f mixi . (2.11) 
i~=l i=l i=l 

The conservation laws follow directly from Eq. (2.5). Invariance under time 
translations, spatial translations, spatial rotations, and Galilean transforma- 
tions leads to conservation of energy, linear momentum, angular momentum, 
and uniform motion of the center of mass, respectively. 

3. THE CONVERSE PROBLEM 

In this section we obtain the most general Lagrangian L(t, q, q’) which 
exhibits the same invariance properties as the Lagrangian for gravitational 
interactions. The result will give a negative answer to the question: If SE dt 
is divergence-invariant under the Galilean group with the I,& given by (2.10) 
and (2.1 l), then does it follow that E = L, where L is given by (2.7) ? 

To begin the investigations, we show that the invariance of Syt, q, q’) dt 
under a p-parameter infinitesimal group of transformations leads to a system 
of p first order partial differential equations which t must satisfy. 
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THEOREM 3.1. If J’:L(t, q, q’) dt is divergence-invariant with respect to the 
transfmnation (2.3), then 

al5 aE 
- 

at 7, + apI’c xork + g x5 = + > 01 = 1, 2 ,..., p, 

where 

~2’ = (d/dt) x:. 

(3.1) 

Proof. Let At = EET~ , Aqk = •X,~, and Aq” = ,a~:‘. Since 

with 

A] = St’ AE(t, q, q’) dt, 
to 

- - 
AL=$At+$Aq”+*Ap”, ap 

it follows from (2.2) and the definition of divergence-invariance that 

f’ AL(t, q, q’) dt = 1 t1 d (E”I,&) dt. 
to to dt 

Since this equation holds for all t,, and t, , we conclude that 

- - - 
gAt+$Aqk+ $ Aq’k = ; (E&). 

Using the linear independence of the parameters Al,..., .P, we obtain the 
system (3.1). This completes the proof. 

We now write down the system (3.1) for E(t, q, q’) when the group is the 
ten-parameter Galilean group, and the divergence terms 4, are given by 
(2.10) and (2.11). This means that we are requiringz to have the same invari- 
ance properties as the Lagrangian for the n-body problem. First, absolute 
invariance under time translations yields 

aQat = 0, (3.2) 

or E is independent of t. Absolute invariance under spatial translations gives 

(3.3) 
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Divergence-invariance under Galilean transformations leads to 

Finally, absolute invariance under rotations implies 

All of the above sums range over i = 1 ,..., n. Equations (3.2)-(3.5) represent 
ten first order, quasilinear partial differential equations for L. The method 
of characteristics provides a means of extracting information about L from 
these equations. Equation (3.3a) is equivalent to the system of equations 

dx, = dx, = ... = dx, , 

which has the n - 1 constants, 

xi - x1 = constant, if 1. 

Similar information from (3.3b) and (3.3~) gives 

yi = yr = constant, 

zi - aI =: constant, if 1. 

Equation (3.4a) is equivalent to the system of equations 

(3.6) 

(3.7) 

dx,’ = dx,’ = . . . = &,,I = ___ 
C mixi’ ’ 

which has n constants, 

xi’ - xr’ = constant, if 1, 
L - 3 1 mixi = constant. 

(3.8) 

Hence, from (3.2), (3.6), (3.7) and (3.8) we conclude that E is given implicitly 

bY 

E==A e-gCmiXi2,.~i-x1,yi-y1,zi-Z1, 
( 

x Xi’ - Xl’, yi’ - yl’, Zi’ - zl’ 
) 

. 
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Consequently, 

L =~pnix,2+f2(x,-xx,,yj-- I yl, zi - z1, Xi’ - .Q’,Yj - y1 , Zj’ - %‘I. 

Successive applications of Eqs. (3.4b) and (3.4~) yield 

i; = T - Y(Ri - R, , Ri' - RI'), (3.9) 

where we have denoted Ri = (xi , yi , zi), and T is given by (2.8). Therefore, 
we have shown so far that L is equal to the difference between the usual 
kinetic energy and a function which depends only on the relative positions 
and velocities. Fortunately, it is possible to obtain information about E 
concerning its invariance under rotations without finding the characteristics 
of Eq. (3.5). Since L is assumed to be absolutely invariant under spatial 
rotations, and since T is absolutely invariant under rotations (this is easily 
shown), it follows from (3.9) that Y must be invariant. Therefore, Y must 
be of the form 

Y(l Ri - R, I , I Ri' - R,' ( , (Rj - R,) * (Ri' - R,')). 

We record the following theorem. 

(3.10) 

THEOREM 3.2. If JL dt is divergence-invariant under the Galilean group 
with the divergence terms given by (2.10) and (2.1 i), then 

e=T-Y. 

where T is given by (2.8), and Y given by (3.10) is a function depending upon the 
magnitudes of the relative positions, the magnitudes of the relative velocities, and 
scalar products of the relative positions and velocities. 
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