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The transformation of motion equation of a charged particle placed in crossed longitudinal magnetic field and
radial electric one is considered under transition from the laboratory frame of reference to a uniformly rotating coor-
dinate system. It is shown that the transformation of equation in a plane transversal to the magnetic field admits a
group. Using the method of group analysis, the transformation invariant and canonical variables are found.
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INTRODUCTION

The method of group analysis is the only general
method that allows solving analytically nonlinear differ-
ential equations [1]. Among mathematicians, interest in
group analysis of particle motion equations in electro-
magnetic fields and other plasma physics equations (hy-
drodynamic, kinetic) has not decreased in recent years
(see, for example, [2-5]). The results of their research
are strongly "mathematized". This does not allow read-
ers unprepared in this area to analyze understand and
use them. Probably, for this reason, the group analysis
method has not found proper application in the theory of
non-neutral plasma, although new powerful methods of
group analysis are developed and await application.

Many methods of solving differential equations use
the substitution of variables (dependent and independ-
ent) that transform a given differential equation into
another equation with known properties. Since the class
of linear equations is the simplest and most studied class
of equations, it is expedient to transform this differential
equation into a linear one. This problem is called the
problem of linearization. It is a special case of the
equivalence problem. Two differential equations are
equivalent if there is a transformation that converts one
equation into another. The problem of equivalence in-
cludes a number of related problems, such as defining a
class of transformations, finding the invariants of these
transformations, obtaining equivalence criteria, and
constructing a transformation.

In [6], the transformation of motion equation of a
charged particle placed in crossed homogeneous mag-
netic field and radial electric one was considered under
transition from a laboratory coordinate system to a uni-
formly rotating one. It was shown that the motion equa-
tion in fields E,H in the laboratory system has in a
rotating system the form of an equation of motion in
other fields E',H’. The invariant of the rotation trans-
formation was heuristically found. A problem was also
considered that, in the author's opinion, generalizes the
problem considered by Larmor: is there a rotating coor-
dinate system in which the equation of particle motion
in fields E,, H, in the plane transverse to the

magnetic field coincides with the equation of particle
motion in the fields E,, H, in the laboratory system?

The frequency of rotation o, and the criteria were

found under which the coincidence is possible. The con-
sideration was carried in a "traditional" way. This prob-
lem is related to the problem of the equivalence of dif-
ferential equations.

In the present paper the results of [6] are obtained
using the group analysis of motion equations: a group
generator, an invariant of the transformation, and canon-
ical variables are determined.

1. PROBLEM FORMULATION

A charged particle moves in a uniform magnetic
field H and a centrally symmetric electric field E
(E=E(r)). The origin of the coordinate system O is
aligned with the center of symmetry of the electric field.
The axis Oz is directed along the magnetic field. In the
laboratory system the motion equation in a plane trans-
verse to the magnetic field can be represented in a com-
plex form as follows [6]

tU+iou—(e/m)(E/r)u=0. (1)
Here u=x+iy is a complex radius vector in the trans-
verse plane, r=(x’+y’ +zz)}/2 is a three-dimensional

radius, ,=eH/mc is a cyclotron frequency, e, m
are charge and mass of a particle.

The motion equation in Oz direction can be written
in the form: Z—(e/m)(E/r)z=0.

When the electric field has a cylindrical symmetry,
the motion equation in the transverse plane has the same

form (1) with the radius r:(x2+y2)%

equation in Oz direction has the form 7=0 in the la-
boratory and in any rotating around the axis Oz coordi-
nate system.

The motion equation of the same particle in the same
fields E, H, but observed in a coordinate system rotating
with frequency w,q, has the form in the transverse plane

U’ +iw’ —[ eE’/(mr) Ju'=0. (2)

. The motion
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Here u'=x'+y" is a complex radius vector in the

rotating system. It is related with the radius uin the

laboratory system by the transformation
u=u'exp(iout). (3)

In Eq. (2) the notations are introduced
eE'/(mr) = o}, + 0,0, +eE/(mr), 4

rot crot
ot T O, 5 (5)
(in Eq. (5) @, =eH'/mc). Comparison of Egs. (2) and
(1) shows that the motion equation in fields E and H
in a coordinate system rotating with the frequency o,

in the transverse plane x’, y' looks like the motion

equation of the particle with the same value of ratio
e/m in the fields E' and H’(4), (5) in the laboratory
system [6].

Generally speaking, Egs. (1), (2) can be non-linear
ones. Relations (2) — (5) are valid for an arbitrary fre-
quency of rotation ®,, , for an arbitrary dependence of
the electric field E on the radius r , for a finite and
infinite motion of the particle along the radius. They do
not contain an approximation of weak magnetic or elec-
tric fields. The quantities E and E', H and H' can
turn out to be of different signs. When E/r = const
Egs. (1) and (2) are linear equations with constant coef-
ficients.

Egs. (1), (2) are equivalent in function [1], because
one is reduced to another with the help of linear trans-
formation u into u’ (3).

Egs. (4), (5) specify the transformation
E,H —E' H’ associated with the parameter a =, .

U
o, =20

This equivalence transformation admits a one—
parameter group on the plane of variables
x=eE(r)/(mr), y=o,. (6)

Below, under x,y, and X' =eE'(r)/(mr), y'=w, we

mean exactly these variables, but not the spatial coordi-
nates. In this notations, the transformation (4), (5) takes
the form

x'=a’+ya+x, )
y'=2a+y. (8)
The transformation has a unite element (a=w,, =0),
an inverse element (—o,, ), a sequential application of
two transformations (3) with frequencies o,,, and ©
is also a transformation with a frequency (©,,; + ®,, )-

This allows us to apply the Lie method of group
analysis to the search for invariants of the transfor-
mation [1].

rot2

2. ANALYSIS OF TRANSFORMATION

1. The operator having the form:

0 0
X=&(X,yY)—+n(x,y)— 9
s(xy) 5+l y)ay ©)
is called the generator of the transformation group [1],
where &(x,y) and n(x,y) are the coefficients of ex-

pansion of the right-hand sides of Egs. (7), (8) in a Tay-
lor series with respect to a small parameter a =,
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X'~x+E(x,y)a, &(xy)=ox/oal,,, (10)

y'=y+n(xy)a, n(xy)=o'/dal,,. (1)
In the case under consideration they are equal

E(xy)=y, n(xy)=2. (12)

2. The Lie equations [1]:

dx’

b X', ’ 1 X/ =X , 13

ia = oY) Xl (13)

dy’

——=n(x,y"), y| = 14

o -y Y=y (14)
take the form

' _

-V x| _ =X, (15)

dy’

—=2, Y| =vy. 16

i y].,=VY (16)

The transformation of the group (7), (8) is restored by
the integration of the system of ordinary differential
Egs. (15), (16).

3. A function F(x,y) is an invariant of the trans-
formation group if for all admissible x,y, a the equali-
ty is fulfilled :

F(xy)=F(X.y). (17)
A function F(x,y) is an invariant of a group if and
only if it is a solution of a first-order partial differential
equation [1]

oF oF

XF=&(x,y)—+n(x,y)—=0.

s(xy) oo +n(xy) Py

In the case under consideration, this equation takes the
form

(18)

yi+2ﬁ=0.
OX

oy
Its solution can be found by the method of characteris-
tics. The equation of characteristics of equation (19) has
the form

dx dy dx _dy

g(xy) n(xy) y 2
From here we find the invariant of the transformation

(4), (5):

(19)

(20)

h=x-y?/4 (21)
In physical variables it has the form
2 2
ho©E @ _ @ (22)
mr 4 4

Any one-parameter group of transformations on the
plane has one independent invariant [1], which can be
chosen as the left-hand side of any first integral

h(x,y)=C of the equation of characteristics of Egs.
(18), (19). Any other invariant F is a function of h. In
[6], the invariant (22) was found heuristically.

4. Any one-parameter transformation group with the
generator X (9) with the help of a suitable change of

variables t=t(x,y), u=u(x,y) can be reduced to the
group of displacements [1]:

t'=t+a, u'=u, (23)
with generator X =g/6t. The variables t and u are

called canonical variables. They are determined by the
following system of equations [1]:
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X()=2(xy) T enxy) S =1, 24)

ou ou
X(u)_é(x,y)axﬂq(x, y)ay 0. (25)
Eqg. (25) coincides with equation (18) for determining
the invariant. From this and also from the second Eg.
(23) it follows that one canonical variable u is the in-
variant (21), (22) of the transformations (23) and (4), (5)

y? _eE_oaﬁ__Qz

uUu=h=x—-=-— or u=h= —
4 mr 4 4

We define the canonical variable t, assuming that it
depends only on y:t=t(y).Eq. (24) takes the form
23t
dy
Its solution gives an expression for the canonical varia-
ble t:

(26)

1. (27)

t== or t=—=%.
2 2

The transformation (23) expressed in terms of the varia-
ble (28) takes the form

(28)

’
_C:&_Fa_
2 2

It repeats the Eq. (5).
In the variables t, u the trajectories along which the

points on plane move when going from the laboratory
system to the rotating system (or from one rotating sys-
tem to another rotating one) are horizontal straight lines.
In the variables (6) these trajectories are parabolas [6].

(29)
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T'PYIIIIOBOM AHAJIN3 YPABHEHUM IBUKEHUSA 3APSIKEHHOM YACTHIIBI
B CKPEHIEHHBIX TOJIAX

IO.H. Enucees

PaccMoTpeHo npeoOpa3oBaHne YpaBHEHUs! IBHXKSHHUS 3apsHKEHHOM YaCTHIIBI B ONIEPEYHON K MArHUTHOMY MOJIO
TUTOCKOCTH TIPH TIepexo/ie oT JabopaTOpHOM K paBHOMEPHO Bpalfaromnieiics cucteMe koopauHat. [lokazaHo, 9To 310
npeoOpas3oBanue oOpaszyeT rpynmy. C IpUMEHEHHEM MeTOoa IPYMIIOBOr0 aHaJIM3a HailieH MHBapHaHT Npeobpa3o-

BaHUA 1 KAHOHUYCCKNUE IEPEMECHHBIC.

T'PYIIOBUI AHAJII3 PIBHSIHb PYXY 3APSJIZKEHOI YUACTKH
B CXPEHIEHUX ITOJIAX

IO.M. €Enicees

Po3risiHyTO TIepeTBOpEHHs PiBHSHHS PYXY 3aps/PKEHOT YaCTKH B MOTIEPEYHiH JI0 MarHiTHOTO IOJIsl IUTOIIMHN TIPH
nepexozi BiJ JabopaTopHOI 10 CHCTEMH KOOPJIMHAT, 10 piBHOMIpHO 00epTaeThes. [TokasaHo, 10 11e IepeTBOPEHHS
YTBOpIOE Tpymy. I3 3acTocyBaHHSIM METOAY IPYNOBOTO aHajli3y 3HAlJICHWH iHBapiaHT IEpPEeTBOPEHHs W KaHOHIYHI

3MIHHI.
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