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     The transformation of motion equation of a charged particle placed in crossed longitudinal magnetic field and 

radial electric one is considered under transition from the laboratory frame of reference to a uniformly rotating coor-

dinate system. It is shown that the transformation of equation in a plane transversal to the magnetic field admits a 

group. Using the method of group analysis, the transformation invariant and canonical variables are found.  
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INTRODUCTION 

 
The method of group analysis is the only general 

method that allows solving analytically nonlinear differ-

ential equations [1]. Among mathematicians, interest in 

group analysis of particle motion equations in electro-

magnetic fields and other plasma physics equations (hy-

drodynamic, kinetic) has not decreased in recent years 

(see, for example, [2-5]). The results of their research 

are strongly "mathematized". This does not allow read-

ers unprepared in this area to analyze understand and 

use them. Probably, for this reason, the group analysis 

method has not found proper application in the theory of 

non-neutral plasma, although new powerful methods of 

group analysis are developed and await application.   

Many methods of solving differential equations use 

the substitution of variables (dependent and independ-

ent) that transform a given differential equation into 

another equation with known properties. Since the class 

of linear equations is the simplest and most studied class 

of equations, it is expedient to transform this differential 

equation into a linear one. This problem is called the 

problem of linearization. It is a special case of the 

equivalence problem. Two differential equations are 

equivalent if there is a transformation that converts one 

equation into another. The problem of equivalence in-

cludes a number of related problems, such as defining a 

class of transformations, finding the invariants of these 

transformations, obtaining equivalence criteria, and 

constructing a transformation. 

In [6], the transformation of motion equation of a 

charged particle placed in crossed homogeneous mag-

netic field and radial electric one was considered under 

transition from a laboratory coordinate system to a uni-

formly rotating one. It was shown that the motion equa-

tion in fields ,E H  in the laboratory system has in a 

rotating system the form of an equation of motion in 

other fields ,E H  . The invariant of the rotation trans-

formation was heuristically found. A problem was also 

considered that, in the author's opinion, generalizes the 

problem considered by Larmor: is there a rotating coor-

dinate system in which the equation of particle motion 

in fields 2 2,E H  in the plane transverse to the  

magnetic field coincides with the equation of particle 

motion in the fields 
1 1,E H  in the laboratory system? 

The frequency of rotation 
rot  and the criteria were 

found under which the coincidence is possible. The con-

sideration was carried in a "traditional" way. This prob-

lem is related to the problem of the equivalence of dif-

ferential equations. 

In the present paper the results of [6] are obtained 

using the group analysis of motion equations: a group 

generator, an invariant of the transformation, and canon-

ical variables are determined.   

 

1. PROBLEM FORMULATION  
 

     A charged particle moves in a uniform magnetic 

field H  and a centrally symmetric electric field E  

(  E E r ). The origin of the coordinate system O  is 

aligned with the center of symmetry of the electric field. 

The axis Oz  is directed along the magnetic field. In the 

laboratory system the motion equation in a plane trans-

verse to the magnetic field can be represented in a com-

plex form as follows [6] 

   0cu i u e m E r u    .     (1) 

Here u x iy   is a complex radius vector in the trans-

verse plane,  
1

2 2 2 2r x y z    is a three-dimensional 

radius,  /c eH mc   is a cyclotron frequency, ,e m  

are charge and mass of a particle. 

The motion equation in Oz  direction can be written 

in the form:    0z e m E r z  . 

When the electric field has a cylindrical symmetry, 

the motion equation in the transverse plane has the same 

form (1) with the radius  
1

2 2 2r x y  . The motion 

equation in Oz  direction has the form 0z   in the la-

boratory and in any rotating around the axis Oz  coordi-

nate system. 

The motion equation of the same particle in the same 

fields E, H, but observed in a coordinate system rotating 

with frequency ωrot, has the form in the transverse plane 

  0cu i u eE mr u          .                                (2) 
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Here u x y     is a complex radius vector in the 

rotating system. It is related with the radius u in the 

laboratory system by the transformation 

 exp rotu u i t  .      (3) 

In Eq. (2) the notations are introduced 

   2

rot c roteE mr eE mr      ,   (4) 

2c rot c
    , (5) 

(in Eq. (5) 
c eH mc   ). Comparison of Eqs. (2) and 

(1) shows that the motion equation in fields E  and H  

in a coordinate system rotating with the frequency 
rot  

in the transverse plane ,x y   looks like the motion 

equation of the particle with the same value of  ratio 

e m   in the fields E  and H  (4), (5) in the laboratory 

system [6]. 

Generally speaking, Eqs. (1), (2) can be non-linear 

ones. Relations (2) – (5) are valid for an arbitrary fre-

quency of rotation 
rot , for an arbitrary dependence of 

the electric field E  on the radius r  , for a finite and 

infinite motion of the particle along the radius. They do 

not contain an approximation of weak magnetic or elec-

tric fields. The quantities E  and E , H  and H   can 

turn out to be of  different signs. When E r const  

Eqs. (1) and (2) are linear equations with constant coef-

ficients. 

Eqs. (1),  (2) are equivalent in function [1], because 

one is reduced to another with the help of linear trans-

formation u  into u  (3).  

Eqs. (4), (5) specify the transformation 

, ,E H E H    associated with the parameter 
rota   . 

This equivalence transformation admits a one–

parameter group on the plane of variables 

   , cx eE r mr y   . (6) 

Below, under ,x y , and    , cx eE r mr y       we 

mean exactly these variables, but not the spatial coordi-

nates. In this notations, the transformation (4), (5) takes 

the form 
2x a ya x    ,      (7) 

2y a y   . (8) 

The transformation has a unite element ( 0rota    ), 

an inverse element (
rot ), a sequential application of 

two transformations (3) with frequencies 
1rot  and 

2rot  

is also a transformation with a frequency (
1 2rot rot  ). 

This allows us to apply the Lie method of group 

analysis to the search for invariants of the transfor-

mation [1].  

 

2. ANALYSIS OF TRANSFORMATION 

   

1. The operator having the form: 

   , ,X x y x y
x y

 
  

 
   (9) 

is called the generator of the transformation group [1], 

where  ,x y  and  ,x y  are the coefficients of ex-

pansion of the right-hand sides of Eqs. (7), (8) in a Tay-

lor series with respect to a small parameter 
rota   : 

    0, , , ax x x y a x y x a 
       ,         (10) 

    0, , , ay y x y a x y y a 
       .         (11) 

In the case under consideration they are equal  

 ,x y y  ,       , 2x y  .               (12)  

2. The Lie equations [1]: 

 
0

, ,
a

dx
x y x x

da 


      ,               (13) 

 
0

, ,
a

dy
x y y y

da 


                    (14)

take the form  

0
,

a

dx
y x x

da 


   ,                (15) 

0
2,

a

dy
y y

da 


  .                (16) 

The transformation of the group (7), (8) is restored by 

the integration of the system of ordinary differential 

Eqs.  (15), (16). 

3. A function  ,F x y  is an invariant of the trans-

formation group if for all admissible , ,x y a  the equali-

ty is fulfilled :  

   , ,F x y F x y  .                (17) 

A function  ,F x y  is an invariant of a group if and 

only if it is a solution of a first-order partial differential 

equation [1] 

   , , 0
F F

XF x y x y
x y

 
   

 
.              (18) 

In the case under consideration, this equation takes the 

form 

2 0
F F

y
x y

 
 

 
.                    (19) 

Its solution can be found by the method of characteris-

tics. The equation of characteristics of equation (19) has 

the form  

   , ,

dx dy

x y x y


 
   or   

2

dx dy

y
  .              (20) 

From here we find the invariant of the transformation 

(4), (5): 
2 4h x y                   (21) 

In physical variables it has the form 
2 2

4 4

ceE
h

mr

 
     .                 (22) 

Any one-parameter group of transformations on the 

plane has one independent invariant [1], which can be 

chosen as the left-hand side of any first integral 

 ,h x y C  of the equation of characteristics of Eqs. 

(18),  (19). Any other invariant F  is a function of h . In 

[6], the invariant (22) was found heuristically.  

4. Any one-parameter transformation group with the 

generator X  (9) with the help of a suitable change of 

variables  ,t t x y ,  ,u u x y  can be reduced to the 

group of displacements [1]: 

t t a   , u u  ,                 (23) 

with generator X t   . The variables t  and  u  are 

called canonical variables. They are determined by the 

following system of equations [1]:  
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     , , 1
t t

X t x y x y
x y

 
   

 
,              (24) 

     , , 0
u u

X u x y x y
x y

 
   

 
.              (25) 

Eq. (25) coincides with equation (18) for determining 

the invariant. From this and also from the second Eq. 

(23) it follows that one canonical variable u  is the in-

variant (21), (22) of the transformations (23) and (4), (5)

: 
2

4

y
u h x      or  

2 2

4 4

ceE
u h

mr

 
     .     (26) 

We define the canonical variable t , assuming that it 

depends only on y :  t t y . Eq.  (24)  takes  the   form  

2 1
dt

dy
 .                  (27) 

Its solution gives an expression for the canonical varia-

ble t : 

2

y
t       or    

2

ct


 .                  (28) 

The transformation (23) expressed in terms of the varia-

ble (28) takes the form  

2 2

c c a
 
  .                            (29) 

It repeats the Eq. (5). 

In the variables ,t u  the trajectories along which the 

points on plane move when going from the laboratory 

system to the rotating system (or from one rotating sys- 

tem to another rotating one) are horizontal straight lines. 

In the variables (6) these trajectories are parabolas [6]. 
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ГРУППОВОЙ АНАЛИЗ УРАВНЕНИЙ ДВИЖЕНИЯ ЗАРЯЖЕННОЙ ЧАСТИЦЫ  

В СКРЕЩЕННЫХ ПОЛЯХ 

 

Ю.Н. Елисеев 
 

     Рассмотрено преобразование уравнения движения заряженной частицы в поперечной к магнитному полю 

плоскости при переходе от лабораторной к равномерно вращающейся системе координат. Показано, что это 

преобразование образует группу. С применением метода группового анализа найден инвариант преобразо-

вания и канонические переменные.  

 
ГРУПОВИЙ АНАЛІЗ РІВНЯНЬ РУХУ ЗАРЯДЖЕНОЇ ЧАСТКИ  

В СХРЕЩЕНИХ ПОЛЯХ 
 

Ю.М. Єлісеєв 
 

     Розглянуто перетворення рівняння руху зарядженої частки в поперечній до магнітного поля площини при 

переході від лабораторної до системи координат, що рівномірно обертається. Показано, що це перетворення 

утворює групу. Із застосуванням методу групового аналізу знайдений інваріант перетворення й канонічні 

змінні.
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