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Henri Poincaré was the first to introduce four-vectors, the Lorentz group and its invariants
(including the space-time metric), “Poincaré stresses,” as well as making other valuable con-
tributions to relativity theory. We owe to him the names: “Principle of Relativity,” “Lorentz
group,” “Lorentz transformation,” and “invariants of the Lorentz group.” It will be shown
that his main contributions to relativity were those of a mathematical nature. This has not
been sufficiently recognized, although his physical contributions to relativity have been much
discussed recently. Frequent misunderstanding of the work of Poincaré and Einstein has re-
sulted in controversy tending to obscure the main achievements of Poincaré. The Poincaré
stresses are discussed because of widespread ignorance regarding the theory of classical funda-
mental charges. The emphasis in this article is on those accomplishments of Poincaré by which
he should be better known today. In addition, some misconceptions ahout the history of rela-

tivity and classical electron theory will be corrected.

INTRODUCTION

The study of the history of relativity is not
only interesting, challenging, and instructive, but
it also aids in removing misconceptions about
the physics of relativity and the present state of
the theory, and can give valuable insight into the
future course of relativity. For this purpose, one
should not exaggerate the importance of deter-
mining the exact historical sequence of the events
in relativity. However, knowledge of this sequence
should correct misconceptions and give credit
to the original workers whom we frequently
slight, as we tend to take results for granted.

In contrast to general relativity, the special
theory resulted from the work of many men. Of
special importance was the work of Lorentsz,
Poincaré, and Einstein, each bringing the theory
closer to completion. In studying their work, one
must carefully distinguish between their mathe-
matical formalism and their physical ideas be-
cause of deceptive similarities both in the equa-
tions and the words used. Nevertheless, each of
the three great men had different viewpoints and
relativities.! One must be most careful in analyzing
Poincaré’s contributions because of his somewhat
inconsistent position? of transition between classi-
cal and relativistic physics. A well-known mis-
interpretation of the historical facts is found in

U H. Dingle, Brit. J. Phil. Sei. 16, 242246 (1966).
2 A, Sesmat, Sysiemes de Reference et Mouvements
(Hermann & Cie., Paris, 1937), pp. 601-7, 674-682,

the work of Whittaker,® a brilliant writer and
mathematician. He failed to appreciate the physi-
cal approach by Hinstein and gave Poincaré most
credit for supplying the principle of relativity.
Moreover, he misinterpreted* Poincaré’s achieve-
ments in relativity as being mainly physical, and
those of Lorentz as being mainly mathematical.
Generally, insufficient® credit in literature has
been given to Poincaré for his mathematical con-
tributions to relativity. This is regrettable because
this part of his work has kept its unchanged im-
portance, while some of his physical contributions
must be revised after the advances of his followers.
Otherwise, Poincaré is known to physicists usually
in reference to Poincaré stresses and the Poincaré
group. This does not adequately represent his
work.

Frequently one may also tend to misinterpret
the work of Einstein, in ascribing to him many
results which others obtained. For example,
Semat® credits Einstein with the mass-increase

3 E. Whittaker, History of the Theories of Aether and
Electricity (Harper Torchbooks, New York, 1960}, Vol. 2,
pp. 27-40; criticized, e.g., by G. Holton, Am. J. Phys. 28,
627—-636 (1960).

4 Ref. 3, p. 36.

5 As pointed out by H. Schwartz, Am. J. Phys. 383,
170 (1965).

¢ (a) H. Semat, Fundamentals of Physics (Holt, Rinehart
and Winston, Ine., New York, 1966), 4th ed., pp. 614,
618. (b) H. Semat, Introduction fo Atomic and Nuclear
Physics (Holt, Rinehart and Winston, Inc., New York,
1962), 4th ed., p. 36.
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equation m=my(1—2v%/c®)7¥2, and he uses the
name ‘“‘KHinstein—Lorentz”’ transformations. The
following list of a few interesting events in special
relativity will serve to point out some misconcep-
tions and show for instance that Minkowski,
Planck, and others contributed important results.
For example, Lorentz” in 1904 was the first one
to present the equation m=m,y(1—v2/c?)~1? for
electrons and other particles. It was Planck® in
1906 and 1908, and Minkowski® in 1908, who ob-
tained the equations of dynamics of a particle in
special relativity. Einstein® in 1905 considered
[moc®(1—v%/c?)~Y2—mec?] as the kinetic energy of
an electron and showed that m=E/c® was ap-
proximately valid for a charged particle radiating
electromagnetic energy. He assumed it to be true
in general, but Lorentz in 1911 showed that in
general all types of energies must be included in £.
Minkowski® in 1908, and not Einstein, completed
the relativistic treatment of the electrodynamics
of matter in general (including magnetization).
Surprisingly, ‘“Lorentz” transformations were
already used by Larmor®? in 1900 (for z, y, 2, t
only). One should also know exactly which
marvellous simplifications and contributions
Einstein’s genius made in special relativity. Again,
Poincaré did not seem to consider the Poincaré
group, but only the Lorentz group. It is also im-
portant to note that the classical theory of the
elementary charged particle has been recently
brought close to solution by Rohrlich,® thus modi-
fying Feynman’s" claim that the classical theory
breaks down. The name “relativity’” can be mis-

7 H. Lorentz, Amst. Proe. 6, 809 (1904); reprinted in
A, Einstein et al., Principle of Relativity (Dover Publica-
tions, Inc. New York, 1923), pp. 11-34.

8 M. Planck, Verhandl. Deut. Phys. Ges. 8, 136-141
(1906); 10, 728~-732 (1908).

¢ H. Minkowski, Nachr. Kénigl. Ges. Wiss. Géttingen,
53-111 (1908).

10 (3) A, Einstein, Ann. Phys. 17, 891-921 (1905); (b)
transl. in Ref. 7, p. 37; (my modified translation in
quoting); (c¢) Ann. Phys. 18, 639-641 (1905); transl. in
Ref. 7, p. 69.

1 H, Lorentz, Amst. Versl. 20, 87-98 (1911).

2 J. Larmor, Aether and, Maiter (Cambridge University
Press, Cambridge, England, 1900), Chap.‘;ll. .

18 F. Rohrlich, Phys. Rev. Letters 12, 375-7 (1964);
Classical Charged Particles (Addison~Wesley Publ. Co.,
Ine., New York, 1965).

“ R, Feynman, The Feynman Lectures on Physics
(Addison—Wesley Publ. Co., Inc., 1964), Vol. 2, Chap. 28.
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leading. It emphasizes the reality of the relative
(velocity times mass, ete.), and implies, perhaps,
that “all views are relative.” However, the basis
and applications of the theory of relativity are
characterized by phenomena that do not change
according to relative observers. The two Einstein
postulates state that the laws of physics and speed
of light do not change for relatively moving
reference systems (being covariant and invariant,
respectively). To elarify many such facts and pre-
pare for an appreciation of the role of Poincaré, a
brief outline of the theoretical development of
special relativity is given first.

I. HISTORICAL OUTLINE OF
SPECIAL RELATIVITY

The theory of relativity developed from at-
tempts to develop a satisfactory electrodynamics
of moving bodies. Newtonian mechanics was
known to be Galilean invariant, while the laws
of electrodynamics were not. Since Maxwell’s
unification of optics and electrodynamics, the
electromagnetic ether assumed further impor-
tance as the medium of propagation of light waves.
Its rest frame where light moves with speed ¢ and
Maxwell’s equations are valid was thought to be
an absolute reference frame. Experiments failed
to detect this absolute frame and did not show
that modifications of the laws of electrodynamies
were required for “moving” systems. Hence, at-
tempts were made at a theoretical explanation by
a study of invariance of the equations of electro-
dynamics, by a search for principles to explain
the experiments, and by attempts to revise the
existing laws.

Mazxwell’s equations were developed in classical
physics. Therefore, it is surprising that they are
not Galilean® invariant. The Lorentz transforma-
tions could have been derived by Maxwell, but
it required several more decades. The efforts of
many physicists, notably Lorentz, Poincaré,
Einstein, Planck, and Minkowski solved the
problems. Newtonian mechanics was revised,
while electrodynamics was left unchanged and
shown to be Lorentz invariant. Other major
results were the rejection of absolute time and
the ether, constancy of the speed of light (its
being also the maximum signal velocity attain-

15 The name “‘Galilean transformation” was introduced
by P. Frank, Ann. Phys. 34, 825 (1911).



1104

able), and the connection between mass and
energy.

A, Lorentz, Larmor, and Planck

An early forerunner of Lorentz transformations
is found in the work of Voigt'®in 1887. This work
has recently received more attention.” Voigt
studied the Doppler principle for waves propa-
gating with speed w in an elastic medium. He
obtained the invariance of the wave equation
with respect to coordinate and time transforma-
tions, equal to the modern Lorentz transformation
(with the speed of light ¢ replaced by w) multi-
plied by (1—v*/w?)'?, where v is the uniform
speed of a new reference frame. One can even
construet an electrodynamics invariant with re-
spect to the Voigt transformations, but it gives
some wrong results.”

Not knowing of Voigt, Lorentz® in 1892-1895
started to develop his electron theory of matter. In
contrast to Maxwell’s phenomenological theory,
the electron theory explained many macroscopic
phenomena of electrodynamics by the microscopic
behavior of electrons (and atoms) and their inter-
action with the field. Lorentz tried to show the
invariance of form of the equations of, electro-
dynamics in uniformly moving reference frames,
for this would have meant agreement with ex-
periments showing the equivalence of all such
frames. By transforming fields, coordinates, and
time he had the Lorentz transformations to first
order in v/c, and this accounted for experiments
not involving more than the first power of v/c. This
meant a change in the origin of time, without a
contraction of the time scale, but the physical
implications were not recognized, for the change
was regarded as just a mathematical convenience.
To account for the Michelson—Morley experi-
ment involving v?/¢?, Lorentz assumed a contrac-
tion of moving bodies in their direction of mo-
tion by a factor (1—2%/c?) in 1892Y or better
(1—22/c®)~12in 1895. In 18992 he even considered
a change in time scale in a transformation.

18 W. Voigt, Nachr. Xonigl. Ges. Wiss. Gottingen, 41
(1887) ; reprinted in Physik. Z. 16, 381 (1915).

7 A, Gluckman, Am. J. Phys. 36, 226-231 (1968).

18 H, Lorentz, Arch. Neerl. 25, 363-551 (1892); Versuch
etner Theorie der elekirischen und optischen Erscheinungen in
betwegten Korpern (E. Brill, Leiden, 1895).

1 H. Lorentz, Amst. Versl. 1, 74-79 (1892).

%0 H, Lorentz, Amst. Proc. 1, 427-442 (1899).
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In 1900 Larmor in his electron-theory of
matter already used the “Lorentz” transformation
equations

o' =é2(z—ut),

¥y =y,

=z,

t' =Vt —ve(x—0vt) /ct],

where e=+2. The time part reduces to our familiar
V' =e2(t—vx/c?). As his electromagnetic fields
were not properly transformed he obtained in-
variance only to order v?/c%. From the transforma-
tion equations he was the first one to derive the
Lorentz contraction.

Further developing his electron theory, Lo-
rentz’ in 1904 proved the invariance of Maxwell’s
equations in free space under the transformation

' =ly(z—ut),
y'=ly,
2=l

t=U/y—lyv(z—uvi) /c?,
or
V=1ly({—ovz/c?),

where [ is a function of velocity which Lorentz
showed to be equal to one. The invariance of
Maxwell’s equations including charges and cur-
rents was only approximate in Lorentz’s treat-
ment because he incorrectly transformed velocity,
current, and charge density. Neither Lorentz nor
Poincaré used this kinematics to derive the
Lorentz contraction. The contraction of moving
bodies was for them a physical effect. It remained
for Einstein to show it is not physical but a kine-
matical appearance, and that it is mutual with
respect to two frames depending only on relative
motion. Lorentz explained the contraction by the
assumption that molecular forces change in mo-
tion as electrostatic forces do, for the shape of a
body depends on the molecular forces. Assuming
also that electrons become flattened ellipsoids in
motion, he derived the variation of mass with
veloeity. These assumptions were not satisfactory
for they just covered up the difficulties but did
not remove them. He did not use a principle of
relativity, although he indicated the advantage
of using some general and fundamental postulate,
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Thus starting from Mazwell’s equations, Lorentz
established their invariance of form and, there-
fore, the invariance of the laws of electrodynamics
with respect to moving reference frames, e.g.,
the motion of the earth.

The dependence of the electron mass on velocity
was considered in theory and experiment before
Lorentz, but in 1904 he obtained the famous mass
formula for a particle. He made assumptions on
the structure (shape, charge distribution, ete.)
of the electron. Using the fundamental equations
he obtained F'=12(1, v, v) F and &’ =1(~%, v%, v q,
for the force and acceleration transformed to the
instantaneous (primed) rest frame of the elec-
tron. From this follows m'=1(1/+%, 1/v, 1/v)m,
where m’ =m, is the rest mass, and m is the mass in
the laboratory frame. Then, mo=vym,, m|; =M
for the masses, transverse and longitudinal with
respect to the velocity which means a tensor mass
as the force and acceleration are in general in
different directions. Although others considered
a tensor mass before Lorentz, their results were
incorrect. In 1905 Einstein!® obtained the unusual
appearing relations m.=-y?my, which are not in-
correct but are a result of his inconvenient defini-
tion of transverse force as Qy(E-+vxB/c)u,
instead of Q@ (E+4v x B/c) 1,. But Einstein made no
assumptions on the structure of the electron, and
thus he freed the theory from assumptions about
the theory of matter. Finally, Planck® in 1906 ob-
tained the usual formula for the mass without
assumptions about electron structure. He also
completed dynamics in special relativity by
generalizing Newton’s second law and obtaining
the Hamiltonian and Lagrangian equations for a
particle. In 1908 Planck® generally defined rel-
ativistic momentum and mass—energy. Minkowski®
in 1908 continued Planck’s study of relativistic
dynamics. Introducing the proper time he ob-
tained the relativistically invariant form of
Planck’s new equations of dynamics.

Lorentz had also generalized” his mass—velocity
relation for the electron to all particles: “. . . the
proper relation between the forces and accelera-
tions will exist . . . if we suppose that the masses
of all particles are influenced by a translation in
the same degree as the electromagnetic® mass of
the electrons.” But, Kinstein! in 1905 justified
it by a better argument: “We remark that these

21 Sec. ITI below.
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results as to the mass are also valid for ponderable
material points because a ponderable material
point can be made into an electron by the addi-
tion of an electric charge, as small as desired.”

B. Poincare

Poincaré’s main contribution to the theory of
relativity was his mathematical? work of 1905
briefly outlined in an article of 5 June 1905, and
presented fully in January 1906 (dated July
1905). The 1905 article was completed just before
Einstein’s work® dated 30 June, was published
in September. In this work Poincaré analyzed the
transformation properties of many physical quan-
tities, gave the complete treatment of the co-
variance of Maxwell’s equations, introduced four-
vectors and Poincaré stresses, and proved the
group character of the “Lorentz transformation,”
introducing this name and the name ‘‘Lorentz
group.” Lorentz® had summarized and discussed
Poincaré’s important work of 1905 but a more
detailed and modern account is given below (in
Secs. IT and III).

Poincaré’s physical contributions to relativity
included his work on the two postulates of rela-
tivity, his treatment of time, electromagnetic
momentum, mass—energy, and gravitation. In
1902 Poincaré recognized the importance of
relativity of displacement, i.e., homogeneity of
space. He started to put forward the principle
of relativity® for uniformly moving systems in
1895, named it first in 1902, and postulated it
in 1904%: “. .. according to which the laws of
physical phenomena must be the same for a fixed
observer as for an observer who has a uniform
motion of translation; so that we have not, and
cannot have any means of discerning whether we
are, or are not, involved in such a movement.”

22 (a) H. Poincaré, Compt. Rend. 140, 1504 (1905);
reprinted in Oeuvres de H. Poincaré (Gauthier—Villars,
Paris, 1954), Vol. 9, p. 489; henceforth called Oeuvres; (b)
H. Poincaré, Palermo Rend. 21, 129 (1906); reprinted in
Oecuvres, Vol. 9, p. 494.

23 H, Lorentz, Acta Math. 38, 293 (1921); reprinted in
Oeuvres, Vol. 9, p. 683.

2 H, Poincaré, Science and Hypothesis (Dover Publica-
tions, Inc., New York, 1902 reprint), p. 78.

25 C, Scribner, Am. J. Phys. 32, 672-678 (1964).

26 H, Poincaré, L’Eclairage Electrique 5, 5-14 (1895);
reprinted in Qeuvres, Vol. 9, p. 412.

27 H, Poinecaré, Bull. Sci. Math. 28, 306 (1904); transl.
in Bull. Am. Math. Soc. 12, 240ff (1906).
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One must be careful in one’s analysis because
Poincaré’s views changed! every few years. Al-
though he sometimes questioned®® the existence
of the ether, he retained it.2 His principle had not
the same sense as Finstein’s (although the word-
ing could be the same as Einstein’s) despite such
statements as, in 1905: “It seems that this im-
possibility of experimentally demonstrating the
absolute motion of the earth is a general law of
nature; we are led to admit this law which we
shall call the postulale of relativity, and admit it
without restriction.” It seems that Poincaré
meant? by his principle that the laws in uni-
formly moving frames have the same form, and
that one cannot detect the absolute motion
because of the compensatory effects of the mo-
tion but that an absolute frame is conceptually
distinguishable. This is inconsistent, for how is
one to assign an absolute system? Not only was
his work not fully relativistic, but a more com-
plicated and less general formalism resulted in
contrast to Einstein’s (two universal postulates).
Poincaré started to recognize the principle of
constancy of the speed of light in 1898.2° He did
not mean this in Einstein’s sense, for his speed
of light did not appear as a universal constant but
as a result of compensating effects? of motion on
length and time.

Poincaré also preceded Einstein in his further
treatment®:® of the concept of time in which he
utilized the constancy of the speed of light for
synchronization of clocks by observers communi-
cating by light signals. In 1900% Poincaré defined
the local time of Lorentz (' =¢t—wvx/c?) as the time
measured by clocks synchronized in such a way.
In 19043 he amplified his ideas to include the
motion of observers and concluded: “The clocks
synchronized in this way do not indicate the true
time, but they indicate what one can call the
local time, so that one lags behind the other. This

28 (3) H. Poincaré, Rev. Gen. Sei. 11, 1171-3 (1900);
transl. in The Monist 12, 516 (1902); (b) Ref. 24,
p. 205-222.

29 H. Poincaré, Rev. de Metaphys. 6, 11 (1898); re-
printed in his La Valeur de la Science (Flammarion, Paris,
1917), pp. 54-55.

30 H, Poincaré, Arch. Neerl. b, 252 (1900); reprinted in
Oeuwres, Vol. 9, p. 483.

a1 Ref. 27, p. 311.
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hardly matters, for we have no means of per-
ceiving it. All the phenomena in A, for example,
will be retarded, but they will be so equally, and
the observer will not perceive it for his clock
lags too; thus, as the principle of relativity re-
quires, he will not have any means of knowing
whether he is at rest or in absolute motion.”
Again Poincaré was inconsistent for he stated®
that there is no absolute time and simultaneity
of two events, yet elsewhere he distinguished the
absolute system at rest with respect to the ether
as evidenced by his words frue and local time,
instead of using quotation marks as Einstein did
in 1905. The inconsistency in Poincaré’s work
resulted from his different standpoints® as phi-
losopher, physicist and mathematician, and from
his personal approach.? His difficulties also orig-
inated from his problems with accelerated? refer-
ence systems in special relativity.

Despite all inconsistencies, Poincaré must be
credited with great insight®: “From all these re-
sults, if they will be confirmed, will start a com-
pletely new mechanics characterized by this fact
that no speed could exceed that of light (for the
bodies would oppose a growing inertia to the
causes tending to accelerate their movement,
and this inertia would become infinite when one
approached the speed of light), moreover that
no temperature can fall below the absolute zero.
For an observer, carried along in translation, of
which he is aware, no apparent speed could ex-
ceed that of light; that would be a contradiction,
if one did not remember that the observer would
not be using the same watches as a fixed observer,
but those indicating ‘local time.” ”’ The eonclusion
to Poincaré’s 1904 article is%: ‘“Perhaps also we
must construct a new mechanics, which we can
ounly dimly see now, where the inertia growing with
speed, the speed of light would become an im-
passable limit. The common mechanics, as more
simple, will stay as a first approximation as it
would be valid for speeds not too great, so that one
would find again the old mechanics under the new
one.”

32 Ref. 24, p. 90.

3 8. Goldberg, Am. J. Phys. 35, 934-944 (1967).
3 Ref. 24, p. 113-114.

3 Ref. 27, p. 316-317.

% Ref. 27, p. 324.
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In 1900¥ Poincaré introduced® the momentum
of the electromagnetic field, in his units as

G=/EdeV.

Then he generalized Newton’s third law for elec-
tromagnetic phenomena by obtaining the law of
conservation of momentum

Z mv+/ E x B dV =const.

Poincaré stated® without proof, that the angular
momentum of the field obeys a conservation equa-
tion analogous to those of energy and momen-
tum. Thus Poincaré restored agreement of the
Lorentz theory with Newton’s third law, which
the theory had appeared to violate. Again he was
inconsistent,® for in his later work® he rejected
his results on Newton’s third law. It is interesting
to note that his further? interpretation of the
results lead to a connection between electromag-
netic? mass and energy but without proof. He
regarded the electromagnetic energy as a fictitious
(not indestructible) fluid of mass density J/c?
(with J=B?/8r+2xc2E? is his energy density of
the field) which is equivalent to E=mc? for the
electromagnetic case. None of the general impli-
cations were recognized by Poincaré. One of his
examples® was: “The electromagnetic energy be-
having . .. as a fluild endowed with inertia, one
must conclude that if any device after having pro-
duced electromagnetic energy, sends it by radi-
ation into a certain direction, this device will
recoil as a cannon recoils when it launches a pro-
jectile.”

Poincaré was the first one to study® Newton’s
law of gravitation in his special theory of rela-

¥ Ref. 30, p. 465-7.

#J J. Thomson in 1893 had already considered
“ ..momentum in the field....” as EXB per unit
volume in his Notes on Recent Rescarches in Electricity and
Magnetism (Oxford University Press, Oxford, England,
1893), p. 9.

39 Ref. 30, p. 471; Abraham derived it: Physik. Z. 4,
57-63 (1902).

40 H. Poincaré, Science and Method (Dover Publications,
Inc., New York, 1908), p. 225.

4 Ref. 30, p. 467-468.

2 Ref. 30, p. 471.

@ Ref. 22(b), Sec. 9.
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tivity. In 1905% he used even the term ‘“gravita-
tional waves” for he considered the propagation
of gravitational effects with the speed ¢. His rela-
tivity required the Lorentz invariance of the
laws of gravitation and prohibited a propagation
speed of gravity greater than that of light. He
modified Newton’s law by constructing functions
of invariants of the Lorentz group and requiring
agreement with the old law for v<<¢ (where v is the
speed of the attracted body, at the time of arrival
of the gravitational wave). The deviation from
Newton’s law contains terms of the order of v2/c?
only. This is barely measurable but it gives some
modification® for the motion of the planet Mer-
cury although not enough to account for the
anomalous motion. Others later also considered
the law of force instead of using the differential
equations of the field and a new geometry; only
Einstein finally succeeded in solving the problem.

C. Einstein

Almost simultaneously with Poincaré’s main
work, Einstein® in 1905 with superior clarity and
simplicity obtained all the main previous results
and some new ones by starting from two general
postulates (of relativity and constancy of the
speed of light). His postulates were completely
general so that the concepts of ether and its
“true time” disappeared. It makes no sense to
speak of a medium of propagation of light in
vacuum, contrary to the case of sound. No ex-
periments could detect the ether, so why keep it?
For according to E. Mach, one should omit from
experimental science those concepts which cannot
be verified experimentally.

. .. the special® theory of relativity does not
depart from classical mechanics through the
postulate of relativity, but through the postulate
of the constancy of the speed of light in vacuo,
from which, in combination with the special
principle of relativity, there follow in the well-

‘known way, the relativity of simultaneity, the

Lorentzian transformation, and the related laws
for the behavior of moving bodies and clocks.”
Einstein derived the Lorentz transformations

4 Ref. 22(a), p. 492.

45 W. de Sitter, M. N. Roy. Astron. Soc. T1, 388 (1911).

48 A, Einstein, Ann. Phys. 49, 769 (1916); transl. in
Ref. 7, pp. 111-164.
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from the postulate of constancy of the speed of
light alone, along with considerations of sym-
metry, linearity, and homogeneity. He proved
for a spherical wave of light the covariance of
x?=¢c%? in all systems, and noted that the Lorentz
transformations could have been derived more
simply from this fact. This invariance shows that
the two fundamental principles are compatible.
One should clarify the difference between an or-
dinary material sphere and a spherical wave of
light considered from a “rest” frame S and a
“moving”’ frame S’. The wave of light¥ is still
considered spherical in 8’; while the other sphere
becomes an ellipsoid. Einstein “considered’’* both
cases and did not mean “seeing,” for the latter
act occurs at an instant of time and gives a dif-
ferent interpretation.®

Then he applied the transformations to moving
rods obtaining the Lorentz contraction. He first
indicated® that the Lorentz contraction is a re-
ciprocal property. It is evident that to him the
Lorentz contraction was an apparent kinematical
consequence and not a complicated actual physi-
cal contraction as for Lorentz. Einstein’s work
on the contraction has this interesting view®:
“For v=c all moving bodies viewed from the
‘stationary’ system shrink into plain figures. For
velocities greater than that of light our considera-
tions become meaningless; we shall, however,
find in the following considerations, that the
velocity of light in our theory plays the role
physically of an infinitely great velocity.” It was
seen that Poincaré realized the upper limit on
speeds in 1904. Einstein also applied the Lorentz
transformation to moving clocks and obtained
the dilatation of time. He even considered® a
“twin problem.”

Einstein demonstrated the invariance of Max-
well’s equations including distributions of elec-
trons, as Poincaré also did, but he did not con-
sider macroscopic matter described by the four
electromagnetic field vectors in general. There-
fore, his title On the Electrodynamics of Moving
Bodies is inconsistent. 1t remained for Minkowski®
in 1908 to complete the job; he transformed to

4 J. Jackson, Classical Electrodynamics (John Wiley &
Sons, Inc., New York, 1962), pp. 354-355.

4 Ref. 10(a), pp. 46, 48, and 57.

19 Ref. 6(b), p. 40.

5 Ref. 10(a), p. 49.
5 Ref. 10(a), p. 48.
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a moving system the equations for stationary
matter that Lorentz had obtained from Max-
well’s equations by averaging. From the trans-
formations of the electromagnetic fields Einstein
derived the first transformations® of the wave
number vector k and wave frequency . This
vielded the formulas for aberration and the rela-
tivistic Doppler principle, including the important
transverse shift.

He obtained important results on mass and
energy: The kinetic energy of an electron or any
ponderable mass point was given as

moe?[ (1—2?/c?) 2 —1],

and in his second® 1905 article Einstein proved
that the relation Am=AE/c? holds approximately
for an electron in a process involving a decrease
in electromagnetic energy by radiation. Then he
assumed the latter to hold true in general: “The
mass of a body is a measure of its energy con-
tent . . ..” As we saw before, Poincaré’s statement
of m=E/c® was without proof. Further progress®
in this direction was made by Planck® in 1906
and 1908; and Lorentz! in 1911, who showed that
all types of energies must be included in Z.
Einstein’s work of 1905 was characterized by
great and ingenious simplicity, both physically
and mathematically. He started with basic tasks
by first building tools for the job. He claimed®
only to have obtained a kinematics of translation
and the kinetic energy of a particle and to have
considered clocks, rigid bodies, and light signals.
Starting from a simple set of two assumptions he
achieved a simple formalism and derived all his
results, whereas Lorentz and Poincaré started by
assuming electrons, ether, Maxwell’s equations,
and some fragmentary hypotheses. Einstein de-
rived the Lorentz transformations, while Lorentz
and Poincaré assumed them in order to get the
invariance of the -electromagnetic equations.
Although Larmor and Lorentz obtained the trans-
formation equations, Einstein showed their basic
significance. His main new mathematical results
were the formulas for the relativistic transforma-
tion of velocities, aberration and Doppler shift,
and the relativistic kinetic energy of a particle.
His overlooking of difficulties with accelerated
52 Ref. 10(a), p. 56.

& Ref. 3, pp. 51-54.
5 A, Einstein, Ann. Phys. 23, 206-208 (1907).
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frames of reference was also a simplification with-
out which he could not have achieved a simple
special relativity theory, and that was later re-
moved in the general theory. In his first simple
theory Einstein did not consider a theory of elec-
trons, for the task was too complicated. Indeed
it required several more decades to approach a
solution classically. One must further note the
universality of Einstein’s special relativity. Lorentz
and Poincaré based their theory on electrody-
namics but Einstein’s theory was based on general
assumptions, which was more appropriate as he
felt that Maxwell’s equations were only approxi-
mate and were to be later replaced by some
(quantum) theory. Although the principle of
relativity is subject to a possible experimental
disproof in the future, the importance of the
postulational approach is that it freed relativity
from electrodynamics as a basis and made special
relativity more universal. There is no experi-
mental decision between Lorentz’s and Einstein’s
theories, but Einstein’s is preferable for it is far
simpler, more universal, and predicted many new
results. Einstein’s audacily was also impressive.
His great passion for the physical explanation
of the laws of nature resulted in his abandoning
ether and absolute time, thus radically modifying
long-established Newtonian space—time. Thus, he
was the first true relativist.

One must neglect neither of his predecessors,
who prepared his way, nor his followers. Poincaré
undoubtedly approached FEinstein closer than
Lorentz or Larmor. There is evidence® of Ein-
stein’s using ideas of Poincaré, for example, the
name of the principle of relativity and the method
of synchronization of clocks by light signals. But,
each man had different theories and relativities.?
Lorentz had many of the mathematical results
of Einstein, but his physical principles were not
relativistic. Poincaré perfected Lorentz’s mathe-
matical results and extended the mathematics
(and physics) of relativity.

II. POINCARE’S MATHEMATICAL
ACHIEVEMENTS IN 1905

Poincaré continued Lorentz’s study of Lorentz
transformations and named them%: ‘“Lorentz’s

% &, Keswani, Brit. J. Phil. Sci. 15, 286 (1965); 16,
10, 273 (1965). |

8 Ref. 22(b), p. 495.
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idea can be summarized as follows: without modi-
fying any of the apparent phenomena, if one im-
parts to the whole system a common translation,
then the electromagnetic equations are not altered
under certain transformations, which we call
Lorentz transformations; two systems, one im-
mobile, the other translating, become the exact
image of each other.” The transformations as
used by Poincaré had a similar form to Lorentz’s,
but his units of length and time made the speed
of light equal to unity so that his transformation
defining parameter e=—g= —v/c corresponded
to (—v) of Lorentz and his I was a function of 8;
{ was later shown by group theory to be equal to
unity. Modern notation (8, v) is used throughout,
and it is used for the field vectors E and B.

The first one to consider the group properties™
of the Lorentz transformation was Poincaré. He
showed that the Lorentz transformation forms
a group named by him (*“Lorentz group’’). First,
two successive transformations produce a new
Lorentz transformation.® Second, the inverse
transformation (written by changing 8——38,
-1/l in the basic transformation) belongs to
the group if =1, for it must be equivalent to the
transformation obtained by changing the signs
of x, 2’, 2, 2/ by a rotation of 180° around y (or
changing the sign of 8 in the basic transforma-
tion). This proves the group property (for the
identity transformation v=0 is trivial). Lorentz
demonstrated =1 in another way in 1904. Before
requiring =1, Poincaré considered a more general
Lorentz group for any I. First, characterized it
by the following infinitesimal transformations®:
(1) Ty, permutable with all others; (2) Ty, T,
and 7%; and (3) the rotations [Ty, T2, [T, Ts],
[T, T1]. These operators were given in terms of
their infinitesimal generating transformations and
written also in operator form according to Lie.
Second, he also characterized his group as decom-
posed into 2’ =1Iz, y' =1y, 2’ =1z, {'=1i plus a linear
transformation leaving x?+y?+22—¢ invariant.
Third, he had z'=~Il{z—8t), ¥ =1y, 2’=lz, and
t' =~l(t—Bz) preceded and followed by a rota-
tion. Thus, one sees that Poincaré considered the
homogeneous Lorentz group plus the three-di-
mensional rotations as his Lorentz group, which

5 Ref. 22(b), Sec. 4; Einstein briefly considered it in
Ref. 10(a), p. 51.
8 Appendix.
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is a six-parameter group (three velocity com-
ponents plus three rotations). This does not in-
clude translation of the origins of space and time
(four more parameters) so that Poincaré did not
consider the inhomogeneous Lorentz group or
“Poincaré group” with 10 parameters.

Poincaré obtained the correct transformations?
for charge and current density, for Lorentz’s one’s
were wrong. From dx/di, dx'/di’ Poincaré proved
the velocity transformations.’® Similarly, he con-
sidered the transformation of an element of
volume of space.®® It was obtained from dr’ di’ =
{*dr di and di’ =1y (1—pv.) di, using the Jacobian
determinant of 2/, ¢’ with respect to =, ¢:

9 (xu’) /a (xv} = Z4:

in our notation. From demanding invariance of
charge for the electron: p’'ds’=p dr, follow the
charge density and current transformations.’
Thereby, the Maxwell-Lorentz equations became
rigorously invariant under Lorentz transforma-
tions for the first time. In addition, Poincaré had
the correct transformations® for the electromag-
netic scalar and vector potentials, force per unit
volume f=pE+4pv xB, force (per unit charge)
F=£/p. The transformation equations for the
acceleration® are also Poincaré’s. These formulas
are difficult to find in the literature even up to the
present. Poincaré also used the symbol

[(1=A—8%or
in relativity (which symbol was introduced by
Cauchy) and showed [/ =[]/

Another important contribution was Poincaré’s

introduction® of four-vectors, anticipating
Minkowski®:

“Let us regard =z, y, 2, i; oz, 8y, 8z, idf; +++; as
coordinates of . . . points . . . in a space of four

dimensions. We see that the transformation of
Lorentz is just a rotation of this space about the
origin, regarded as fixed. We shall have as in-
variants only the. .. distances between the . . .
points among themselves and the origin, or, if one
prefers,

2yttt —2, xdx—ydy 262 —16t,
dx?t-oytt-62—o2. ...

A little below he wrote: ““. .. Let T=£-v; we see
that [the transformation equations of the force
per unit volume] can be written...so that

5 Ref. 22(b), pp. 542, 547.
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ey Ju, [o, T have the same transformations as
z, y, 2, t.” ‘... the Lorentz transformation acts
on F,, Fy, F, T:in the same manner as on f,, f,,
f., T, with the difference that the expressions are
in addition multiplied by o/’ =v0/v,'.” “In the
same way it acts on v,, vy, v,, 1. ...” “Let us con-
sider F,, F,, F,, 1T as the coordinates of a . . .
point . . . .”” In a later passage one reads: “. . . the
following systems of quantities:

x Yy z 4
YoF » YoF'y Yol voT1
Yolz Yoly Yoz Yo

experience the same linear relations when one ap-
plies the transformations of the Lorentz group.”
Poincaré used the invariants of the Lorentz
group as a powerful and convenient tool. Among
his first invariants (taking =1 for the Lorentz
group) was that of electric charge o’'dV’/=pdV
and of the four-element of volume dr'dt’ =1*drdt.
Further, he proved® the invariance of the basic
functions of the field E’?—B’2= (E2—B?) /I* and
B’-E'=B-E//*. As E?4B”?=E?4+B?—43-E xB,
the field energy density is not an invariant.® Then
followed the invariance® of the action integral

J= / ddV (B —B?) /2.

This is important, for from the principle of least
action 8J =0 he derived all the equations of elec-
trodynamics. Moreover, as this derivation is
carried out in the same way in all Lorentz frames,
the invariance of J shows the invariance of electro-
dynamics. In his work on gravitation® in special
relativity, Poincaré used invariants extensively,
i.e., products of four vectors z,, v,, fu, Fyu. He also
considered the invariant space—time metric dz,2=
dx?*—di?. Using functions of these invariants
Poinearé built his equations; a similar procedure is
frequently used in modern physics.

In his calculation® of the field of an accelerated
electron, Poincaré was the first one to make use
of simplification by Lorentz transformation to
the rest frame of a particle. The “velocity field”
of the electron was obtained by Poincaré by the
inverse Lorentz transformation of the simple

60 Ref. 22(b), p. 520.
ot Ref. 22(b), p. 513.
82 Ref. 22(b), p. 510-511.
6 Ref. 22(b), Seec. 5.
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electrostatic field in the rest frame. Choosing
v=(v; 0, 0), v'=0, and 8=v,. Then in the rest
frame of the electron B'=0, E'=Q(x'—x,) /4nr'3,
where x’ is the observation point, x;" is the posi-
tion of the electron, and " =| x’—x," |. By Lorentz
transformation one replaces (x'—x,") by [x—x;—
v(i—t)] to get E=QvB{x—[xi+v({i—1)]}/4nr'
and B=v xE (where ¢ is the time at the obser-
vation point, and # is the time at the electron
position). The magnetic field is perpendicular to
the velocity and to the electric field, and the elec-
tric field is directed from x;+v(t—1#), the present
position of the electron, which it would reach at
t, if it kept moving at the uniform velocity v,
which it had at #. One might expect the electrie
field to be directed from the position the electron
had at #, but relativity thus shows otherwise.

The acceleration field was also reduced to the
rest-frame case. Poincaré used the result that this
is a. radiation field at a distant point, consisting
of transverse electromagnetic waves with the
fields perpendicular to each other and to the radius
vector from the electron. In particular, Poincaré
applied this to Hertz’s results for an electron
executing oscillations of small displacement and
velocity, but finite acceleration. To generalize
the results to finite velocity, Poincaré proved
the Lorentz invariance of the typical perpendic-
ularity properties of a transverse electromagnetic
wave:

E?*—B?’=0, E-B=0, E-x=0, B-x=0,
where x is the direction of propagation of the ray.

III. POINCARE STRESSES

In 1954 de Broglie®* wrote: “Let us note the
capital point of Poinearé’s article: the discovery
that an electron, as conceived by Lorentz, is not
stable under the sole action of electromagnetic
forces, that its stability requires the influence
of another force, of unknown nature, . . . . This
‘Poincaré stress’” which can be interpreted as
indicating the incomplete character of our usual
conception of the electromagnetic field, has to
the present hour, kept all of its importance and
often there is mention of it in the most recent
works on the nature of the electron.” This state-
ment may be exaggerated, but it shows first that
Poincaré is perhaps best known for these stresses,
which is one of his main achievements, and second,

% 1.. de Broglie, “Preface,” Oeuvres, Vol. 9.
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that the stresses are frequently mentioned in
modern works. However, Whittaker strangely
does not even mention the stresses.

In fact, these stresses and the classical electron
theory are a somewhat misunderstood or ignored
topic today. The classical theory of the electron
has only recently approached a solution by
Rohrlich.’* Thus one must qualify Feynman’s
statement™: . . . this tremendous edifice (the
theory of electromagnetism), which is such a
beautiful success in explaining so many phe-
nomena, ultimately falls on its face . . .. You can
appreciate that there is a failure of all classi-
cal physics because of quantum mechanical
effects . . . . It is interesting, though, that the
classical theory of electromagnetism is an un-
satisfactory theory all by itself . . . . The concepts
of simple charged particles and the electromag-
netic field are in some way inconsistent.” Pauli®
also thought that Maxwell-Lorentz electrody-
namies is not compatible with charged particles,
but Rohrlich showed that a classical approach is
possible. Even Einstein, in 1905, realized that a
particle theory was premature at the time; there-
fore, he concentrated on building a special theory
of relativity first.

The microscopic particle (e.g., the electron)
was not considered in Maxwell’s macroscopic
theory for he only considered macroscopic charge
distributions. Lorentz constructed a microscopic
electrodynamics. He and others then tried to
achieve a theory of the electron itself. Abraham
in 1903 used a rigid sphere as the model of the
electron. But this is really a small macroscopic
body with electrostatic repulsive forces between
its parts rendering it unstable, tending to ‘“blow
it apart” because missing are the intermolecular
forces that hold a macroscopic sphere of matter
stable. Stability is of course a quantum-mechani-
cal property; according to classical electromag-
netic theory, a collection of positive and negative
charges is unstable. Abraham® and others cal-
culated the mass of the electron. Incorrectly®
using the concept of electromagnetic momentum,
Abraham obtained results violating relativity for
they gave the wrong relationship between the

% W. Pauli, Theory of Relativity (Pergamon Press, Inec.,
New York, 1958), pp. 184-186.

88 M. Abraham, Ann. Phys. 10, 105-179 (1903); Physik.
Z. 5, 576-579 (1904); Ref. 3, p. 51 ff.

¢ Ref. 13, pp. 13, 133.
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mass and momentum: p=4mv/3, where m=U/c?
and U is the electromagnetic self-energy. The
factor of 4 was eliminated by Fermi® in 1922
In 1904 it became evident that the electron should
contract in motion to form an ellipsoid. Further
there was instability and the incorrect 4 factor
so that the model had to be changed. Hence,
Abraham® in 1903—4 qualitatively realized the
necessity of a nonelectromagnetic contribution
to the structure and mass, an internal potential
energy of the electron. Up to then the mass or
inertia of electrons was thought to be of electro-
magnetic origin, i.e., the field of the electron
would oppose an accelerating force because of
induection. Lorentz” held: . . . that there is no
other, no ‘true’ or ‘material’ mass.” What were
the nonelectromagnetic cohesive forces required
for stability? The gravitational force is too weak;
For instance between two isolated electrons, it is
far smaller than the electrostatic force. Langevin,®
in a lecture in 1904, suggested unknown forces
holding the electron in equilibrium. Poincaré in
19052 expanded this idea by postulating unknown
stresses. This stabilizes the electron and can
compensate for the £ factor.”

Poincaré’s first™ illustration of the reason for
the Poincaré stresses was expressed in the follow-
ing words: “If the inertia of the electrons is ex-
clusively of an electromagnetic origin and if in
addition they are subjected only to forces of
electromagnetic origin, the condition for equilib-
rium requires in the interior of the electrons
f=p(E4+vxB)=0.% Now, (by the transforma-
tion equations) that is equivalent to £'=0. The
conditions for equilibrium of electrons are not
changed by the transformation. Unfortunately,
such a simple hypothesis is inadmissible. If, in-
deed, one supposes v=0, the conditions f=0
require E=0, and consequently V-E=0, or p=0.
In the general case one arrives at analogous re-
sults. In addition to the electromagnetic forces,
one must then admit other forces and ‘binding’
(‘liaison’). One must then seek conditions to be
satisfied by these forces or the ‘binding’, so that
the equilibrium of the electrons is not troubled by
the transformation....”

% F. Fermi, Physik. Z. 23, 340 (1922). -

8 P, Langevin, Rev. Gen. Sci, 16, 257-276 (1905).

" Ref. 65, Sec. 63; Ref. 13, pp. 16-18; Ref. 47, pp.
591-2,

1 Ref.22(b), p. 503.
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Poincaré’s discovery of the stresses originated
from his examination?? of the problem of the defor-
mation of the electron in motion. At rest the par-
ticle was supposed to be a sphere, but in motion,
a flattened ellipsoid. This contraction as con-
sidered by Lorentz and Langevin differed in some
details. Poincaré showed by complicated caleula-
tions the agreement of the Lorentz model with
the principle of relativity. To acecomplish this he
had to introduce a supplementary potential pro-
portional to the volume of the electron: “Which
are these forces engendering the potential . . . ?
They can be considered as a pressure acting in
the interior of the electron . . . a constant internal
pressure (independent of the volume); the work
of such a pressure is evidently proportional to
the variations in volume.” At rest, the equilibrium
of the electromagnetic and “Poincaré forces”
resulted in a spherical electron, but in motion
they required a contraction. Thus his pressure
explained™ the contraction of the electron. It is
inconsistent that he sometimes thought of the
pressure as internal” yet elsewhere™ as external.
Despite the nonelectromagnetic stresses, he as-
sumed a purely electromagnetic nature for the
electron.” He even strangely assumed™ all mass
of matter to be purely electromagnetic. The
stresses remain unknown. His only hint in refer-
ence to their nature was™: ‘. . . the pressure creat-
ing our supplementary potential is proportional
to the fourth power of the experimental mass of
the electron. As the Newtonian attraction is
proportional to this experimental mass, one is
tempted to conclude that there is some relation-
ship between the cause creating gravitation and
that creating the supplementary potential.”’

The classical theory of fundamental charged
particles for a finie electron obtained stability
by means of the nonelectromagnetic Poincaré
stresses and mathematical agreement with special
relativity. It seemed that the problem of the
finite electron was solved” classically. However,
this theory was unsatisfactory because of the
unknown nature of the Poincaré stresses and
because the particle is not purely electromagnetic

72 Ref.22(b), p. 537.

7 Ref. 24(a), p. 491; Ref. 24(b), p. 524.
" Ref. 24(a), p. 491; Ref. 24(b), p. 496.
75 Ref. 24(b), p. 496; Ref. 41, p. 207.

76 Ref. 24(b), p. 538.

7 Ref. 47, p. 593.
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after the introduction of a nonelectromagnetic
part. The point electron, as shown by Rohrlich
is stable because it has no structure and as such
there are no repulsive self-interactions between
its parts, and there is no electrostatic self-energy.
Then no nonelectromagnetic cohesive forces are
required. Although a few difficulties™ remain,
Rohrlich achieved a meaningful theory. The
necessity of the point electron is quantum-
mechanical for the problem is outside of classical
physies and one must not consider a spatial strue-
ture of the electron. Rohrlich finally showed
that - Poincaré stresses can be interpreted as
strong interactions and are relevant to the cor-
responding neutral or charged particles.

IV. CONCLUSION

Many decades have passed since Poincaré’s
work. After the work of Einstein and after the
confusing discussions of Poincare’s work in recent
years, for what contributions to relativity should
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Poincaré be remembered? Whether he did or did
not anticipate Einstein, it is clear that he came
closest to him. But many of his results are very
relevant today for they are still valid. The rel-
evance of Poincaré’s work in relativity to con-
temporary physics is evident in our frequently
using some of his words or ideas in relativity.
His mathematical contributions, especially four-
vectors, the Lorentz group and its invariants,
and the transformations of many quantities are
in common use. The Poincaré stresses can be
important for some fundamental particles.
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APPENDIX

(A) The new parameters I =il’, 8" = (8+8") /(1+88") = (1 —p''2)~12 for the transformation (z, ) —
(2", ¢"") are obtained from (z, t)— (', ¢’) with parameters [, 8, v; and (z/, ¢')— (2", ") with I/, 8, v’

(B) The infinitesimal generating transformation of Ty produces a change dz= —@¢t, dy=d82=0,
6t= —px (obtained by letting =1 and 8 infinitesimal). T, and T’ are obtained by interchanging axes
z—y or z—2z. T, produces 6z, = 2,40 (obtained from 8=0 and [=1+4l). Poincaré wrote the groups in
operator form, e.g., T1=13/dx+20/0t, Ty=2x,8/0x,, and [Ty, Ts]=28/9y—yd/0x (using modern four-

vector notation).

(C) Transformations (with primed system moving with speed 8 in z direction):

(1) Velocity (vov, vo): v/ = (0.—8) /(1 —Bv.) =vve(va—8) /v, v,/ =v,/ (1 —Bv.) v =vov,/vd, v’ =
v/ (1—Bvz)y =7vows/vo and yo'vyvo(1—PBv.), where vyo=(1—12)7"2 vo'=(1—v2)"12, y=(1—p2)"12

and v, v/ are the velocities in the two frames.

(2) Volume element: dr'/dr =13/(1—Bv,) v =Bvo/vo' . ‘
(3) Charge density and current (pv, p): p'=7v(p—Bpvz) /B, p'v.’ =7 (pvs—Bp) /B, p'v,=pv,/P,

and p'v,’ = pv. /I

(4) Potentials (A, ¢): ¢/ =v(y—BA,)/l, A =v(A:—8¢)/l, A/=A,/l, and A=A/l
(5) Force per unit volume (f, £-v): . =v( f.—8T) /B, {/=F,/B, ! =f./15, T'=~(T—Bf.), where

T=f-v.

(6) Yorce (voF, voF-v): F.'=vp(F,—BT1) /1%, F,/=pF,/Up’, F.!=pF./p’, T\ =~p(T1—BF.) /p’;

where T1=F-v, and p/p’=y,/vs’ may be used.

(7) Acceleration (yo?a+vo'v-av, yivea): @’ =vfa./v' a,/=~rda,/ v F+vv80,0./v3, a. =
) 2 Y Y. Yy b
Yo/ Vo' 1 vo®80.0:/70"%, and P’ =P /vy'3 —vvo®8a./vot, where P=v-a=F-v/ys.

(D) Invariants: z,z,=X2—1, x,‘v,;='yo(t—x-v), v ll=vve(l—vieWo), fufu=02—T2, ., f,=x-f—T},

F.F,=vy@2(F2—Tp), 2, F,=v(x-F—Tit), and v,F,=~2(F-v—T;), where y1=(1—v2)~¥2 and yy=

(1 —7}22)_1/2.

% Ref. 13, p. 260.
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