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On Quantum Versions of Record-Breaking
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Abstract
It is well known that a straightforward application of Grover’s quantum search
algorithm enables to solve SAT in O(2"/2) steps. Ambainis (SIGACT News, 2004)
observed that it is possible to use Grover’s technique to similarly speed up a sophisti-
cated algorithm for solving 3-SAT. In this note, we show that a similar speed up can
be obtained for all major record-breaking algorithms for satisfiability. We also show
that if we use Grover’s technique only, then we cannot do better than quadratic speed

up.

1 Quantum Computing and Satisfiability

Faster quantum algorithms for SAT. In the satisfiability problem (SAT), we are given
a Boolean formula F' in conjunctive normal form C & ... & C,,, where each clause Cj is a
disjunction [; V ...V [ of literals, i.e., variables or their negations. We need to find a truth
assignment x; = aq, ..., T, = a, that makes F' true. A simple exhaustive search can solve
this problem in time ~ 2", where ~ means equality modulo a term which is polynomial in
the length of the input formula.

The main attraction of quantum computing is that it can speed up computations. In
particular, Grover’s quantum algorithm [9, 10, 11, 15] searches an unsorted list of N elements
to find an element with a given property. In non-quantum computations, every such search
algorithm requires, in the worst case, N steps; Grover’s algorithm can find this element in
time O(\/N ) with arbitrary high probability of success. Thus, a straightforward application
of Grover’s technique can solve SAT in time ~ 27/2.

Computer simulation of quantum computing suggests that it may be possible to solve
SAT even faster [12]. Can we actually use quantum computing to solve SAT faster than in
time ~ 2%2?7 In this note, we discuss some aspects of this question.
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Remark. We only consider quantum computing within the standard quantum physics. It
is known that if we consider non-standard versions of quantum physics (e.g., a version in
which it is possible to distinguish between a superposition of |0) and |1) and a pure state)
then, in principle, we can solve NP-complete problems in polynomial time; see, e.g., [1] and
references therein, and also [2, 14, 16].

Ambainis’ observation. In [3], Ambainis considers algorithms for k-SAT, a restricted
version of SAT where each clause has at most k literals. He shows that one of the fastest
algorithms for k-SAT, namely, the algorithm proposed by Schéning [21], can be similarly
sped up from time T ~ (2 — 2/k)™ to VT ~ (2 — 2/k)"/2.

Schoning’s algorithm is a multi-start random walk algorithm that repeats the polynomial-
time random walk procedure S exponentially many times. This procedure S takes an input
formula F' and does the following:

e Choose an initial assignment a uniformly at random.
e Repeat 3n times:

e [f F'is satisfied by the assignment a, then return a and halt.

e Otherwise, pick any clause C} in F' such that Cj is falsified by a; choose a literal
ls in C; uniformly at random; modify a by flipping the value of the variable z;
from the literal ;.

As shown in [21], if the formula F' is satisfiable, then each random walk of length 3n finds
a satisfying assignment with the probability > (2 — 2/k)™". Therefore, for any constant
probability of success, after O((2 — 2/k)"™) runs of the random walk procedure S, we get a
satisfying assignment with the required probability. Since S is a polynomial time procedure,
the overall running time of this algorithm is also 7' ~ (2—2/k)"™. This upper bound is close to
the best known upper bound for k-SAT (see below). Schoning’s algorithm was derandomized
in [6].

In Schéning’s algorithm, there are N ~ (2 — 2/k)" results of different runs of S, and we
look for a result in which the input formula F' is satisfied. Grover’s algorithm enables us to
find this result in time ~ v/N. More exactly, this reduction comes from the modification of
the original Grover’s algorithm called amplitude amplification) [3, 5]. Thus, there exists a
quantum algorithm that solves k-SAT in time ~ /T ~ (2 — 2/k)"/2.

For 3-SAT, Schoning’s algorithm was improved by Rolf [19] to T ~ 1.330™. This improve-
ment also consists of exponentially many runs of a polynomial-time algorithm. Therefore,
Rolf’s non-quantum running time 7" ~ 1.330™ leads to the corresponding quantum time
VT ~ 1.154",

SAT is a particular case of a more general discrete constraint satisfaction problem (CSP),
where variables x4, ..., x, can take d > 2 possible values, and constraints can be more general
than clauses. In particular, we can consider k-CSP, in which every constraint contains < k
variables. Schoning’s algorithm can be naturally extended to k-CSP [21]. The running time
of the corresponding algorithm is 7"~ (d - (1 — 1/k) 4 €)™, where ¢ can be arbitrarily small.
Similar to Schoning’s algorithm for k-SAT, this extension to k-CSP can be quantized with
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the running time Ty ~ T ~ (d-(1—1/k)4¢)"2. A different quantum algorithm for 2-CSP
is described in [4].

The fastest algorithm for £-SAT. The best known upper bound for k-SAT is given by
the algorithm proposed by Paturi, Pudlak, Saks, and Zane [17, 18]; this algorithm is called
PPSZ. This algorithm consists of exponentially many runs of a polynomial-time procedure.
This procedure is based on the following approach:

e Pick a random permutation (1), 7(2), ..., m(n) of the variables.

Select a truth value of the variable z () at random.

Simplify the input formula as follows:

— Substitute the selected truth value for z,().

— If one of the clauses reduces to a single literal, simplify the formula again by using
this literal.

— Repeat such simplification while possible.

Select a truth value of the first unassigned variable (in the order 7(1),7(2),...) at
random.

Simplify the formula as above.
e Continue this process until all n variables are assigned.

As shown in [18], the PPSZ algorithm runs in time T ~ 270=#/%) where y;, — 72/6 as k
increases. The PPSZ algorithm was derandomized in [20] for the case when there is at most
one satisfying assignment.

Since the PPSZ algorithm also consists of exponentially many runs of a polynomial-time
procedure, we can use Grover’s technique to design its quantum version which requires time
To ~VT.

A combination of the PPSZ and Shoning’s approaches leads to the best known upper
bound for 3-SAT: T" ~ 1.324™ (Iwama and Tamaki [13]). Similarly to the previous algorithms,
this algorithm also consists of independent runs of a polynomial-time procedure. So, by

applying Grover’s algorithm, we can similarly get a quantum algorithm with time 7' ~
1.151™.

The fastest algorithm for SAT with no restriction on clause length. The best
known upper bound for SAT with no restriction on clause length is given in [8]. The corre-
sponding algorithm is based on the clause shortening approach proposed by Schuler in [22].
This approach suggests exponentially many runs of the following polynomial-time procedure

S:

e Convert the input formula F to an auxiliary k-CNF formula F’. Namely, for each
clause C longer than k, keep the first k literals and delete the other literals in Cj.
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e Use a k-SAT algorithm, e.g., one random walk of Schoning’s algorithm, to test satis-
fiability of F’. Assuming that F' has a satisfying assignment a, there are two possible
cases:

— First, the k-SAT algorithm has found a; then we are done.

— Second, some clause C’} in F’ is false under a. If we guess this clause, we can reduce
the number of variables in F' by substituting the corresponding truth values for
the variables of C?. Therefore, we choose a clause in F" at random and simplify F’
by replacing the variables that occur in this clause with the corresponding truth
values.

e Finally, we recursively apply S to the result of simplification.

The procedure S runs in polynomial time and finds a satisfying assignment (if any) with
probability at least

1
2_n. (1_ 1n(%)+0(1n In(m)) ) .

This probability can be increased to a constant by repetition in the usual way, so the algo-
rithm for SAT requires time

(1=
T ~ 2n (1 1n(%)+0(lnln(m))) .

By using Grover’s technique, we can produce a quantum version of this algorithm that
requires time Tg:

Ty~ VT 2—<n/2>~(1—m)_

2 How Much More Can Grover’s Algorithm Help?

At most quadratic speed-up. So far, we have used Grover’s technique to speed up the
non-quantum computation time 7" to the quantum computation time T¢y ~ VT. Let us show
that if Grover’s technique is the only quantum technique that we use, then we cannot get a
further time reduction. Informally speaking, let us call a quantum algorithm that uses only
Grover’s technique (and no other quantum ideas) Grover-based. We show that the following
two statements hold:

e Statement 1. If we have a Grover-based quantum algorithm A that solves a problem
in time T, then we can “dequantize” it into a non-quantum algorithm A that requires
time T' = O(T3).

e Statement 2. If we have a non-quantum algorithm that solves a problem in time 7,
then any Grover-based quantum algorithm for solving this problem requires time at

least Ty = Q(VT).
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First statement. Without loss of generality, we can assume that the time is measured in
number of steps. Then Ty =ty +1t1 + ... +t,, where ¢y denotes the number of non-quantum
steps in Ag, s denotes the number of Grover’s searches, and ¢; denotes the time required for
i-th quantum search.

To show that the first statement holds, let us recall that the Grover’s algorithm searches
the list of N elements to find an element with the desired property. Exhaustive search can
find this element by N calls to a procedure which checks whether a given element has this
property. While the (worst-case) running time of exhaustive search is r - N, where r is the
running time of the checking procedure, Grover’s algorithm enables us to find the desired
element in ¢ - v/N calls to this procedure, where ¢ is a constant determined by the required
probability of success. So, the running time of Grover’s algorithm is 7 - ¢ - v/N.

In the -th Grover’s search, t; = r; - ¢ - /N;, where N; is the number of elements in the
corresponding list and r; is the running time of the corresponding checking procedure. So,

we can conclude that )
5

Hence, by using (non-quantum) exhaustive search algorithm, we can perform the same search
in time

ri-
Since r; > 1, we conclude that ¢, < ¢ - ¢, where ¢ = max(1,c™?).

Since ty is a non-negative integer, we have t, < #2; since ¢ > 1, we have t; < ¢ - 2.
Thus, by replacing each Grover’s search by the non-quantum search, we get the time 7" =
to+ 1ty + ... +t,. Here, t; < ¢ -t? for all i, hence T < ¢ - (t3 4+ 13 + ...+ t2). Since

tot . A< (to+... )=t 2t

we conclude that T' < ¢ - Tg?.
Second statement. Since T < ¢ - T3, we have Ty > (1/V/¢) - VT, ie., Tg = QVT).

Remark. Our observation is valid only if we restrict the use of quantum computation to
Grover’s algorithm. There are quantum techniques which lead to a faster speed-up. For
example, the well-known Shor’s algorithm for factoring large integers requires polynomial
time [23, 24, 15], while all known non-quantum factorization algorithms require, in the worst
case, exponential time. If we can use such techniques, we might get more than quadratic
speed-up.
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