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Abstract
It is well known that a straightforward application of Grover’s quantum search

algorithm enables to solve SAT in O(2n/2) steps. Ambainis (SIGACT News, 2004)
observed that it is possible to use Grover’s technique to similarly speed up a sophisti-
cated algorithm for solving 3-SAT. In this note, we show that a similar speed up can
be obtained for all major record-breaking algorithms for satisfiability. We also show
that if we use Grover’s technique only, then we cannot do better than quadratic speed
up.

1 Quantum Computing and Satisfiability

Faster quantum algorithms for SAT. In the satisfiability problem (SAT), we are given
a Boolean formula F in conjunctive normal form C1 & . . . & Cm, where each clause Cj is a
disjunction l1 ∨ . . . ∨ lk of literals, i.e., variables or their negations. We need to find a truth
assignment x1 = a1, . . . , xn = an that makes F true. A simple exhaustive search can solve
this problem in time ∼ 2n, where ∼ means equality modulo a term which is polynomial in
the length of the input formula.

The main attraction of quantum computing is that it can speed up computations. In
particular, Grover’s quantum algorithm [9, 10, 11, 15] searches an unsorted list of N elements
to find an element with a given property. In non-quantum computations, every such search
algorithm requires, in the worst case, N steps; Grover’s algorithm can find this element in
time O(

√
N) with arbitrary high probability of success. Thus, a straightforward application

of Grover’s technique can solve SAT in time ∼ 2n/2.
Computer simulation of quantum computing suggests that it may be possible to solve

SAT even faster [12]. Can we actually use quantum computing to solve SAT faster than in
time ∼ 2n/2? In this note, we discuss some aspects of this question.
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Remark. We only consider quantum computing within the standard quantum physics. It
is known that if we consider non-standard versions of quantum physics (e.g., a version in
which it is possible to distinguish between a superposition of |0〉 and |1〉 and a pure state)
then, in principle, we can solve NP-complete problems in polynomial time; see, e.g., [1] and
references therein, and also [2, 14, 16].

Ambainis’ observation. In [3], Ambainis considers algorithms for k-SAT, a restricted
version of SAT where each clause has at most k literals. He shows that one of the fastest
algorithms for k-SAT, namely, the algorithm proposed by Schöning [21], can be similarly
sped up from time T ∼ (2− 2/k)n to

√
T ∼ (2− 2/k)n/2.

Schöning’s algorithm is a multi-start random walk algorithm that repeats the polynomial-
time random walk procedure S exponentially many times. This procedure S takes an input
formula F and does the following:

• Choose an initial assignment a uniformly at random.

• Repeat 3n times:

• If F is satisfied by the assignment a, then return a and halt.

• Otherwise, pick any clause Cj in F such that Cj is falsified by a; choose a literal
ls in Cj uniformly at random; modify a by flipping the value of the variable xi

from the literal ls.

As shown in [21], if the formula F is satisfiable, then each random walk of length 3n finds
a satisfying assignment with the probability ≥ (2 − 2/k)−n. Therefore, for any constant
probability of success, after O((2 − 2/k)n) runs of the random walk procedure S, we get a
satisfying assignment with the required probability. Since S is a polynomial time procedure,
the overall running time of this algorithm is also T ∼ (2−2/k)n. This upper bound is close to
the best known upper bound for k-SAT (see below). Schöning’s algorithm was derandomized
in [6].

In Schöning’s algorithm, there are N ∼ (2− 2/k)n results of different runs of S, and we
look for a result in which the input formula F is satisfied. Grover’s algorithm enables us to
find this result in time ∼ √

N . More exactly, this reduction comes from the modification of
the original Grover’s algorithm called amplitude amplification) [3, 5]. Thus, there exists a
quantum algorithm that solves k-SAT in time ∼ √

T ∼ (2− 2/k)n/2.
For 3-SAT, Schöning’s algorithm was improved by Rolf [19] to T ∼ 1.330n. This improve-

ment also consists of exponentially many runs of a polynomial-time algorithm. Therefore,
Rolf’s non-quantum running time T ∼ 1.330n leads to the corresponding quantum time√

T ∼ 1.154n.
SAT is a particular case of a more general discrete constraint satisfaction problem (CSP),

where variables x1, . . . , xn can take d ≥ 2 possible values, and constraints can be more general
than clauses. In particular, we can consider k-CSP, in which every constraint contains ≤ k
variables. Schöning’s algorithm can be naturally extended to k-CSP [21]. The running time
of the corresponding algorithm is T ∼ (d · (1− 1/k) + ε)n, where ε can be arbitrarily small.
Similar to Schöning’s algorithm for k-SAT, this extension to k-CSP can be quantized with
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the running time TQ ∼
√

T ∼ (d · (1−1/k)+ε)n/2. A different quantum algorithm for 2-CSP
is described in [4].

The fastest algorithm for k-SAT. The best known upper bound for k-SAT is given by
the algorithm proposed by Paturi, Pudlák, Saks, and Zane [17, 18]; this algorithm is called
PPSZ. This algorithm consists of exponentially many runs of a polynomial-time procedure.
This procedure is based on the following approach:

• Pick a random permutation π(1), π(2), . . . , π(n) of the variables.

• Select a truth value of the variable xπ(1) at random.

• Simplify the input formula as follows:

– Substitute the selected truth value for xπ(1).

– If one of the clauses reduces to a single literal, simplify the formula again by using
this literal.

– Repeat such simplification while possible.

• Select a truth value of the first unassigned variable (in the order π(1), π(2), . . .) at
random.

• Simplify the formula as above.

• Continue this process until all n variables are assigned.

As shown in [18], the PPSZ algorithm runs in time T ∼ 2n·(1−µk/k), where µk → π2/6 as k
increases. The PPSZ algorithm was derandomized in [20] for the case when there is at most
one satisfying assignment.

Since the PPSZ algorithm also consists of exponentially many runs of a polynomial-time
procedure, we can use Grover’s technique to design its quantum version which requires time
TQ ∼

√
T .

A combination of the PPSZ and Shöning’s approaches leads to the best known upper
bound for 3-SAT: T ∼ 1.324n (Iwama and Tamaki [13]). Similarly to the previous algorithms,
this algorithm also consists of independent runs of a polynomial-time procedure. So, by
applying Grover’s algorithm, we can similarly get a quantum algorithm with time

√
T ∼

1.151n.

The fastest algorithm for SAT with no restriction on clause length. The best
known upper bound for SAT with no restriction on clause length is given in [8]. The corre-
sponding algorithm is based on the clause shortening approach proposed by Schuler in [22].
This approach suggests exponentially many runs of the following polynomial-time procedure
S:

• Convert the input formula F to an auxiliary k-CNF formula F ′. Namely, for each
clause Cj longer than k, keep the first k literals and delete the other literals in Cj.
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• Use a k-SAT algorithm, e.g., one random walk of Schöning’s algorithm, to test satis-
fiability of F ′. Assuming that F has a satisfying assignment a, there are two possible
cases:

– First, the k-SAT algorithm has found a; then we are done.

– Second, some clause C ′
j in F ′ is false under a. If we guess this clause, we can reduce

the number of variables in F by substituting the corresponding truth values for
the variables of C ′

j. Therefore, we choose a clause in F ′ at random and simplify F
by replacing the variables that occur in this clause with the corresponding truth
values.

• Finally, we recursively apply S to the result of simplification.

The procedure S runs in polynomial time and finds a satisfying assignment (if any) with
probability at least

2
−n·

(
1− 1

ln(m
n )+O(ln ln(m))

)
.

This probability can be increased to a constant by repetition in the usual way, so the algo-
rithm for SAT requires time

T ∼ 2
n·

(
1− 1

ln(m
n )+O(ln ln(m))

)
.

By using Grover’s technique, we can produce a quantum version of this algorithm that
requires time TQ:

TQ ∼
√

T ∼ 2
−(n/2)·

(
1− 1

ln(m
n )+O(ln ln(m))

)
.

2 How Much More Can Grover’s Algorithm Help?

At most quadratic speed-up. So far, we have used Grover’s technique to speed up the
non-quantum computation time T to the quantum computation time TQ ∼

√
T . Let us show

that if Grover’s technique is the only quantum technique that we use, then we cannot get a
further time reduction. Informally speaking, let us call a quantum algorithm that uses only
Grover’s technique (and no other quantum ideas) Grover-based. We show that the following
two statements hold:

• Statement 1. If we have a Grover-based quantum algorithm AQ that solves a problem
in time TQ, then we can “dequantize” it into a non-quantum algorithm A that requires
time T = O(T 2

Q).

• Statement 2. If we have a non-quantum algorithm that solves a problem in time T ,
then any Grover-based quantum algorithm for solving this problem requires time at
least TQ = Ω(

√
T ).
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First statement. Without loss of generality, we can assume that the time is measured in
number of steps. Then TQ = t0 + t1 + . . . + ts, where t0 denotes the number of non-quantum
steps in AQ, s denotes the number of Grover’s searches, and ti denotes the time required for
i-th quantum search.

To show that the first statement holds, let us recall that the Grover’s algorithm searches
the list of N elements to find an element with the desired property. Exhaustive search can
find this element by N calls to a procedure which checks whether a given element has this
property. While the (worst-case) running time of exhaustive search is r · N , where r is the
running time of the checking procedure, Grover’s algorithm enables us to find the desired
element in c · √N calls to this procedure, where c is a constant determined by the required
probability of success. So, the running time of Grover’s algorithm is r · c · √N .

In the i-th Grover’s search, ti = ri · c ·
√

Ni, where Ni is the number of elements in the
corresponding list and ri is the running time of the corresponding checking procedure. So,
we can conclude that

Ni =
t2i

r2
i · c2

.

Hence, by using (non-quantum) exhaustive search algorithm, we can perform the same search
in time

t′i = ri ·Ni =
t2i

ri · c2
.

Since ri ≥ 1, we conclude that t′i ≤ c′ · t2i , where c′ = max(1, c−2).
Since t0 is a non-negative integer, we have t0 ≤ t20; since c′ ≥ 1, we have t0 ≤ c′ · t20.

Thus, by replacing each Grover’s search by the non-quantum search, we get the time T =
t0 + t′1 + . . . + t′s. Here, t′i ≤ c′ · t2i for all i, hence T ≤ c′ · (t20 + t21 + . . . + t2s). Since

t20 + . . . + t2s ≤ (t0 + . . . + ts)
2 = t20 + . . . + t2s + 2 · t0 · t1 + . . . ,

we conclude that T ≤ c′ · T 2
Q.

Second statement. Since T ≤ c′ · T 2
Q, we have TQ ≥ (1/

√
c′) · √T , i.e., TQ = Ω(

√
T ).

Remark. Our observation is valid only if we restrict the use of quantum computation to
Grover’s algorithm. There are quantum techniques which lead to a faster speed-up. For
example, the well-known Shor’s algorithm for factoring large integers requires polynomial
time [23, 24, 15], while all known non-quantum factorization algorithms require, in the worst
case, exponential time. If we can use such techniques, we might get more than quadratic
speed-up.
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