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Abstract
According to the standard no miracles argument, science’s predictive success is best
explained by the approximate truth of its theories. In contemporary science, how-
ever, machine learning systems, such as AlphaFold2, are also remarkably predictively
successful. Thus, we might ask what best explains such successes. Might these AIs
accurately represent critical aspects of their targets in the world? And if so, does a
variant of the no miracles argument apply to these AIs? We argue for an affirmative
answer to these questions. We conclude that if the standard no miracles argument is
sound, an AI-specific no miracles argument is also sound.

Keywords Artificial intelligence · Scientific realism · Machine learning · Scientific
progress · Scientific representation · AlphaFold

1 Introduction and context

Machine learning (ML) techniques are now a standard part of scientists’ toolkits in
many areas. However, the models constructed using ML are data-driven: they are
constructed using statistical methods—embodied in an ML algorithm—applied to
“training” data. This contrasts with traditional scientific modelling, where explicit
theories and models are used to construct equations to represent systems (Knüsel &
Baumberger, 2020: p. 47). So do the empirical successes of AI systems using ML
indicate that they contain the approximate truth concerning their targets?
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If so, there would be important implications. First, AI methods are employed in
local scientific scenarios where scientists have instrumentalist-friendly goals: predict-
ing phenomena in an accurate, simple, and computationally tractable way. If a realist
attitude is nonetheless appropriate in this context, it would be a striking example of
the distinction between what a scientist aims to do and what their practice cognitively
achieves. This distinction is a significant part of the scientific realism debates, and
concerns related issues such as the epistemic role of theoretical virtues in scientific
practice. Second, the opacity of how AI systems learn and infer is of great contempo-
rary concern (Biddle, 2020; Creel, 2020; Sullivan, 2022). If the empirical successes
of such systems are indicative of ‘hidden’ accurate hypotheses or models therein, then
that would be a reason to pursue a way to access or (even partially) grasp them.

Furthermore, scientific realism is a popular view, and many realists endorse the
NMA (in variants as presented by Dawid & Hartmann, 2018; Fahrbach, 2011; Hen-
derson, 2017; Menke, 2014; and Sprenger, 2016). But if one endorses this, should
one also commit to the view that empirically successful AI systems contain accurate
representations of their targets? Towhat extent do the two views stand or fall together?1

One reason for thinking that many scientific realists will find an AI-based NMA
appealing is that scientists often talk about AI systems accurately representing various
aspects of the world. Consider AlphaFold 2 (AF2), which predicts the structure of
proteins on the basis of their amino acid sequences. Rubiera (2021) writes that its:

Evoformer… is able to efficiently extract information from a multiple sequence
alignment and build an accurate representation of the parts of the protein in close
contact …2

Scientific realists of a traditional stripe (as distinct from selective realists)—and hence,
advocates of the NMA—are sympathetic to taking such claims at ‘face value’. That’s
because scientific realism typically involves theses such as ‘claims about scientific
objects, events, processes, properties, and relations … whether they be observable or
unobservable, should be construed literally as having truth values, whether true or
false’ (Chakravartty 2017) and ‘the ampliative-abductive methods employed by scien-
tists to arrive at their theoretical beliefs are reliable: they tend to generate approximately
true beliefs’ (Psillos, 1999: p. xxi). Hence, realists will tend to think that Rubiera’s
claims about representations in AF2 are approximately true.

The paper proceeds as follows. In the next section, we present the twomain versions
of the standard NMA and illustrate how one of these is defective. As a result, we
consider only the surviving frequency-based variant in the remainder of the paper. In
section three, we identify and address three objections to the notion that the standard
frequency-based variant of NMA may be extended to AI systems. We then present
our AI-based NMA; we do not argue that it is sound, but only that it is as good as
the standard NMA. In the penultimate section, we illustrate how this NMA works for
AF2. We finish by presenting corollaries of our findings.

1 Scientific realists who do not think the NMA is a good argument in the normal case are liable to think
the same in the AI case.
2 As we will later explain, the evoformer is only the central part of AF2. Jumper et al. (2021) describe
this not only as having two kinds of representations—MSA and pair—as inputs and outputs, but also as
exchanging information between these different kinds of representation.
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2 The standard nomiracles argument(s)

The NMA appears in a short passage by Putnam (1975) and is rooted in the work
of Smart (1968). The rudimentary idea is that the empirical successes of science
would be miraculous if scientific realism were not true. However, the original NMA
is imprecisely formulated. As a result, it has been understood in various ways.

The vagueness has several facets. First, ‘scientific realism’ is a label for a cluster
of views, some of which differ significantly from others. For instance, according to
van Fraassen (1980) scientific realism concerns the aim of science. In contrast, it has
an epistemic core according to Psillos (1999).3 Second, ‘empirical success’ may be
construed in several ways. For some, like Musgrave (1988), only novel predictions
contribute to success, whereas for others, such as Keynes (1921: pp. 305–306), evi-
dence can be provided by accommodations of old data.4 Third, the NMA’s scope is a
matter of interpretation; for instance, different variants of the NMA pertain to isolated
theories, larger groups of theories, and scientific theories as a whole.

We will do three things to limit the need to go into detail concerning these matters.
First, we will restrict our attention to a claim which underpins all extant versions of
the NMA:

(E) Empirical successes in science enabled by scientific theories are non-
miraculous because such theories are typically or probably approximately true.5

Second, we will only consider cases involving numerous successful novel predictions
(i.e., where the presence of empirical success is uncontroversial). Third, we will not
consider NMAs from an individual theory’s empirical success to its probable approx-
imate truth.

This third decision is motivated by the fact that NMAs concerning individual theo-
ries have a fatal flaw when expressed in a Bayesian framework: they commit the base
rate fallacy (Howson, 2013; Magnus and Callender, 2004). It is easy to show this. Let
S represent ‘T is empirically successful’ and ≈T represent ‘T is approximately true’.
The individual-theory variant of the NMA is:

(a) P(S|≈T) is high.
(b) P(S|¬≈T) is low.
Therefore, (c) P(≈T|S) is high.6

3 Such differences exist between almost every account, although they are oftenmore subtle. SeeRowbottom
(2019a; 2019b: appendix) for a comparison of the views of Boyd, Musgrave, Psillos, van Fraassen, and
others.
4 One way of encapsulating these alternative views is to link high confirmation value with (probable)
approximate truth. The underlying disagreement then concerns how theories come to be confirmed. On
the history of this debate, see Musgrave (1977), Douglas and Magnus (2013), and Barnes (2022). The
controversy continues; see, for instance, Dellsén (Forthcoming).
5 This claim is used to support ‘the success-to-truth inference’, according to which ‘where science is
sufficiently successful—makes accurate predictions and/or exhibits significant explanatory power—the
relevant theoretical hypotheses are (probably and/or approximately) true’ (Vickers 2019: p. 571). AsVickers
notes, this is at the heart of scientific realism.
6 What exactly counts as high or low is open to some interpretation, in so far as an informal argument
is being formalised. However, it is clear, for instance, that a high probability is greater than 0.5. It is also
plausible that it is greater than 0.75.
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However, Bayes’s theorem entails that:

P(≈T|S) � P(S|≈T)P(≈T)

P(S|≈T)P(≈T) + P(S|¬≈T)P(¬≈T)
(1)

So the argument is invalid because the premises are silent on P(≈T), which must be
above a significant threshold for (c) to be true when (a) and (b) are true. Moreover,
to add this assumption would generate a petitio principii, because anti-realists do not
accept it.

However, an NMA with greater scope need not have the same flaw, as Menke
(2014) and Henderson (2017) note. Dawid and Hartmann (2018) show this with a
formal treatment, whichwe summarise below.We follow their approach for illustrative
purposes, as it elegantly makes manifest the means by which empirical data from past
science is relevant in such expanded NMAs. We acknowledge that some advocates of
the NMA object to this Bayesian variant.7 But the obstacles to extending the NMA
to AI systems that we discuss subsequently go for all extant NMA variants. Indeed,
our discussion would remain pertinent even if the individual-theory NMA were to be
reincarnated.

Consider a domain of theories, only some of which have been accurately classi-
fied as empirically successful or unsuccessful. For example, the domain might be the
theories of mechanics generated by scientists in the actual world; the proper subset
of classified theories would include most current and historical mechanical theories,
but no future and unconceived theories. Let R be ‘The relative frequency of empiri-
cally successful theories, classified in the domain, is r’. R is evidence for the relative
frequency of empirically successful theories in the entire domain. Moreover, R is
empirically determinable in principle. Analogously, finding a 0.8 relative frequency
of heads results, after flipping a coin numerous times, would lead one to conclude that
the flipping process was biased towards a heads result.

The frequency-based variant of NMA, which incorporates R, is:

(i) P(S|≈T&R) is high.
(ii) P(S|¬≈T&R) is low.
Therefore, (iii) P(≈T|S&R) is high.

Bayes’s theorem relates (i), (ii), and (iii) as follows:

P(≈T|S&R) � P(S|≈T&R)P(≈T|R)
P(S|≈T&R)P(≈T|R) + P(S|¬≈T&R)P(¬≈T|R) (2)

7 Psillos (2009: p. 195) does so, in writing: ‘Bayesian reasoning does not have rules of acceptance. On a
strict Bayesian approach, we can never detach the probability of the conclusion of a probabilistic argument,
no matter how high this probability might be. So, strictly speaking, we are never licensed to accept a
hypothesis on the basis of the evidence.’Wewon’t delve into this issue. Middle ground is possible, however.
For instance, one could add acceptance rules to the probabilistic framework presented here.
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P(≈T|R), which appears in place of P(≈T) in the individual-theory NMA, must
exceed a significant threshold for (iii) to be true when (i) and (ii) are true.8 But (i) and
(ii) are not silent on the value of P(≈T|R), as we now show.

It follows from the axioms of probability that:

P(S|R) � P(S| ≈T&R)P(≈T|R) + P(S|¬≈T&R)P(¬ ≈T|R) (3)

And from this and P(≈T|R) + P(¬≈T|R) � 1, it follows that:

P(S|R) � P(S|≈T&R)P(≈T|R) + P(S|¬≈T&R){1 − P(≈T|R)}

� P(S|≈T&R)P(≈T|R) − P(S|¬≈T&R)P(≈T|R) + P(S|¬≈T&R)

� P(≈T|R){P(S|≈T&R) − P(S|¬≈T&R)} + P(S|¬≈T&R)

Therefore,

P(≈T|R) � P(S|R) − P(S|¬≈T&R)

P(S|≈T&R) − P(S|¬≈T&R)
(4)

This entails that P(≈T|R) is highly sensitive to P(S|R), given our initial assumptions.
Substituting (i) and (ii) into (4), we find:

P(≈T|R) � P(S|R) − Low

High − Low
(5)

P(S|R) can be empirically determined, given some reasonable additional assump-
tions. For instance, imagine the theory under consideration, T, is randomly picked from
all theories in the pertinent domain. Then it is natural to think that P(S|R) is the relative
frequency of empirically successful theories, r. The crucial point is that scientists can
gather evidence about the relative frequency of successful theories, which bears on
whether (iii) given (i) and (ii).9 This possibility is not present in the individual-theory
NMA.

Dawid and Hartmann (2018: p. §7) also discuss the value that P(S|R) must take
for the NMA to be plausible. For reasons of economy, we will not reconstruct their
general result. However, here is a numerical illustration of conditions under which the

8 Assuming (i) and (ii) and (2):

P(≈T|S&R) � High × P(≈T|R)
High × P(≈T|R) + Low × {1 − P(≈T|R)}

9 Although a Bayesian treatment of this step is possible, we follow Dawid and Hartmann (2018) by simpli-
fying via a non-Bayesian estimation of P(S|R). A Bayesian treatment would involve conditioning on each
theory individually. With suitable priors, the step would still go through, but it would be complex and given
a sufficiently large sample of theories it would not significantly differ from estimating from r.
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NMA is sound. In line with (i) and (ii), let P(S|≈T&R) be 0.9 and P(S|¬≈T&R) be
0.1. Then, from (2),

P(≈T|S&R) � 0.9 × P(≈T|R)
0.9 × P(≈T|R) + 0.1 × {1 − P(≈T|R)} (6)

Now let P(S|R) � 0.3. Then, from (4),

P(≈T|R) � 0.3 − 0.1

0.9 − 0.1
= 0.25 (7)

Finally, by substitution from (7) into (6),

P(≈T|S&R) � 0.9 × 0.25

0.9 × 0.25 + 0.1 × 0.75
� 0.75 (8)

Thus, P(S|R) need not be high for the NMA to be sound, despite any first appearances
to the contrary. Although P(S|R) is merely 0.3, (iii) holds in our illustration.

We should mention one further ambiguity concerning the NMA’s scope before
we continue, which we have already addressed implicitly in the formal treatment.
The NMA is not concerned with explaining how we obtain successful theories. It
is concerned with explaining why successful theories survive the selection process.
So van Fraassen’s (1980: pp. 39–40) ‘Darwinist’ hypothesis that ‘only the successful
theories survive’ is not a competing proposal to ascribing approximate truth to those
theories. Analogously, in the words of Leplin (1997: p. 9):

To explain why theWimbledon finalists are so great, it is perfectly appropriate to
cite the stringency of the selection procedures for entry into the tournament ... It
is hardly surprising that the finalists are great players, considering what they had
to go through to get there. However, none of this explains why these particular
individuals, who happen to be the finalists ... are so great. On the contrary, it
is their being great that explains their having managed to survive the rigors of
selection...10

To amplify this point, we might imagine players who could become Wimbledon
finalists but do not enter the tournament for political reasons. What explains their
capacity for success? Our answer might mention athleticism, technique, decision-
making, composure, focus, and so forth. Analogously, some unconceived theories
would be empirically successful if we discovered them. NMA-style arguments posit
properties of these theories, like accuracy, consistency, simplicity, and truth.

This concludes our presentation of the standard frequency-based NMA. We will
not argue or even assume that it is sound. Rather, we will argue that a highly similar
NMA, which is just as plausible, pertains to a significant class of AI systems. Hence, if
one believes that the standard NMA is sound, then one should also think that there is a

10 As a similar criticism of van Fraassen’s proposal, Kitcher (1993: p. 156) writes: ‘Darwinists want to
know … what kind of organism-environment relationships confer reproductive success.’ Van Fraassen’s
evolutionary account of theories’ empirical success fails to provide an analogous explanation for empirical
success.
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sound NMA involving some AI systems. Or so we contend. This might not be a boon
for scientific realism because the AI-based NMA could be the basis for an anti-realist
reductio ad absurdum of the standard NMA.

In the next section, we consider potential disanalogies between theories and AI
systems, and address these in order to develop an AI-specific NMA. In the section
thereafter, we discuss how this argument applies to AlphaFold2 (AF2), which is a
striking example of an empirically successful ML system.

3 Developing an AI-specific NMA

There are three main reasons why the standard frequency-based NMA might not
straightforwardly apply to AI systems, such as ML networks like AF2. First, it is
dubious that truth-bearers—and hence, bearers of approximate truth—are present in
such systems. No linguistic entities are stored therein, for instance, despite some
aspects of the AF2 programme being motivated by putative physical laws.11 Second,
it is questionable whether an AI can contain representations, because scientific rep-
resentation is often taken to be intentional. Third, even assuming representations are
present, no theories are straightforwardly identifiable in these systems.

Wewill now deal with each of these issues in turn. First, we will argue that accuracy
may serve as a substitute for approximate truth. Second, we will show that AIs may
represent aspects of the world in the same way that human brains do, on a naturalistic
theory of representation. Third, we will argue that an AI-specific NMA may cover
more than just theories. It can cover all the representative machinery used to generate
outputs from inputs.

3.1 Accuracy as a substitute for approximate truth

Because theories are linguistically expressible, they are evidently capable of being
true or false, and approximately true by extension. However, the information inside
a predictively successful AI, such as AF2, is non-linguistic. So how could an NMA
apply to such a system? In answering this, we will assume a non-epistemic theory of
truth, such as a correspondence theory, which accords with scientific realism.

First, a proposition is true precisely when it faithfully represents something, such
as a state of affairs. As Psillos (2004: p. 143) puts it: ‘Truth gives us purchase on the
world. It connects our thoughts and beliefs to some external reality, thereby giving them
[faithful] representational content.’ Or as Jubien (2001: p. 50) puts it: ‘Propositions
represent the world as being one way or another. If they did not represent in this way, it
would be utterly implausible to view themas the ultimate bearers of truth values.’ Thus,
truth is just a special case of faithful representation, which is typically understood to

11 Rowbottom (2022) argues that some non-sentential/non-propositional entities are approximately true.
However, his argument pertains only to entities that have sentential/propositional parts (and which can be
converted into sentential/propositional form by simple operations, such as deletion of some parts).
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apply to propositions, and derivatively entities that contain or express them (e.g.,
sentences and beliefs). Or, at least, this is the dominant view of propositions.12

Second, although it often passes unremarked on, the semantic view of theories,
which is now prevalent, precludes theories from being true, or approximately so, in
any straightforward linguistic sense. Indeed, as Ruyant (2020: p. 7966) notes:

There is a straightforward tension between semantic realism and the semantic
conception of theories, insofar as one of the main purposes of the latter was to
acknowledge that scientific representation is not linguistic and thus to get rid of
problematic issues falling under the scope of philosophy of language. A model,
contrarily to a linguistic statement, is not generally said to be true or false: instead
it is said to be good or bad, or accurate or inaccurate.

Strictly speaking, then, ‘approximate truth’ should not appear in the standard NMA (in
so far as this is not intended to preclude a semantic conception of theories). However,
philosophers of science often use ‘approximate truth’ broadly, and explicitly take it not
to presuppose a syntactic view of theories. For example, Chakravartty (2010: p. 49)
writes:

[I]n the sciences, approximate truth is best understood as a virtue multiply
realized by means of different kinds of representational relationships between
scientific products such as theories and models on the one hand, and target sys-
tems in the world on the other.

We could follow Chakravartty’s lead.13 We prefer, however, to use ‘representational
accuracy’ in developing an AI-specific NMA. The primary reason, as noted above, is
that representational accuracy is a more general notion than truth.

Accuracy comes in degrees. For example, the damped periodically-forced pen-
dulum is a more accurate representation of the longcase clock’s driving mechanism
than the simple pendulum. So when we write of ‘accurate representation’, we mean
representation with a high degree of accuracy. We leave open exactly what threshold
is involved; we simply allow that it falls somewhat short of completely faithful (or
veridical) representation. Analogously, ‘approximate truth’ reflects a degree of partial
truth that passes a threshold falling short of truth (about the pertinent subject matter).
But most users of ‘approximate truth’, including advocates of the standard NMA, do
not specify a threshold.

We hold that AIs can contain propositions, in a particular mode of presentation, and
hence approximately true components. But we also think that AIs can contain other
kinds of accurate representation. Thus, we hold that the representations in AIs can be
accurate overall, despite only a proper subset of those representations being proposi-
tional. We will say more about this in the next two subsections.14 For the moment,
however, note that propositions need not be encoded or expressed in a natural lan-
guage. Indeed, Floridi (2005: p. 366) writes, in developing his account of information,

12 See Brown (2021), who does not share this view, for further discussion.
13 However, the syntactic view of theories may also have been unfairly dismissed, as argued by Lutz (2014;
2017).
14 See also Rowbottom, Curtis-Trudel and Peden (2023) for our stance on how such representations can
constitute evidence.
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that: ‘It is preferable to speak of “truthful data” rather than “true data” because the data
in question may not be linguistic (a map, for example, is truthful rather than true)…’.

The analogy with a map is useful. A map is not a typical linguistic token like an
utterance or an inscribed sentence on a page. Yet a map can provide information;
a map has propositional content. Thus, insofar as this propositional content is true,
the map can be truthful, even though the map as such is not true or false. It might
show, for instance, that ‘The Nile is 4100 miles long’. More generally, the map has
accuracy conditions: situations under which, for a given interpretation, it provides
an accurate representation of some feature it depicts. Thus, a map may encode true
and approximately true propositions without (on the standard view of truth-bearers)
having truth conditions.

3.2 Accurate representation in AI systems

This brings us to the pressing question of whether AIs—e.g., ML networks such as
AF2—can create, embody, or employ scientific representations. Several influential
accounts of scientific representation explicitly rule out this possibility. For example,
Giere (2010: p. 269) advocates ‘an intentional conception of representation in science
that requires bringing scientific agents and their intentions into the picture’ and Suárez
(2004: p. 773) defends an inferential conception of representation on which ‘A repre-
sents B only if…A allows competent and informed agents to draw specific inferences
regarding B’.15 Some philosophers have also explicitly ruled out the possibility of
representation in AI systems on the grounds that such systems lack the requisite inten-
tions. For instance, Boge (2021: p. 50) argues that, absent a human interpreter, talk of
internal representations in an ML network is at best metaphorical.

It is illuminating, however, to consider why Giere (2010) appeals to scientists’
intentions. He writes:

[R]epresentation with models cannot just be a matter of similarity between a
model and the thing modeled. There are two major reasons why this is so. First,
we need to know which similarities matter. That there will always be some
similarities is vacuously true. Second … similarity is a symmetrical relation
while representation is asymmetrical… If we add the intensions [sic] of an agent
or agents, both of these problems disappear … agents specify which similarities
are intended, and for what purpose. (Giere, 2010: p. 274)16

For argument’s sake, accept that models depend, for their empirical (and other) suc-
cesses, on being similar to their targets in some respects. Accept that if X represents
Y, then some elements of X are similar to some elements of Y. Must we introduce
agents and their intentions to specify when an X comes to represent a Y? The answer
is no. We only need intentionality, or for X to be about Y. We do not need intentions.

15 As Schlosser (2019) notes, ‘Usually … the term “agency” is used … to denote the performance of
intentional actions’. So ‘agents’ usually refers to entities that can perform such actions. AIs cannot.
16 See also Giere (2004: p. 747): ‘Anything is similar to anything else in countless respects, but not anything
represents anything else. It is not the model that is doing the representing; it is the scientist using the model
who is doing the representing’.
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When X is about Y, it does not follow that Y is about X; asymmetry holds. Moreover,
when X is about a part of Y, it does not follow that X is about all of Y; some similari-
ties between X and Y may not ‘matter’. Hence introducing agency is unnecessary to
address Giere’s concerns, provided that intentionality is possible without agency.

We will shortly proceed to show that intentionality (and thus representation) is
possible without agency, on the dominant naturalistic view concerning mental repre-
sentations (or mental content).17 But before we do so, we would emphasise that many
of the key ideas behind agent-based accounts of scientific representation may continue
to hold when agents are removed from the picture. For example, one need not deny
that ‘There is no representation except in the sense that some things are used, made, or
taken, to represent some things as thus or so’ (van Fraassen, 2008: p. 23). One might
hold that AIs, such asML networks, can make and use ‘some things’ to represent other
things, just as human scientists can.

Consider also the following passage from Suárez (2004: p. 778):

[S]cientific representation is, unlike linguistic reference, not a matter of arbi-
trary stipulation by an agent, but requires the correct application of functional
cognitive powers (valid reasoning) by means that are objectively appropriate for
the tasks at hand (i.e., by models that are inferentially suited to their targets).

By substituting ‘computational powers’ for ‘cognitive powers (valid reasoning)’, space
is made for AIs to represent without precluding human agents from intentionally doing
the same. According to the prevalent computational theory of mind, human brains may
form sub-personal representations in the same way.

This brings us to naturalistic theories of mental content, which have three main
strands: causal (Dretske, 1981; Fodor, 1987, 1990; Usher, 2001), structuralist (Block,
1986; Cummins, 1996) and teleosemantic/functional (Millikan, 1984, 1989; Papineau,
1987; Neander, 1991). Some contemporary theories of content, such as Shea’s (2018)
‘varitel’ semantics, involve all three elements. We will not explore the differences
between these approaches or contrast themwith non-naturalistic approaches that intro-
duce intentions. Rather, wewill illustrate that these naturalistic theories are compatible
with ML networks like AF2 representing aspects of the world. For present purposes,
this strategy is appropriate because these theories are dominant in psychology and
philosophy of mind, and because we are exploring the prospects for an extension to
the standard NMA, which is a realist argument. Realists will tend to take empirically
successful contemporary theories in psychology to be approximately true, provided
they endorse the standard NMA. Moreover, many prominent scientific realists—such
as Boyd (1980), Psillos (1999), and Papineau (2010)—endorse naturalism.

Consider a system that contains representations ex hypothesi, such as a human
brain. On the naturalistic view of content, it is possible, in principle, to provide a
complete causal account of how that system behaves—of how its inputs lead to its
outputs—without appeal to semantic properties. Thus, content is not strictly needed
to predict how the system will behave or to explain how it has behaved, independently
of its environment. However, ascribing content does explain how that system interacts

17 Following our earlier discussion of propositions, ‘A state with content is a state that represents some
part or aspect of the world; its content is the way it represents the world as being’ (Brown 2022).
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with its environment, and hence helps to predict how it will respond to changes in
that environment. As Shea (2013: pp. 498, 499) explains, the interactions of a system
depend on both the system’s environment and its internal algorithms. For example,
covariance of the system with its environment that is purely a matter of chance is not
the sort of input–output relationship that explains the interactions of the system with
its environment. Instead, to explain these interactions, we need to refer to the internal
algorithms, and hence the inner semantic contents in the system.18

Take AF2, which we will look at in greater depth later, as an illustration. It is
designed to perform a specific task: to determine the structure of proteins from their
amino acid sequences. It is supplied with information relevant to performing that task,
from scientists’ past successes in making traditional template-based predictions of
protein structure. AF2 has subsequently learned, on the basis of this information and
trial and error, to perform its task better. For instance, it has learned to disregard some
protein templates. Thus, it is reasonable to conclude that it contains representations
of protein shapes and so forth, because its interactions with its environment would be
mysterious if it lacked this content. We might also go one level ‘deeper’, in so far as
different modules in AF2 have specific tasks. For example, the Evoformer determines
which elements of the target protein are effectively ‘in contact’, given its embedding,
and this is independent of the Evoformer being a part of AF2. To see this, we need
only note that a human scientist could use its outputs to delimit the possible structures
of a protein, especially in simple cases. It is natural to add that if the representations
provided by the Evoformer were systematically inaccurate, this would spell trouble
for the predictions of protein structure by AF2.

Note that in the neural network components of AF2, any representations must be
construed as distributed; none of the nodes can ‘code’ for any particular symbol, so the
representation is sub-symbolic. But information processing in the brain is plausibly
the same, as it is a non-artificial neural network.19

3.3 Theories versus laws, models and other representative machinery

The standard NMA concerns empirically successful theories. However, it is well-
known that empirical success does not consist in making correct predictions from an
isolated theory. As Duhem (1954: p. 183) stated, ‘an experiment…can never condemn
an isolated hypothesis but only awhole theoretical group… [so] a “crucial experiment”
is impossible’.20 Thus, it is essential to consider how empirical success actually comes
about. We shall argue that pen-and-paper cases of prediction are sufficiently similar
to those involving AI for an AI-based NMA to be unproblematic.

18 Sebastián (2021) also makes the case that AIs can represent in a similar way.
19 See Tamir & Shech (2023) and Duede (2023) for recent discussion of representation in AI systems.
The hypothesis that information processing in the brain is achieved by a non-artificial neural network was
first proposed by McCulloch and Pitts (1943). It continues to be a prominent position in cognitive science
(Buckner and Garson 2019). This hypothesis potentially has some consequences for the idea that there is a
language of thought (‘mentalese’)—and a correlate in the case of AF2—but this matter remains unsettled.
See, for instance, Smolensky (1990), Chalmers (1990), Fodor (1997), and Shea (2007).
20 Duhem restricted his thesis to physics, but philosophers have typically extended its scope to all of science.
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Le Verrier’s work on planetary motion provides an excellent illustration of how
complicated prediction (or retrodiction) can be. In his second memoir of 1846, he
‘demonstrated… a formal incompatibility between the observations of Uranus and
the hypothesis that this planet is subject only to the actions of the sun and of other
planets acting in accordance with the principle of universal gravitation’ (quoted by
Hanson, 1962: p. 361). But how did he do this? At his disposal, he had numerous
observations of the paths of the known planets, estimates of the masses of those
planets and the sun, Newton’s law of gravitation, and the laws of classical mechanics.
However, this was insufficient to generate predictions. First, Le Verrier had to infer
probable planetary paths from the observations or data points concerning positions at
various times. Second, he needed to use an abstract model of the solar system, which
replaced planets with idealised entities, such as point masses. Third, he had to apply
various mathematical approximations—concerning, for instance, perturbations—to
‘animate’ that model according to the pertinent laws.

Imagine momentarily, for convenience, that Le Verrier’s prediction at this juncture
was novel and true; imagine he ‘saved’ the orbit of Uranus for the first time. (We will
dispense with this artifice shortly.) Let’s now pause to consider what would have been
empirically successful in a sense relevant to the standardNMA, andhowso, in this case.
Would it have been the law of gravitation, which counts as a theory on, say, Popper’s
(1959) view? There are two worries if we think of ‘empirical success’ in such a narrow
way when considering the NMA. On the one hand, it is unclear why the approximate
truth of Newton’s law of gravitation would go towards explaining the result unless
the other assumptions and machinery involved in generating it were also accurate to
a considerable degree. One could, perhaps, rephrase the NMA’s conclusion as ‘what
best explains the success of science, on the assumption that the other representative
elements therein are accurate to a high degree, is the approximate truth of its theories’.
However, this limits its scope considerably; indeed, an anti-realist might accept the
conclusion but deny the assumption. On the other hand, if one can run the argument
for Newton’s law of gravitation in isolation, then one can run the argument for the first
law of classical mechanics, the second law of classical mechanics, and so forth. But
that seems misguided. Moreover, having preferred the frequency-based NMA over its
individual-theory counterpart, there is no obstacle to considering all the representative
machinery—especially laws and models—used in such scenarios. We conclude that
it is implicit in the standard frequency-based NMA that the success of science is
best explained by the fact that the representations therein have a significant degree
of accuracy on the whole. Ultimately, one’s construal of theories—e.g., as bundles of
models or as universal/statistical generalisations—is of little import in assessing it.

Let us now return to Le Verrier’s story, which is also useful in illustrating how
‘empirical success’ need not involve merely taking a predictive apparatus, plugging
in true inputs, and deriving novel (or previously unexplained) outputs. Le Verrier’s
prediction of the existence of Neptune was a remarkable feat because he had to ‘work
backwards’ and explain what accounted for the aberrant orbit of Uranus. As Hanson
(1962: p. 362) explains:
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If one knows a planet’s mass and its orbital elements, the disturbance it produces
in another body is easily determined. This is the classical problem of perturba-
tions. Leverrier’s problem … consists in describing the disturbances in Uranus,
from which he then infers the mass and orbital elements of the disturbing planet.
This is … “the inverse perturbation problem”; it is considerably more intricate
to resolve than the classical problem.

Hanson (1962) suggests that the problem involved eight unknowns, but Lequeux
(2013) claims that it involved twelve. The disagreement arises because Hanson (1962)
counts the unknowns remaining after Le Verrier made several key assumptions. One
such assumption was that the unseen planet’s orbit would lie in the same plane as the
ecliptic. Another involved using a putative empirical law—the Titius-Bode law—to
determine that the major axis of the unseen planet would be around double Uranus’s.
That there was only one unseen body to be found was an assumption even before ‘the
twelve’.

The subsequent discovery ofNeptunewas amonumental success for science—Han-
son (1962: p. 363, 364) remarks that ‘Leverrier had carried Newtonian mechanics
into the brightest heaven of scientific achievement’—despite being based on so much
supposition and an element of luck. The Titius-Bode law, for instance, is far from
being approximately true, although it works well for some planets. In principle, how-
ever, a ‘holistic’ frequency-based NMA can better accommodate such cases than an
individual-theory NMA. Indeed, the episode also constituted a success for the Titius-
Bode law—albeit perhaps a lesser one—although Hanson (1962) fails to remark on
this. But this does not require that said law was approximately true considered in
isolation.

Moreover, amodel may appear to be representationally inaccurate because its target
has been misidentified. Take the simple model of the pendulum as a case in point. It is
not an accurate representation of long case clock pendulums of standard construction.
However, if one takes its target to be how factors such as gravitational field strength,
pendulum length, frequency, and period directionally interrelate, then it appears rep-
resentationally accurate. It correctly captures the fact that increasing field strength
decreases swing period, that increasing length decreases swing frequency, and so on.
In the case of AI systems, this issue is especially interesting because the ‘target’—or
what the system has learned to represent—is not always obvious. (To achieve its final
task, a system may need to perform a variety of sub-tasks.) In the case of AF2, as we
will see, it is relatively uncontroversial that some things, like heavy atom positions,
are represented. But what are the representations used at a ‘lower’, or more funda-
mental, level (e.g., in the process of refining position hypotheses)?21 For instance, are
there many different statistical laws, governing how structural elements interrelate,
which are implemented by the system? It is reasonable to think so, but the opacity
inherent in the system is an obstacle to knowing. Ascribing accuracy to such repre-
sentative machinery overall does not, however, require being able to achieve greater
transparency than we already have (in cases such as AF2).

21 Scientists are also content to write of hypotheses being formed and refined in AF2. For instance, Jumper
et al, (2021: p. 285) state: ‘a concrete structural hypothesis arises early within the Evoformer blocks and is
continuously refined’.
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3.4 An AI-specific NMA

We are now in a position to state an AI-specific NMA. Let A be an arbitrary system
in the domain of predictive AI systems utilised in science. For example, it could be
an ML network. Let SA be ‘A is empirically successful’ and ≈A be ‘A accurately
represents its task-related empirical target(s)’. Finally, let F be ‘The relative frequency
of empirically successful AIs classified in the domain is f .’

Here is the AI-specific NMA:

(a) P(SA|≈A&F) is high.
(b) P(SA|¬≈A&F) is low.
Therefore, (c) P(≈A|SA&F) is high.

This argument is an instance of the inferential pattern in the NMA; for a given
standard of ‘high’ and ‘low’, it is remarkably general. It differs notably from the
traditional NMA only in so far as ‘accurate representation’ replaces ‘approximate
truth’ and it involves no explicit mention of theories.

3.5 Summary

In the AI-specific NMA, a claim concerning the representational accuracy of the
information in a system appears in place of the claim about the approximate truth of
a theory that features in the traditional NMA. In this section, we have shown why
this is so. First, approximate truth is normally taken to be a special kind of veridical
representation. Second, AI-systems, such as AF2, may represent in the same way
that human brains can. Third, the representations in such systems need not merely
be correlates of theories or hypotheses; they might be correlates of initial conditions,
models, and other machinery used for predictive purposes, too.

4 AlphaFold2 as a case study

AF2 (Jumper et al., 2021) is the most recent in a series of AI systems for predicting
a protein’s three-dimensional structure from its amino acid sequence. It tackles one
of the most important problems in structural biology, because a protein’s structure is
indicative of its potential functions andmechanistic interactions. AlthoughAI-inspired
approaches to this problem have become increasingly common in recent years, AF2
is the first system to achieve near-atomic accuracy when compared to experimental
methods. AF2 debuted at CASP14, the industry-standard biennial structure prediction
competition, where results from structure prediction systems are compared to experi-
mentally determined structures. Its median accuracy was within 0.96 Å for backbone
protein structure, with similarly impressive performance for side chain structures.
The runner up achieved backbone accuracy only within 2.8 Å (Jumper et al., 2021:
p. 584).22

22 For more recent assessments of AF2’s impact, see AlQuraishi (2021) and Jones & Thornton (2022).
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AF2 is trained primarily on the Protein Data Bank (PDB), an extensive database of
solved protein structures. However, it does not merely memorize potential structures
from this database and attempt to match input sequences to them. Rather, AF2 works
by generating and iteratively improving a hypothesis about the most likely structure,
given an input sequence. As its designers characterize it, AF2 works by as identifying
a ‘concrete structural hypothesis’ early in the processing which is then ‘continuously
refined’ during computation (Jumper et al., 2021: p. 585).

Although a full explanation of AF2’s technical details are beyond the scope of this
paper—the supplementary information to Jumper et al. (2021) alone runs to sixty-two
pages—a few points are worth mentioning. First, AF2 processes information in two
main stages. The first stage, dubbed the ‘Evoformer’, takes an amino acid sequence
as input and outputs the aforementioned structural hypothesis. The structural hypoth-
esis consists of two matrices, called the single and pair representations, respectively.
The single representation contains information about the multiple sequence alignment
(MSA) for the input sequence, and captures information about evolutionarily related
residues in the input sequence. The pair representation contains information about the
likely 3D structure encoded by the input sequence, given that MSA. This structural
hypothesis is then passed to AF2’s second main component, the structure prediction
module, which takes the hypothesis and infers backbone and side chain structure
through an iterative process.

Second, each of these components is informed by domain-specific knowledge.
For instance, the MSA on which the single representation is based is motivated by
the insight that evolutionarily related proteins fold in similar ways, and so finding
an evolutionarily similar sequence provides information about the target sequence’s
likely final structure. Similarly, the pair representation is based on a template drawn
from a database of known structures. Here the idea is that most proteins approximate
known template structures, and so identifying a good template can significantly reduce
the overall search space. And both the Evoformer and structure modules incorporate
geometric constraints, such as the triangle inequality, which any physically possible
structure much satisfy.

Despite its impressive performance, much is unknown about how AF2 works. In
particular, little is known about the specific structural hypotheses AF2 learns. This
is due in large part to AF2’s opacity. Although AF2’s high-level architecture is well-
understood, it is far from clear how to translate its learned parameter values into
humanly-graspable principles for identifying structure from sequence. Research in
this area is ongoing.23

With all of this in mind, let’s return to the AI-specific NMA. Although we will not
attempt to pin down specific values for P(SA|≈A&F) or P(SA|¬≈A&F), it is natural
to think that the former is high and the latter low for many predictively successful AI
systems. This is illustrated by AF2. The fact that AF2 accurately represents its target
domain—e.g., by learning structural hypotheses relating sequence to 3D structure—-
makes it highly probable that it will be empirically successful. By contrast, imagine

23 For instance, Jumper et al., (2021: Supplementary Methods, §1.13) carry out a series of ablation studies,
which consist in knocking out certain components of AF2 and assessing whether its performance degrades.
This provides indirect evidence for the contribution made by different modules, although it is too coarse-
grained to provide much understanding of the hypotheses AF2 learns.
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that AF2 systematically misrepresented its target domain, perhaps by violating cer-
tain geometrical constraints in its structural hypotheses. If this were so, it is far less
plausible that AF2 would enjoy the same degree of empirical success.

A few clarificatory remarks are in order at this point. First, it is important to remem-
ber that, just as the explanandum in the NMA is not howwe obtain successful theories,
the explanandum in the AI-specific NMA is not how we obtain successful AI systems.
This matters because one might be tempted to account for AF2’s accuracy by appeal-
ing to its training history, as opposed to its representational capacities. However, what
needs to be explained is not how AF2 came to perform as it does. Rather, what needs
to be explained is why AF2, given its current (trained) state, is predictively successful.
The reason is that it accurately represents its target domain—or so the modified NMA
suggests. Moreover, this explanation would hold even if AF2 had a different training
history or no such history at all. Even if it popped into existence fully formed on
DeepMind’s servers, AF2 would still perform impressively.

Second, if sound, the modified NMA demonstrates that AF2 accurately represents
its target domain. However, it does not tell us how AF2 accurately represents that
domain. Indeed, as mentioned earlier, AF2’s opacity prevents us from straightfor-
wardly understanding how it does what it does.

Finally, we have only considered the modified NMA for a specific kind of deep
learning system. But the modified argument applies much more widely than this. Not
every AI system, or every machine learning system, uses deep learning. Consider a
symbolic rule-based system such as a decision tree (e.g., Mitchell, 1997: ch. 3). In
such a system, learned decision rules are encoded as conditional statements linking
variables. When such a system is predictively successful, it is plausible that these
conditionals accurately capture certain relationships between variables in the target
domain. It is natural to think that the explanation for the system’s success is that these
if–then statements capture genuine relationships in the target domain, and it would
not be hard to construct an NMA which concludes as much. Nevertheless, we have
argued that a modified NMA applies even to opaque systems such as AF2, which do
not wear their representational features on their sleeves.

Byway of closing this section,we note a recent discussion ofAF2 inwhich Skolnick
et al. (2021: p. 4827) remark that AF2 seems to work ‘by magic’: ‘Input a protein
sequence and by “magic” the protein’s three-dimensional structure appears.’ Yet if
the AI-specific NMA is sound, there is no magic here. There are no miracles, either.
Indeed, Skolnick et al. (ibid.) note as much, continuing: ‘Actually, AF2 figures out
the complex interrelationships of the protein’s residues that dictate what structure that
protein sequence adopts.’ We agree, although if the modified NMA is sound, AF2
probably achieves something more substantial. AF2 does not merely ‘figure out’ these
complex interrelationships. It represents them and relies upon those representations
when it infers structure from sequence.

5 Conclusion

We have argued that considerations in favour of standard NMA-style arguments apply,
mutatis mutandis, to NMAs concerning empirically successful AI systems. If the
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former kind of argument is sound, so is the latter. They stand or fall together.24 We
will conclude with a few corollaries.

First, the success of anAI-specificNMAwould suggest adequacy criteria for certain
projects in explainable AI (‘XAI’). One goal of XAI research is to render opaque AI
systems ‘interpretable’ or ‘explainable’ to human users (Burrell, 2016; Ribeiro et al.,
2016). Plausibly, however, what interpretability involves depends on how a system is
used in a specific context (Páez, 2019; Zednik, 2021). In light of a salient AI-specific
NMA, one natural requirement in scientific contexts is that an XAI method should
uncover the representations actually employed by an AI system. Yet not every XAI
method is apt for this task.

Second, as we noted at the outset, several philosophers have suggested that AI
systems might help scientists to understand their target domains. The existence of a
salient AI-specific NMA might support this project, insofar as it would buttress the
claim that the system accurately represents its target. One route to understanding via
such a system would be to grasp these representations. Thus our argument should be
congenial to those who think that AI systems may provide understanding and that
understanding is factive (or perhaps quasi-factive).

Finally, our findings support the potential for various non-standard NMAs—e.g.,
NMAs for selective realisms—to be rendered AI-specific. Consider, for example, the
idea that the empirical successes of theories are best explained by structure mapping
rather than by approximate truth (Worrall, 1989). For anAI-specific equivalent towork,
the information inside anAI, such asAF2,must be capable of representing structures in
the world. We have argued that AIs are capable of this (although not that the empirical
successes thereof indicate the presence of accurate structural representations).
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