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A-t-on tout ~ fait le droit d'6tablir une s6paration entre 
les deux grands aspects de la vie de PainlevG son c6t6 
scientifique et son c6t6 humain? Ce n'est point certain et, 
devant nous, r6cemment, l'homme d'l~tat qui a peut-~tre 
6t6 le plus pros de sa pens6e et de son action, faisait res- 
sortir l'unit6 secrete par laquelle toutes les manifestations 
de cette admirable nature sont solidaires les unes des 
autres. 

Jacques Hadamard: L'oeuvre scientifique de Paul Painlev6 
Revue de Mdtaphysique XLI (1934), 289-325 

This is a story about  celestial mechanics and mathe- 
matics and about a question older than  Bieberbach's 
conjecture; a quest ion that died close to its 100th birth- 
day  but which-- l ike  any  good quest ion-- lef t  behind it 
many  other unanswered  questions as well as a uni- 
verse of intellectual achievements.  

The n-Body Problem 

subject to the initial conditions (q, p)(0) E ( R 3 ~ )  x 
R 3n, where  p = M~ 1 denotes the momentum of the sys- 
tem. 

For n = 2, the problem is not  difficult, and its solu- 
tion can be found in any celestial mechanics or astron- 
omy textbook under  the name  of the two-body problem 
or the Kepler problem (in honour  of the famous German 
astronomer Johannes Kepler who  actually provided 
Newton  the inspiration for the inverse-square attrac- 
tion law). Depending on the initial conditions, the mo- 
tion of one particle with respect to the other can be an 
ellipse ( including possibly a circle), a parabola,  a 

that of an initial-value problem for a system of 6n dif- 
ferential equations: Solve 

(t = M-lp ,  
# = VU(q) (1) 

The roots of the n-body problem get lost somewhere  in 
the early history of humankind ,  but we can easily rec- 
ognize its mode rn  birth certificate s igned by Isaac 
Newton  in his fundamenta l  Philosophiae Naturalis Prin- 
cipia Mathematica, published for the first time in 1687. 
The clear formulat ion of the problem in terms of dif- 
ferential equations is based on the inverse-square law 
of mutua l  at t ract ion be tween  particles and  can be 
stated in the following way: Consider n particles in the 
ambient space whose  positions are given by the vec- 
tors qi, i = 1, �9 �9 �9 , n (with respect to a fixed frame), 
and  let q = (ql . . . . .  qn) be the configuration of the 
system. Determine the motion of the n particles by 
finding the general solution (q, it) of the second-order 
system 

/t = M-lVU(q) ,  

where  U: R3n'~--'> R+,  U(q) = ~ , m i m j l q i  - qj1-1 is 
called the potential function (or force function) of the sys- 
tem of particles, A = U{qlq i = qj} is the collision set, 
a n d M  = diag(m 1,m 1,m 1 . . . . .  m n ,m  n,mn) i s a 3 n -  
dimensional  diagonal matrix, m 1, m 2 . . . . .  mn being 
the masses of the n particles. The usual  formulation is 
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branch of a hyperbola, or a line. This last case, of rec- 
tilinear motion, is the only one when collisions be- 
tween the two particles can take place. It is interesting 
that the complete solution as described above was not 
given by Newton as one would expect, but by Johann 
Bernoulli, and only in 1710 (see [24]). 

For n I-- 3, the problem is still open even after three 
centuries of intense efforts to find its solution. Almost 
all important mathematicians up to the first quarter of 
this century attacked some aspect of the n-body prob- 
lem, bringing important contributions to the under- 
standing of the subject. In spite of this, the global im- 
age we have today is still far from complete. 

There are several ways to approach the problem. A 
modern method for tackling systems of differential 
equations in 19th-century mathematics was to find first 
integrals and, consequently, to reduce the dimension of 
the system. More precisely, a function 

F: (R3n'~) • R 3n ---~ R 

is said to be a first integral for Equations (1) if F(q, p) = 
c (constant), along a solution (q, p) of it. A relation like 
this between the components of a solution reduces the 
dimension of the system by 1. It is known that systems 
Of k equations have (locally) k linearly independent  first 
integrals, and it was an important goal to find as many 
integrals as possible. For Equations (1), 10 of them 
were easy to obtain: three integrals of the momentum, 
three integrals of the center of mass, three of the an- 
gular momentum, and one energy integral, namely, 

Y~Pi = a, Xmiq i - at = b, 
?qi x Pi = c, T(p) - U(q) = h, 

where a, b, c are constant vectors and h is a real con- 
stant with T denoting the kinetic energy. 

Any further attempt to find new ones was unsuc- 
cessful, and people started to look for other methods. 
The decisive result which stopped completely the 
search for first integrals was published in 1887 by 
Bruns. In a long paper [2] he proved the following 
negative statement: 

THEOREM 1. The only linearly independent integrals of 
Equations (1), algebraic with respect to q, p, and t, are the 
10 described above. 

This was an important moment  in the history of 
mathematics,  which changed the way of thinking 
prevalent since Galilei. After a long period of quanti- 
tative methods, mathematicians understood that the 
class of problems solvable in this way is very small, 
and a large w indow on qualitative methods  was 
opened. The new era was signaled by Liapunov sta- 
bility criteria, obtained approximately at the same 
time, and also motivated by celestial mechanics. 

Approximately one hundred years ago, interest in 
the problem reached a high level. Advised by Gustav 

Mittag-Leffler (at that time Editor-in-Chief of Acta 
Mathematica), King Oscar II of Sweden and Norway, a 
protector and supporter of science and especially of 
mathematics, established in 1887 an important prize 
for solving the 3-body problem. The formulation was 
very precise: one must obtain, for any choice of the initial 
data, a solution expressing the coordinates as a power series, 
convergent for all real values of the time variable. The idea 
of attacking the problem in this way is attributed to 
Dirichlet (see [19]). Bruns's result was at that time still 
too fresh to change the belief in quantitative methods. 
Unexpectedly, nobody could provide the desired solu- 
tion. In spite of this, the prize was awarded to Henri 
Poincar~ in 1889 for his memoir Le probl~me des trois 
corps et les ~quations de la dynamique, published in Acta 
Mathematica one year later [13]. This was in recognition 
of this paper's stimulating value for further research in 
mathematics and mechanics, and indeed this choice 
was a good one. Poincar~'s interest was aroused by 
this success and he continued investigation into the 
mysterious n-body problem for many years. He also 
wrote the famous Les nouvelles m~thodes de la m~canique 
c~leste, in three volumes [14], where the idea of chaos 
appears for the first time. 

Not only were many mathematical theories born 
from the study of the n-body problem but also the 
strength of new theories is checked today by trying to 
find applications of them to this old problem. It has 
been studied by classical analysis, differential equa- 
tions, and sometimes function theory, but nowadays 
also by new fields like dynamical systems, differential 
topology, differential geometry, Morse theory, alge- 
braic geometry, algebraic topology, symplectic mani- 
folds, Lie groups and algebras, ergodic theory, numer- 
ical analysis and computers, operator theory, and C*- 
algebras. 

The Conjecture of  Painlev~ 

In 1895, at 32 years of age, Paul Painlev~ was already 
one of the most famous mathematicians of his time, 
and King Oscar II invited him to give a series of lec- 
tures at the University of Stockholm in September- 
November of that year. The event was considered of 
paramount importance and even the King attended the 
introductory lecture. The notes were published in 1897 
in handwritten form under the title Lemons sur la th~orie 
analytique des ~quations diff~rentielles [11] and can be 
found today also in Painlev~'s Complete Works [12]. 
The last pages contain an application of the results to 
the 3-body problem and an opinion of the author con- 
cerning the n-body case, formulated as a statement 
which was known afterwards as the Conjecture of Pain- 
lev~. First, let us try to understand its natural birth. 

Standard results of differential equations ensure, for 
any (q, p)(0) E (R3n'~) x R 3n, the existence and 
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uniqueness of an analytic solution of Equations (1) de- 
fined locally on (let's say) ( t- , t+),  with 0 contained in 
this interval. Due to the symmetry of mechanical laws 
with respect to the past and future, one can study the 
problem on (t-,0] or on [0,t+), without loss of gener- 
ality. Because many scientists have a natural desire to 
predict future phenomena,  let us choose the second 
interval. We can extend the solution analytically to a 
maximum interval [0,t*), with 0 < t + ~< t* ~< oo. In case 
t* = % the motion is called regular, whereas if t* is 
finite, we say that the solution experiences a singular- 
ity. What is the physical meaning of such a singularity 
and is it important? One obvious possible way for a 
solution to encounter a singularity is for a collision to 
occur. Indeed, the configuration vector q will then so 
tend to the set ,~ that at least two position vectors have 
the same value, consequently VU tends to infinity and 
the equations of motion (1) become meaningless. The 
creation of the prize made the importance of such a 
study very clear. Because a series expansion of the 
coordinates convergent for every real value of t was 
asked, solutions leading to singularities were expected 
to be extended somehow beyond the singularity. 

Although very young in 1887, Painlev6 was working 
on his doctoral thesis and knew about the famous 
problem. He tried, therefore, to understand whether 
in the 3-body problem the only possible singularities 
are collisions. His worry about the occurrence of other 
singularities was motivated by the possible appearance 
of large oscillations (suspected already by Poincar6). 
For example, one particle could oscillate between the 
other two without  colliding but coming closer and 
closer to a collision at each close encounter. Under 
such circumstances, one can find a subsequence tn of 
times converging to a finite t* such that VU(q(tn)) ~ o0. 
This again makes Equations (1) meaningless, and such 
t* is also a singularity. In modern terminology, 

DEFINITION. Let (q, p) be a solution of Equations (1) 
defined on [0,t*) with t* a singularity. Then t* will be 
called a collision singularity if q(t) tends to a definite 
limit when t ~ t*, t < t*. If the limit does not exist, then 
the singularity will be called a pseudocollision or noncol- 
lision singularity. 

Attempts to extend this result to the n-body problem 
(n > 3) failed, and the intuition of Painlev6 was that 
pseudocollisions may, indeed, arise for more than 4 
bodies. Thus, his Stockholm lectures end with the fol- 
lowing: 

CONJECTURE. For n ~ 4, Equations (1) admit solutions 
with noncollision singularities. 

Painlev6 understood that this is a very hard prob- 
lem; his subsequent mathematical work contains some 
papers dealing with singularities, none, however, at- 
tempting to prove the conjecture. After 1905, Pain- 
lev6's scientific activity becomes less intense because of 
his deep involvement in politics. Paul Painlev6 was 
elected several times as deputy,  holding the War, then 
Finance, and finally Air portfolios, and serving as Pres- 
ident of the Chamber of Deputies of France. In 1918, he 
became Pr6sident de l'Acad6mie des Sciences, and in 
1927 the University of Cambridge offered him the title 
of Doctor Honoris Causa. Indeed a remarkable and 
successful life! His famous conjecture remained open, 
however, for more than half a century after his death. 

It is interesting to note that collision orbits are very 
improbable. Donald Saari proved that in the n-body 
problem they are of Lebesgue measure zero and of the first 
Baire category. Moreover, this is true for all singularities 
in the 4-body problem (see [15,17]). Some of these re- 
sults were generalized and are expressed in terms of 
lower-dimensional manifolds [18]. It is also expected 
that, for any n, singularities are improbable. However,  
these results did not diminish the interest in the study 
of singularities. 

Singularity Criteria 

Many of Painlev4's contemporaries tried to find exam- 
ples of solutions with pseudocollisions but  no one suc- 
ceeded. Their attention was, therefore, directed to- 
wards understanding theoretical aspects and espe- 
cially towards  criteria for obtaining noncoll is ion 
singularities. 

A way  of finding singularities had already been 
found, but it is quite hard to discern when and by 
whom: 

It is clear that these singularities (especially the 
noncollision ones) are an important obstacle to accom- 
plishing King Oscar's goal. Indeed, one might try to 
extend a collision as an elastic bounce and possibly 
obtain a globally convergent power series, but how to 
do that with pseudocollisions? Painlev6 doubted that 
pseudocollisions can actually appear and he proved for 
the 3-body case 

THEOREM 3. For n = 3, any solution of the Equations (1) 
defined on [0,t*) with t* a finite singularity, experiences a 
collision when t ~ t*. 

THEOREM 4. Consider a solution (q, p) of Equations (1). 
Then t* is a singularity of this solution iff 

lim inf min qij(t) = 0, (2) 
t--*t* i<j 

where qij = Iqi - qjl. 

Painlev6 himself improved this result [11] in proving 
Theorem 3. He showed that condition (2) can actually 
be replaced by 

lim rain qij(t) = O. 
t-*t* i<j 
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The first important condition for the occurrence of 
noncollision singularities was found and published 
only in 1908 by a Swedish mathematician of German 
origin, Hugo yon Zeipel [26]. His result has not only a ~_.~;;~, ; ,__ 
nice formulation but also an unusual  history and , . . . . . .  ',- 
played a fundamental role in the story of Painlev6's ~.~ 
conjecture, rT . . . .  

THEOREM 5. If t* is a collision singularity for a solution 
(q, p) of Equations (1), then J(q(t)) tends to a definite limit 
when t --~ t*, where J(q) = Emi[qi[ 2 is the moment of inertia. 

This implies, of course, that a necessary condition 
for having a noncollision singularity is that the motion 
become unbounded in finite time, because the moment  
of inertia is a measure of the distribution of particles in 
space. 

What is obvious is that at a singularity the whole 
[(q, p)[ has to become unbounded. This always hap- 
pens at a collision instant because the velocities are 
infinite. It is not clear what would happen in the con- 
figuration space (i.e., for the vector q), and here lies 
von Zeipel's contribution. His paper appeared in a less 
famous journal (see [26]) and was, therefore, not well 
known. Personally I have tried to find it in several 
good university libraries in Eastern and Western Eu- 
rope as well as in North America, but without success. 
An article of Dick McGehee [10], who spent a period in 
Stockholm and was interested in this subject, makes it 
less necessary to read the original. 

The French astronomer Jean Chazy had announced 
Theorem 5 without  making any reference to von 
Zeipel's paper [3]. Aurel Wintner wrote in 1941 that 
the proof of the Swedish mathematician has some gaps 
and there is no complete argument for the theorem 
[24]. Thirty years later, Hans Sperling gave a detailed 
proof [20], apparently ending the dispute. However, 
McGehee's paper cited above provides a translation in 
modern mathematical language of von Zeipel's proof, 
showing that it was actually correct from the begin- 
ning. 

Today we know a beautiful generalization of this 
result which is due to Donald Saari from Northwestern 
University [16]. He proves that if J ~ q is a slowly vary- 
ing function as t --~ t* for a solution (q, p) of Equations 
(1), then the singularity t* is necessarily a collision. 

Theorem 5 is a fundamental contribution to the sub- 
ject of singularities in the n-body problem, and the 
elucidation of Painlev~'s conjecture would have been 
hard to imagine without it. 

The Computer and the Idea 

As has happened many times, the idea that was to 
solve Painlev6's conjecture came by looking for some- 
thing else, and depended on electronic computers. 
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Figure 1: Numerical results in the Pythagorean problem. 

In 1893, Meissel proposed the investigation of a so- 
called Pythagorean problem, in which three gravita- 
tionally attracting particles of masses 3, 4, and 5 are 
initially located at the vertices of a triangle with sides 3, 
4, and 5 such that the corresponding point masses and 
sides are opposite. Releasing the particles with zero 
initial velocities from their positions, how will they 
move in the future? Burrau investigated the problem 
numerically in 1913 but without reaching important 
conclusions. Several computer investigations in 1966 
and 1967 [21] helped to go much further by showing a 
surprising qualitative behavior: After passing close to a 
triple collision, two particles will form a binary while 
the other one is expelled with high velocity in the op- 
posite direction, as in Figure 1 (see also [1]). The for- 
mation of the binary was an interesting point for as- 
tronomers, whereas the high-speed escape of the third 
particle attracted the attention of mathematicians. It 
provided the idea that it might be possible to construct 
an example of a noncollision singularity solution. The 
main reason for this qualitative feature is the triple 
approach of the particles, as was recognized in [8], [9], 
[22], [23]. 

We sketch crucial ideas from Dick McGehee's 1974 
paper. He considered the case of the rectilinear 3-body 
problem, i.e., when the masses ml, m2, m3 move all the 
time on a fixed line. He was interested in understand- 
ing the flow in a neighborhood of a triple collision 
solution. This was, indeed, a hard problem because 
previous numerical investigations suggested chaotic 
behavior near a total collapse (i.e., a simultaneous col- 
lision of all bodies). Only qualitatively speaking, the 
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Figure 2: The flow on the collision manifold. 
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Figure 3: The example of Mather and McGehee. 

particles behave by forming a binary and an escape, 
numerical investigations showing a highly sensitive 
dependence with respect to initial data. For example, 
for some initial conditions the particles m 1 and m 2 form 
a binary and m 3 escapes, whereas, perturbing the data 
a little bit, it may be that m 1 and m 3 form a binary and 
m 2 escapes. Two such solutions look very different in a 
phase-space picture, in spite of being close to one an- 
other at some initial moment of time. 

McGehee's idea was to restrict the equations of mo- 
tion to an arbitrary energy level, then to blow up the 
singularity (by using certain transformations which to- 
day bear his name), and finally to introduce a so-called 
collision manifold which is proved to be independent of 
the chosen energy level. In the rectilinear 3-body prob- 
lem, the collision manifold happens to be a sphere 
missing four points, as in Figure 2. 

Roughly speaking, the McGehee coordinates are po- 
lar coordinates for the configuration vector and a de- 
composition of the velocity into a radial and a tangen- 
tial component, rescaled by a suitable transformation 
of time, which makes the collision manifold be ap- 
proached asymptotically by the real flow when the 
new (fictitious) time variable goes to infinity. 

The equations of motion restricted to the collision 
manifold do not describe a real physical situation. 
However,  due to the continuity property of the solu- 
tions with respect to initial data, a study of the flow on 
this manifold provides valuable information on the be- 
havior of solutions passing close to a triple collision. 
Many interesting theoretical results were proved in 
McGehee's paper using these powerful techniques, in- 
cluding a theorem on the occurrence of solutions with 
high-velocity escapes. Studies on collision singularities 
are hard to imagine today without McGehee's trans- 
formations. 

The  Example  o f  Mather  and  M c G e h e e  

One of the results McGehee announced (without 
proof) in his 1974 paper is the construction of a solu- 
tion with noncollision singularities in the rectilinear 
5-body problem, using the idea of a high-speed escape. 
The trouble is not that collisions always appear in a 

rectilinear problem but that they always arise before an 
impending pseudocollision, as was shown by Saari 
[16]. I may now have confused the reader, for I said 
before that the solution was defined on a maximal in- 
terval [0,t*), t* (finite) representing either a collision or 
a noncollision singularity. There is no inconsistency. 
Binary collision solutions can be analytically extended 
by a mathematical procedure  called regular i za t ion .  
There is a vast literature on this subject (see, e.g., [4]). 
Physically, this means that an elastic bounce, without 
loss or gain of energy, takes place. I hope the sense of 
Saari's result is now clear. 

Mather and McGehee [7] were later able to prove 
completely that a noncollision singularity can occur in 
the rectilinear 4-body problem, but  only after an infin- 
ity of (regularized) binary collisions. Here is their sce- 
nario. 

Four bodies of suitably chosen masses ml, m2, m3, m4 
lie on a straight line at some initial moment (see Fig. 3). 
The initial data (positions and velocities) are such that 
the particles ml and m 2 stay close together, so we say 
that they form a binary system. The particle m 3 oscil- 
lates between the binary system and the particle m 4. 
The motion is regularized beyond the binary collisions 
which take place at the instants t 1, t 2 . . . . .  t k . . . . .  
This sequence converges as k goes to infinity. Mean- 
while, the binary m~, m2 goes to - ~ ,  m 4 goes to + ~, 
and m 3 bounces back and forth, with increased velocity 
after every close passage to a triple collision. This is 
possible because the distance between ml and m2 tends 
to zero, the loss of potential energy of the binary being 
transferred into kinetic energy for the particle m 3. The 
proof of Mather and McGehee is not at all easy. 

Whatever its mathematical beauty and interest for 
dynamical systems theory, the above example is not 
accepted as a proof of Painlev6's conjecture because 
the pseudocoll is ion appears  only after (infinitely 
many) collisions. 

Gerver's  First Example  

In 1984, Joe Gerver from Rutgers University proposed 
a solution of a planar 5-body problem in which the 
particles escape to infinity in finite time [5]. Although 
he does not give a complete proof, he provides a lot of 
support  for the existence of such a solution. We repro- 
duce his scenario. 

Consider the planar motion of five particles m 1 . . . . .  
ms, with m 3 = m4, m 2 somewhat  greater but of the 
same order of magnitude as m 3, m I much smaller than 
m2, and m5 much smaller than ml (see Fig. 4). Initially, 
m 1 is in a roughly circular orbit around m2, whereas m3 
and m 4 are much further away. The bodies m2, m3, m4 
are approximately at the vertices of an obtuse triangle. 
Initially the triangle is slowly expanding while main- 
taining its shape.  Meanwhile ,  ms moves  rapidly 
around the triangle, coming close to each of the other 
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four bodies, the velocity of m 5 being much greater than 
that of m 1. Each time m s passes close to m 1, it picks up 
a small amount of kinetic energy. This causes m I to fall 
into a lower orbit around m 2 such that the mean kinetic 
energy of m I in its orbit actually increases by about the 
same factor as for m 5. A small fraction of the kinetic 
energy of m 5 is transferred to m 2, m3, and m4, causing 
faster expansion of the triangle. The time required for 
one trip of m s around the triangle decreases each time 
(in spite of the expansion) by a factor slightly less than 
1. After a finite time, the geometric progression of the 
time instants t 1, t 2 . . . . .  t k . . . .  measuring a round trip 
will converge, and m 5 will have travelled an infinite 
number of times around the triangle. In the meantime, 
the triangle has become infinitely large. 

Xia's Example 

In his doctoral thesis written under the supervision of 
Donald Saari at Northwestern  University, Jeff Xia 
proved in 1988 that a certain type of solution in the 
spatial 5-body problem leads to a noncollision singu- 
larity without involving an infinite number of binary 
collisions, as was the case in the example of Mather 
and McGehee.  Painlev6 's  conjecture was  finally 
proved. 

The author considers two pairs of bodies, the parti- 
cles in the same pair having equal masses, plus a fifth 
particle of small mass. The bodies in a pair move in 
highly eccentric orbits parallel with the (x,y)-plane (see 
Fig. 5). The binaries are on opposite sides with respect 
to the (x,y)-plane and have an opposite rotation. The 
motion of the small particle is restricted to the z-axis, so 
that the total angular momentum is zero. The small 
particle will oscillate between the two binaries, deter- 
mining an unbounded motion in finite time. More pre- 
cisely, suppose the particle m 5 intersects the line con- 
necting m 3 with m 4 from above, at a moment  when 
these particles come near to their closest approach, the 
motion of m 3, m 4, and m s thus being close to a triple 
collision. The body m 5 goes a little under the line m3m4, 
whereas the particles m 3 and m 4 are at their closest 
approach. Thus, m 5 is strongly attracted backwards. It 
intersects the line m3m 4 again when these point masses 

start to separate. This separation reduces the retaining 
force on the small particle which consequently moves 
very fast towards the other binary system. The action- 
reaction effect forces the binary m3, m 4 to move further 
away from the plane (x,y). The same situation de- 
scribed above is now repeated (in mirror image) for the 
binary ml, m 2. Iterating this procedure with higher and 
higher accelerations for m5, the two binaries will be 
forced to tend to infinity in finite time. Simple though 
this scenario sounds, it is very hard to prove it is pos- 
sible. For example, because the motion becomes un- 
bounded in finite time, the acceleration effects on the 
small particle have to become infinitely large. The 
point masses in each binary must come closer and 
closer together, making it hard to guarantee nonoccur- 
rence of collisions. 

There were mistakes in the first attempt of Xia but he 
was able to correct them. The paper appeared in Annals 
of Mathematics. 

His example can be extended to similar symmetric 
problems for any N > 5. 

In spite of his youth (not even 30 years old in 1992), 
today associate professor at Georgia Tech, Xia has al- 
ready brought a tremendous contribution to the field. 
He recently proved a new magnificent result, namely, 
that the very rare (and hard to detect) phenomenon 
called Arnold diffusion (a kind of chaos) takes place in a 
very natural system, the elliptical restricted 3-body 
problem. Arnold himself constructed in the 1960s a 
very sophisticated and artificial system to show for the 
first time that such a phenomenon exists. It is expected 
that Xia will make many other important contributions 
in years to come. 

Gerver's Second Example 

The idea of using radial symmetry, combined with the 
experience obtained by trying to prove his previous 
heuristic example, led Joe Gerver to the following so- 
lution for the planar case. Consider 3n bodies (n suffi- 
ciently large) in a plane as in Figure 5 .2n of the parti- 
cles are arranged in n nearly circular orbiting pairs and 
all have the same mass. The center of mass of each 
binary lies at one of the vertices of a regular polygon. 
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Figure 6: Gerver's planar example. 

The other n bodies have small equal masses and  move 
rapidly from one pair to the other as in Figure 6. When 
a small particle comes close to the binary it takes some 
kinetic energy from the pair and transfers some mo- 
men t um  to it, forcing the binary to move into a tighter 
orbit and concomitantly to increase its distance from 
the center of the polygon.  Iterating this process for a 
suitably chosen n, suitable values of the masses, and of 
the initial velocities, the size of the configuration will 
increase by each close encounter  of a small particle 
with a binary. The sequence of times from one encoun- 
ter to the next will converge to a finite value, whereas 
the system becomes unbounded  in finite time. The 
complete proof contains very many  computat ions and 
is, therefore, quite hard to follow (see [6]). 

Gerver found  out  about  Painlev6's conjecture 19 
years before he gave the solution. Xia succeeded in 
proving his example about six months  before Gerver. 
However,  Gerver 's is the first confirmation of the con- 
jecture for the case of planar solutions and  is also very 
elementary,  using mainly 19th-century mathematics.  
Seeing the proof, one sees that the conjecture would 
have been possible for Painlev6's contemporaries to 
prove, but  nobody  did it. 

It was not  the first time Gerver attacked a famous 
problem. As a graduate  s tudent  at Columbia Uni- 
versity in 1969, he proved a conjecture of Riemann on 
the  n o w h e r e  d i f f e r e n t i a b i l i t y  of  t h e  f u n c t i o n  
~ =  lsin(n2x)/n 2. But this was long before his work on 
Painlev6's conjecture started. 

A comparison be tween the two solutions is hard to 
make. Each is interesting and valuable in its own way. 
Xia opened a new direction of work bringing fresh air 
into the field, whereas  Gerver used the old methods  
showing that  they  can be successful too. Surely both 
achieved a most  remarkable feat in an old and  hard 
field where  good new results are not  at all easy to 
obtain. 
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