Predictive success, partial truth and Duhemian realism
Abstract
According to a defense of scientific realism known as the “divide et impera move”, mature scientific theories enjoying predictive success are partially true. This paper investigates a paradigmatic historical case: the prediction, based on Fresnel’s wave theory of light, that a bright spot should figure in the shadow of a disc. Two different derivations of this prediction have been given by both Poisson and Fresnel. I argue that the details of these derivations highlight two problems of indispensability arguments, which state that only the indispensable constituents of this success are worthy of belief and retained through theory-change. The first problem is that, contrary to a common claim, Fresnel’s integrals are not needed to predict the bright spot phenomenon. The second problem is that the hypotheses shared by to these two derivations include problematic idealizations. I claim that this example leads us to be skeptical about which aspects of our current theories are worthy of belief.
Keywords
Scientific realism Partial truth Novel prediction Fresnel’s bright spot prediction Divide et impera move Pierre DuhemReferences
- Alai, M. (2014). Novel predictions and the no miracle argument. Erkenntnis, 79(2), 297–326.CrossRefGoogle Scholar
- Alpher, R., & Herman, R. (1948). Evolution of the universe. Nature, 162, 774–775.CrossRefGoogle Scholar
- Batterman, R. (2010). On the explanatory role of mathematics in empirical science. The British Journal for the Philosophy of Science, 61(1), 1–25.CrossRefGoogle Scholar
- Biot, J.-B. (1816). Traité de physique expérimentale et mathématique (Vol. 4). Paris: Deterville.Google Scholar
- Bokulich, A. (2012). Distinguishing explanatory from nonexplanatory fictions. Philosophy of Science, 79(5), 725–737.CrossRefGoogle Scholar
- Cartwright, N., & Jones, M. R. (2005). Idealization XII: Correcting the model. Amsterdam: Rodopi: Idealization and Abstraction in the Sciences.Google Scholar
- Chakravartty, A. (2007). A metaphysics for scientific realism: Knowing the unobservable. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- de Sitter, W. (1917). On the curvature of space. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings, 20, 229–243.Google Scholar
- Descartes, R. (1644). Principia philosophiae. Amsterdam: Ludovicum Elzevirium.Google Scholar
- Dicke, R., Peebles, J., Roll, P., & Wilkinson, D. (1965). Cosmic black-body radiation. The Astrophysical Journal, 142, 414–419.CrossRefGoogle Scholar
- Duhem, P. (1914). La Théorie physique: son objet, sa structure. Paris: Vrin.Google Scholar
- Fresnel, A. (1866). Œuvres complètes d’Augustin Fresnel. Paris: Imprimerie Impériale.Google Scholar
- Harvey, J. E., & Forgham, J. L. (1984). The spot of arago: New relevance for an old phenomenon. American Journal of Physics, 52(3), 243–247.CrossRefGoogle Scholar
- Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Science, 15, 168–173.CrossRefGoogle Scholar
- Kirchhoff, G. (1883). Zur Theorie der Lichtstrahlen. Annalen der Physik, 254(4), 663–695.CrossRefGoogle Scholar
- Kragh, H., & Smith, R. (2003). Who discovered the expanding universe? History of Science, 41, 141–162.CrossRefGoogle Scholar
- Laudan, L. (1981). A confutation of convergent realism. Philosophy of Science, 48(1), 19–49.CrossRefGoogle Scholar
- Laymon, R. (1982). Scientific realism and the hierarchical counterfactual path from data to theory. In PSA: proceedings of the biennial meeting of the Philosophy of Science Association, pp. 107–121.Google Scholar
- Lemaître, G. (1927). Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société scientifique de Bruxelles, série A, 47, 49–59.Google Scholar
- Leplin, J. (1997). A novel defense of scientific realism. Oxford: Oxford University Press.Google Scholar
- Lyons, T. D. (2002). Scientific realism and the pessimistic meta-modus tollens. In S. Clarke & T. D. Lyons (Eds.), Recent themes in the philosophy of science: Scientific realism and commonsense (pp. 63–90). Dordrecht: Springer.CrossRefGoogle Scholar
- Mäki, U. (2011). The truth of false idealizations in modeling. In P. Humphreys & C. Imbert (Eds.), Models, simulations, and representations (pp. 216–233). New York: Routledge.Google Scholar
- McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science Part A, 16(3), 247–273.CrossRefGoogle Scholar
- Moeller, K. (2007). Optics: Learning by computing, with examples using maple, mathcad, matlab, mathematica, and maple. Undergraduate texts in contemporary physics. New York: Springer.Google Scholar
- Musgrave, A. (1974). Logical versus historical theories of confirmation. British Journal for the Philosophy of Science, 25(1), 1–23.CrossRefGoogle Scholar
- Musgrave, A. (1988). The ultimate argument for scientific realism. In R. Nola (Ed.), Relativism and realism in science (pp. 229–252). New York: Springer.CrossRefGoogle Scholar
- Psillos, S. (1999). Scientific realism: How science tracks truth. New York: Routledge.Google Scholar
- Psillos, S. (2011). Living with the abstract: realism and models. Synthese, 180(1), 3–17.CrossRefGoogle Scholar
- Putnam, H. (1975). Philosophical papers: Mathematics, matter and method. Cambridge: CUP Archive.Google Scholar
- Saatsi, J. (2005). Reconsidering the Fresnel–Maxwell theory shift: How the realist can have her cake and EAT it too. Studies in History and Philosophy of Science Part A, 36(3), 509–538.CrossRefGoogle Scholar
- Saatsi, J. (2015). Historical inductions, old and new. Synthese. doi:10.1007/s11229-015-0855-5.
- Saatsi, J., & Vickers, P. (2011). Miraculous success? Inconsistency and untruth in Kirchhoff’s diffraction theory. The British Journal for the Philosophy of Science, 62(1), 29–46.CrossRefGoogle Scholar
- Smart, J. J. (1968). Between science and philosophy: An introduction to the philosophy of science. New York: Random House.Google Scholar
- Vickers, P. (2013). A confrontation of convergent realism. Philosophy of Science, 80(2), 189–211.CrossRefGoogle Scholar
- Worrall, J. (1989a). Fresnel, Poisson and the white spot: The role of successful predictions in the acceptance of scientific theories. In D. Gooding, T. Pinch, & S. Schaffer (Eds.), The uses of experiment, studies in the natural sciences (pp. 135–157). Cambridge: Cambridge University Press.Google Scholar
- Worrall, J. (1989b). Structural realism: The best of both worlds? Dialectica, 43(2), 99–124.CrossRefGoogle Scholar