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Introduction 
paper presents an algorithm for detecting when two 

computations produce equivalent values. The equivalence 
of programs, and hence the equivalence of values, is in gen- 
eral undecidable. Thus, the best one can hope to do is to 
give an efficient algorithm that detects a large subclass of 
all the possible equivalences in a program. 

Two variables are said to be equivalent at a point p if 
those variables contain the same values whenever control 
reaches p during any possible execution of the program. 
We will not examine all possible executions of the program. 
Instead, we will develop a static property called congruence. 
Congruence implies, but is not implied by, equivalence. Our 
approach is conservative in that any variables detected to be 
e:quivalent will in fact be equivalent, but not all equivalences 
are detected. 

Previous work has shown how to apply a technique 
c.alled value numbering in basic blocks [CS70]. Value num- 
bering is essentially symbolic execution on straight-line pro- 
grams (basic blocks). Symbolic execution implies that two 
expressions are assumed to be equal only when they consist 
of the same functions and the corresponding arguments of 
these functions are equal. An expression DAG is associated 
with each assignment statement. A hashing algorithm as- 
signs a unique integer, the value number, to each different 
expression tree. Two variables that are assigned the same 
integer are guaranteed to be equivalent. After the code 

BcA+3 
C+-B*5 
D+-(A+3)*5 

the value number of C and D is the hash value of “(A+3)*5”. 
Because calculation is done only symbolically;nothing 

can be said about variables with different value numbers. 
If the assignment to D had read 

D +(A*5)+ 15 
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no value numbering algorithm would recognize that C and 
D are the same, since value numbering is based on symbolic 
computation. It is easy to generalize value numbering to 
extended basic blocks. 

Reif and Lewis [RL77] h ave given a complex and ef- 
ficient algorithm for detecting a somewhat more general 
form than extended basic blocks, but their algorithm can- 
not detect that in the following sequence J and K must be 
equal: 

if P then J t 5. else J + 6 
if P then K t 5 else K + 6 

One contribution of this paper is to give an efficient 
algorithm for detecting equality in the presence of control 
structures, including if -then-else and loops. Instead of 
associating an expression DAG with every assignment, we 
associate nodes in a directed, cyclic value graph. Because 
cycles may be present, it is not clear how to represent values 
so that they may tested easily for equality. We therefore 
define the notion of congruence for nodes of the value graph. 
Determining which nodes are congruent is a partitioning 
problem an so is essentially the same problem as minimizing 
a finite-state machine, which Hopcroft [Hop711 has shown 
can be computed in O(E log E). 

Intuitively, our algorithm will make a list of sets of 
variables it has discovered to be equivalent. Such a list is a 
fixed point if the variables associated with two expressions 
are in the same set when they have the same functions and 
when the list contains the information that their subexpres- 
sions are equal. When the program has loops, there can be 
a chicken-and-egg problem: if the results of two expressions 
are later used in the computations determining the value 
of their sub-expressions, it is not immediately clear how 
equality should be determined. 

As with other flow analysis algorithms, we will find a 
maximal fixed point [Weg75] [GW76]. The maximal fixed 
point is a fixed point that contains the most equal values. 
The algorithms presented here are optimistic: they proceed 
by initially assuming that all values are equal and then 
separate them into more and more sets of possibly equal 
variables. 

Another advantage of our algorithm is that it can be 
easily extended to exploit additional facts about program 
semantics. We will give two such extensions to the algo- 
rithm: others are clearly possible. 
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Uses of this algorithm include: 

Register Allocation: There is no need to load a value if 
a register already contains ,a value which can be shown 
to be equal. 

Common Sub-Expression Elimination: There is no 
need to recalculate a value if it has already been cal- 
culated. If an expression is calculated at a node u and 
later at a node v, if u dominates v, and if we can show 
that the variables are congruent at v, then the calcu- 
lation at v need not be performed. 

Movement of Invariant Code: Detection whether or 
not an expression will calculate the same value in a 
different location is a key concern. 

Branch Elimination: If a value is guaranteed to be 
equal to another value, equality tests can be elimi- 
nated. This condition can be expected in code in which 
procedures have bleen integrated. 

Branch Fusion and Loop Jamming: If there are two 
if-then-else statements one right after the other, 
and their predicates result in equal values, then the 
code on each branch of the second statement can be 
moved into the appropriate branch of the first and the 
second test can bte eliminated. Similarly, if two loops 
have predicates we find equivalent, then the loops are 
executed the sam.e number of times; if there are no 
dependencies, then the loops can be combined. Both 
of these program transformations may make further 
analysis easier and allow other optimizations to take 
place. 

Section 2 presents the basic algorithm and shows how 
to use it when programs are viewed as flow graphs. Sec- 
tion 3 shows how to use program structure to discover ad- 
ditional equivalences. lSection 4 presents more two general- 
izations of the basic algorithm which can be used to detect 
more equalities. We conclude in, Section 5. 

2 Equivalence of Variables in 
Simple Pr,ograms 

Here we introduce the basic maclhinery used to detect equiv- 
alences. This will be the basis of more sophisticated algo- 
rithms in Sections 3 and 4. First we need to define further 
what it means for variables to be equivalent. Consider the 
following program text: 

if Q 
then do 

It5 
Jt5 

end 
else do 

It6 
J- + 7 

end 

Are variables I and J equivalent? At the end of the 
if-then-else there are two pos,sible answers; when viewed 
dynamically, the answer dependls on the value of Q; when 
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viewed statically, the answer must be no since we wish our 
algorithm to be conservative. However, at the end of the 
then block, the answer is yes even viewed statically. 

We introduce the notion of congruence which is one 
of the two conditions that we need to detect equivalence. 
Congruence is a relationship between two variables with- 
out respect to location in the program. To make it possible 
to detect such equivalences at difFerenct points in the pro- 
gram, we introduce several new variables for each variable 
in the original program. Thus, in the above example, we 
will break I into three distinct variables: one in the then 
clause, one in the else clause, and the third at the end of 
the if-then-else. (This will be explained more fully in 
Section 2.2.) The I in the then clause will be congruent to 
the J in the then clause. 

Even in the then clause, it is not clear what it means 
to say that I and J are equivalent. I equals J only after the 
assignment to J. We can assert that two variables are equiv- 
alent at a point p only if we know the assignments to both 
variables will have been executed whenever control reaches 
p. We can determine statically that the assignments have 
been executed if both assignments dominate p. A node a in 
a rooted, directed graph is said to dominate b if all paths 
from the root to b go through a. We will introduce auxil- 
iary assignments (and auxiliary variables) so that each use 
ofa variable is dominated by an assignment to the variable. 

1. 

2. 

3. 

4. 

The algorithm can be broken into four steps: 

Build a control flow graph that represents the program. 

Replace each variable (both scaler and arrays) in the 
original program with several new variables. These 
new variables have the property that there is only one 
assignment to them in the program. This form is called 
static single assignment form, or SSA form. 

Build an auxiliary structure called the value graph that 
represents the symbolic execution of the program. La- 
bel each of the assignments in the SSA program with a 
node in the value graph. (In Section 3 we will modify 
the value graph so that we can discover a larger set 
of congruences which are dependent on control struc- 
ture.) 

Determine congruence of nodes in the value structure. 
Two variables will be equivalent at a point p if their 
assignments dominate p and are labeled by congruent 
nodes. (In Section 4 we will modify the algorithm to 
detect further congruences.) 

The example in Figure 1 will be used throughout this 
section. 

2.1 Building the Control Flow Graph 
We. construct a control flow graph for the program and each 
node corresponds to a basic block in the program. Each 
edge in the control flow graph corresponds to a branch in 
the program. There may be multiple edges into a node. 
Such nodes are called join points and we assume the in- 
coming edges are ordered. Such a construction is fairly 
standard in the study of compilers; see Allen [Al1701 for 
details. 



if (I < 29) 
then do 

J+-I 
K+i 

end 
else do 

Jc2 
Kc2 

end 
if (I < 29) 

then Ltl 
else Lc-2 

Figure 1: A Simple Example 

In Figure 2, each box represents a basic block; the 
edges connecting the boxes are the control flow graph edges 
and the numbers to the side of the boxes are the labels for 
each basic block. They can be assigned in any way that 
gives a unique name to each block. 

(6) L-t 1 Lt2 (6) 

Figure 2: Control Flow Graph of Simple Example 

2..2 Translation to Static Single 
Assignment Form 

The translation to static single assignment (or SSA) form 
involves separating each variable V in the program into sev- 
eral variables Vi, each of which has only one assignment. 
When node i contains an assignment to V, we replace the 
last assignment to V, at that node, by an assignment to 
Vi. The uses of the variable V are replaced by the appro- 
priate variable Vi, where i dominates the use. In order 
to accomplish this we need to introduce additional assign- 
ments at join points, so that there is always a dominating 
assignment. These pseudo-assignments will be of the form 

X t qb(Y, Z), which means that if control reaches this node 
along the first entering edge, X is assigned the value Y, and 
if along the other edge1 X is assigned the value of Z. These 
pseudo-assignments allow us to always determine at value 
of X, given the correct incoming edge. The SSA form for 
Figure 1 is given in Figure 3. 

(I> 1 ? I<29 

(2) 
Jl+-I J2 + 2 
Kl t-1 K2 ~2 (3) 

(4) 

(5) Li + 1 L2 +2 (6) 

Figure 3: SSA Form of Simple Example 

Following Shapiro and Saint [SS70], we describe the 
nodes at which 4’s must be inserted as pseudo-assignments. 
A node n gets a pseudo-assignment for a variable X if and 
only if there are two paths to n from distinct assignments 
or pseudo-assignments for X such that n is the only node 
common to the two paths. A naive algorithm which runs 
in O(N2) for each variable can be constructed which marks 
all nodes which can be reached from each assignment and 
pseudo-assignment, stopping the marking when another as- 
signment (or pseudo-assignment) is reached. The first node 
which is marked by two different assignments is another 
pseudo-assignment. The process is then repeated. 

Better algorithms exist for determining the loca- 
tions to insert the 4 functions. Rosen, Wegman and 
Zadeck [RWZSS] g ive a relatively straightforward algorithm 
for reducible algorithms that works in O(E log E) (where E 
is the number of edges in the control flow graph) for each 
variable. Reif and Tarjan [RTS2] give a complex algorithm 
that works for irreducible graphs in O(EaE) (where cr is the 
inverse of Ackerman’s function) bit vector operations where 
the number of bits grows with the number of variables’. 

For each node n which is a pseudo-assignment, we will 
create a join 4 function dn. This function has as many 

‘If there are more than two entering edges, the 4 will take the 
appropriate number of arguments. 

2Reif and Tarjan call pseudo-assignments join birthpoints. 

3 



arguments as there are entering edges to the node. The 
value of this function is assigned to a new variable Vn, and 
all uses of the original variable V that are dominated by n 
are replaced by Vn. A variable Vn is present at a node a if 
on all paths to a the Ilast assignment or pseudo-assignment 
to V took place at n.. The itlh argument of the q5 whose 
value is assigned to Vn is the variable present at the node 
u where the edge (u,n> is the ith edge into to node n. 

2.3 Building t:he Value Graph 

We will build a value graph representing symbolic execu- 
tion of the program. The value graph is a labeled, directed 
graph. Figure 4 is the value graph of the simple exam- 
ple. Each edge of the value graph corresponds to a connec- 
tion between the use of a variable and the assignment at 
which the value of that variable is generated. The gener- 
ating assignment for the use of a variable is normally the 
assignment to that variable. However, if this assignment 
is a ttivial assignmen. (one of the form A + B), then the 
generating assignment for A is the generating assignment 
for B. 

Jl 52 Kl KS 

Figure 4: Valne Graph of Simple Example 

Each node of the value graph corresponds to an indi- 
vidual function in the program.. The graph has two types 
of nodes, corresponding to the two types of assignments: 

Executable Function For every normal assignment in 
the program, there is a node labeled with the func- 
tion symbol on the right-hand side of the assignrnent. 
One edge leaves the node for each argument to the 
function. 

q5 Function For each. pseudo-assignment there is a node 
labeled by the q!~ function for that join point. One edge 
leaves the node for each atrgument of the 4 function 
(i.e., the nodes corresponding to the assignments that 
reach the join point). 

The edges are ordered corresponding to the order of the 
arguments Iof the function. 

Figure 4 shows the value graph for our simple exam- 
ple. For purposes of exposition, we have placed variable 
names next to the nodes that they are associated with. 
These names are not part of the graph. The empty node 
in the value structure for the predicate is a consequence of 
the example being incomplete. This node would normally 
represent the calculation producing I. 

2.4 Congruence 

We will show that two variables have the same value at 
a point p if the nodes in the value graph corresponding 
to the assignments to these variables are congruent and 
if both these assignments dominate p. Two nodes in the 
value graph are said to be congruent if both of the following 
conditions hold: 

1. the nodes have identical function labels. 

2. the corresponding destinations of the edges leaving the 
nodes are congruent. 

As we have defined congruence, it is a symmetric, reflexive 
and transitive relation. 

In the program fragment in Figure 4, the following are 
congruence classes: 

l (JIIKbLl) 
. (JZ,KZ,LZ) 

. (J3,K3) 

l (L3) 

Notice that L3 is in a different congruence class from J3 
and Kg, since the two different join nodes have different c$ 
functions associated with them. 

Figure 5: Control Flow Graph of Loop Example 

The previous conditions are not enough to define con- 
gruence because they are circular and in fact ambiguous. 
The ambiguity allows multiple solutions. We desire the one 
that gives the maximal number of congruences. Congru- 
ence is defined as the maximal fixed point that satisfies the 
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Figure 6: Value Graph of Loop Example 

previous two conditions. The solution is determined opti- 
mistically. That is, all variables are assumed to be the same 
initially and this assumption is refined until a fixed point 
is reached. It is possible to compute a pessimistic solution 
by assuming that the variables are different and combining 
those that can be proven congruent. The fixed point found 
by a pessimistic algorithm will not, in general, be maximal, 
as shown by Figure 5 and 6. 

While it is true that the value graphs for J and K in 
Figure 6 are identical, a pessimistic algorithm cannot de- 
termine that the nodes are congruent because of the cycles. 
By definition, for two nodes to be congruent, the desti- 
nations of all of the edges must be the same. The cycle 
inhibits discovering these congruences, unless they are as- 
sumed from the start. 

It is not necessary to represent the congruences as pairs 
since the congruence relation is transitive, reflexive and 
commutative and moreover, there are O(N’) possible pairs. 
R.ather, we represent them by sets of congruent nodes. The 
collection of all of the sets of nodes is called a partitioning 
of the nodes. Each set is called a partition. 

2.5 Two Partitioning Algorithms 
We begin with an initial partitioning of the nodes that puts 
all possibly congruent nodes in the same partition. (Non- 
congruent nodes may also start out in the same partition.) 
We then create a new partitioning at each step of the al- 
gorithm. Each partitioning is a refinement of the previous 
one. In the final partitioning, two non-congruent nodes 
must be in different partitions. 

T:he following simple algorithm can be used to discover con- 
gruent nodes in the value graph. 

Silmple Algorithm 

step 1: Place all nodes with the same label in the same 
partitions. 

step i+l: Two nodes will be in the same partition in par- 
titioning i+l if, in partitioning i, the nodes are in the 
same partition and the corresponding destinations of 
their edges are in the same partitions. 
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The algorithm terminates when two successive partitioning 
are identical and takes O(N’) operations. 

Aho, Hopcroft, and Ullman [AHU74] give a fast 
algorithm for partitioning based on an algorithm by 
Hopcroft [Hop711 for minimizing a finite-state machine. 
We will use the fast partitioning algorithm directly from 
[AHU74]. It is shown in Figure 7 in a generalized form 
similar to one they suggest. In this algorithm, the input is 
an initial partitioning of the set into p equivalence cIasses, 
and a collection of k functions f i from the set to itself. In- 
tuitively, each function f i which maps a node u to a node 
v corresponds to the edge (u,v> in the value graph. 

The algorithm makes use of two arrays, F-l and B. 
The elements of the ith partition are stored in B[i]. The 
inverse image of element x under frz is stored in F-‘[m, x]. 
The final partitioning has the property that two elements, 
x and y, are in the same partition only if both a) they were 
originally in the same partition and b) there is no function 
such that fi(x) is not in the same partition as fi(y). 

WAITING + ( I, 2, . . . p } 

9 + Pi 
while WAITING # 8 do 

select and delete an integer i from WAITING; 
for m from I to k do 

INVERSE c 8 
for x in B[i] do 

INVERSE +- INVERSE UF-‘[m, x] 
end 
for each j such that B[j]n 

B[j] e INVERSE do 

q+q+i 
create a new block B[d; 
B[d + B[j]flIBVERSE 

%I t B[jl - %I 
if j is in WAITING 

INVERSE # 8 and 

then add q to WAITING 

else if IlWl I PhIlI 
then add j to WAITING 
else add q to WAITING 

end 
end 

end 

Figure 7: Hopcroft’s Partitioning Algorithm 

To fit congruence detection into this framework, the 
nodes in the value graph are initially partitioned by their 
label. The ith function maps a node to its ith child. The 
final partitioning of the’algorithm leaves the nodes in the 
same partition if and only if the nodes are congruent. 

This partitioning algorithm is based on the following 
ideas. At each step, partitions are split. A partition is not 
examined unless it needs to be split. It needs to be split 
if two nodes in it point to nodes in separate partitions. 
Splitting works by creating a new partition. Nodes are 
moved out of the original partition into the new one. This 
is in such a way that the new partition has no more than 
half the nodes that were in the original partition. Splitting 



a partition can force other partitions to be split. Hence, 
new partitions are placed on a queue to be examined later. 
We observe that a node can be in a partition which is placed 
on the queue only a logarithmic number of times, since each 
time the partition is half the size of the previous partition 
of which the node was a part. 

In the worst case, the congruence classes can be deter- 
mined in O(E log E) time, where E is the number of edges 
in the value graph. 

The algorithms presented in this section discov- 
ers exactly the same equivalences as that of Reif and 
Lewis [RL82]. Their a:lgorithm runs in 0(.&E) time where 
a is the inverse of Ackerman’s function. The algorithm pre- 
sented in this section has two significant advantages over 
the one by Reif and Lewis: 

1. As formulated as a partitioning problem, our algorithm 
is easier to understand and1 implement. 

2. Our algorithm can be modified to discover substan- 
tially more equivatlences, as shown in Sections 3 and 4. 

The key results of this paper are the extensions to our al- 
gorithm that allow us to discover more equivalences. These 
extensions are the subject of the rest of the paper. 

3 Taking A.dvantage of Control 
Structure 

In this section, we show how to detect that variables are 
congruent when they have been produced by identical func- 
tions within identical control structures in different parts of 
the program. In the previous section, we created unique 4 
functions for every join point. As a result, we have not yet 
been able to recognize equal values produced by the same 
control structure in two different places in the program. 
In this section, we will create new 4 functions which re- 
flect the semantics of c.ommon high-level control structures. 
These I$ fnnctions can be used in several locations in the 
program and thus, we can recognize that two variables are 
congruent even when they are defined in different locations. 
Such a construction is similar in spirit to the PDG of Fer- 
rante, Ottenstein, and. Warren [FOW87]. The congruence 
algorithm of the preceding section can now discover more 
equivalences. 

High-level control structures can either be derived from 
the source program by parsing techniques or can be deter- 
mined from the control flow graph by analysis techniques 
such as those of Baker [Bak77] and Sharir [Sha80]. We will 
assume in the rest of this section that the high-level control 
structures have been identified in the SSA graph. 

In this section, we provide value structures for two of 
the most common control structures, if-then-else and a 
very general loop. Other control structures can be handled 
by similar techniques. It is not necessary for the program 
to be wholly constructed from a given set of high-level con- 
trol structures, since any parts of the program not using our 
high-level control structures (e.g. loops with multiple exits) 
can be modeled using the + functions of the previous sec- 
tion. The consequence of using lthe original r# functions will 
be merely that some equivalences will not be discovered. 

It is instructive to note why we do not model this as a 
classical dataflow analysis problem. In a typical framework, 
the information about variables is represented at nodes and 
is propagated along the edges in a control flow graph. Here, 
the control flow is part of the information being propagated. 
Hense, it would be costly to model this as a dataflow prob- 
lem. 

3.1 Conditional Statements 

Two variables contain the same values when they are the 
results of assignments in conditionals provided that 1) on 
the corresponding branches of the if-then-else they are 
given the same values and 2) the predicates controlling the 
branching are congruent. Structures can be created in the 
value graph that allow the partitioning algorithm to deter- 
mine congruences in this case. 

At each identified if-then-else, we use a function 
+if to combine values coming from the different branches. 
This function has three arguments: 

1. The variable coming from the then side of the 
if -then-else. 

2. The variable coming from the else side of the 
if-then-else. 

3. The predicate. Note that join 4 nodes do not contain 
the predicate. 

Since the 4if contains an edge to the predicate, congru- 
ence of two 4if structures implies that the corresponding 
if-then-else control structure branch in the same direc- 
tion. It also implies that the values computed on those 
branches of the if-then-else are also congruent. 

Consider the example in Figure 1. The new value 
graph, shown in Figure 8, has a 4if associated with J3, 
Kg, and L3. The first edge out of each of these three nodes 
will be to a node labeled with the constant function I; the 
second edge will be to a node labeled 2; the third edge will 
point to a substructure representing the predicate I C 29. 
The partitioning algorithm now detects that J3, K3, and 
L3 are congruent. 

Now, if we apply our previous partitioning algorithm, 
the values of J3, K3, and L3 are congruent and dominate the 
point at the end of the program (node (7) in the flow graph 
in Figure 2). We therefore say that they are all equivalent 
at that point. 

3.2 Loops 

Two variables contain the same values when they are the 
results of assignments inside loops, provided that 1) they 
have the same initial values; 2) they are modified in the 
same way; and 3) the loops will be executed the same num- 
ber of times. This section will show how to construct value 
graphs that allow the partitioning algorithm to detect these 
congruences. 

The loop we consider is a control structure with a single 
entry, some statements, a predicate under whose control 
the loop is exited, and some more statements. Either set of 
statements may be empty. This structure can easily model 
either a while loop or a repeat-until loop. 

For identified loops we create a 4enter function and a 
4 oxit function for each variable modified in the loop. The 
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J3 4if 
c) 

K I(2 

1 2 

‘t: 

Q 

K +if - 

Figure 8: Better Value Graph for if 

cjenter functions is at the beginning of the loop. It com- 
bines the value coming into the loop and the value coming 
around the loop and takes two arguments: 

1. The variable coming into the loop. 

2. The variable that has been modified at the bottom of 
the loop. 

‘rhe dexit function takes two arguments: 

1. The predicate which controls when the loop is exited. 

2. The variable whose assignment dominates that point. 

For reasons, to be described later, there are distinct &,ter 
functions for eanh nesting level of loops. Thus, in a program 
in ,which the deepest-nested loop .is three-deep, there are 
three distinct +snter functions. 

Again, the partitioning algorithm is used .to determine 
t,he congruences. 

14-I 
Jc2 
while (I # 5) do 

I+I+I 
J+J*s 

end 

Figure 9: Loop Example 

Consider the program in Figure 9 and it’s associated 
SSA form in Figure 10. Both I and J are modified in the 
loop, and hence we have two #enters at the beginning of 
t,he loop. Since the loop is an outermost loop, we use the 
f$,,ter,i function. Note that the first argument to the 

I2 + 4entsr,l(Zl I I31 

J2 + 4enter,l(J1 9 J3) 

I 

when 12=5 exit 
I 

Figure 10: SSA Form of Loop Example 

4 exit which assigns to J4 depends only on 12 and not on’ 
a value of J, since J does not participate in the predicate. 

Now let us consider why we have separate +enter func- 
tions for each nesting level. Inside the innermost loop in 
Figure 11, the values of I and J may be different even 
though I and J have the same initial value, are incremented 
by the same amount, and have the same exit conditions. 
The reason for the possible clZerewnce in values is that the 
loops may be on different iterations. By incorporating the 
nesting level into the 4 we prevent the partitioning algo- 
rithm from determining that the variables are congruent. 

I+1 
J+l 
while (I # 17) do 

Jtl 
while (J # 17) do 

J+-J+i 
end 
It.I+I 

.end 

Figure 11: Nested Loop Program 

3.3 Useful Examples 
In this section we present two examples to illustrate the 
power of our analysis. 

The first example is provided by arrays. Arrays (and 
other structured variables) can be modeled very easily. A 
use of the ith element of an array, A[i], can be modeled as 
the result of the function subscript applied to A and i. 
Assignments to A[i] can be modeled by an assignment to A 
of an array computed by the update function which takes 
the array, an index to change, and a new value. Thus, 

A[i] c A[i] + I 
becomes 

A + update(A, i, subscript(A, i) + 1). 

The algorithm will detect that A and B are equivalent at 
the end of the program fragment in Figure 12. 
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A+-B 
for I + I to 10 do 

AII] - A[I] + I; 
for J c I to 10 do 

B[J] - B[J] + J; 

Figure 12: Pascal Array Example 

if InListP (List, Key) 
then ChangeList (List, Key, Value) 
else InsertList (List, Key, Value) 

. . . 
function InListP (P , Key) : boolean 

while (P # 8 /\ Pl.Key) do 
P c Pf.Next 

end 
return Pf .Key + Key 

end InListP 

function ChangeList(P, Kley, NewValue) 
while (P # 8 /\ Pt .Key) do 

P + Pt.Next 
end 
if (Pt.Key = Key) 

then Pt .Va!Lue t NewValue 
else call Brror 

end ChangeList 

Figure 13: Example of IData Abstraction 

The second example can be used to compensate for 
a common inefficiency introduced by the use of data ab- 
straction. One disadvantage of data abstraction is that the 
programmer has little control over the code generated. For 
example, a programmer might well write code such that 
shown in Figure 13. 

However, if the operations InListP and ChangeList 
are written straight-forward manner, then ChangeList will 
have to traverse the list that ‘was already traversed by 
InListP. Assuming that the code has been expanded in- 
line, however our algorithm will discover that the two loop 
traversals are the same. Other algorithms may then be able 
to exploit this fact by combining the loops. 

Pointers are handled in the same way as arrays. In 
fact, every subfield can be modeled as an array. Thus, in 
the above example, there would be an separate array for 
Key, Value andNext. 

3.4 The Fundarnental Theorem 
and Its Pro’of 

In this section, we prove that two variables are equivalent 
at a point p if they are congruent and if their defining as- 
signments dominate p. We prove this as the corollary to a 
more general theorem dealing wi.th a dynamic notion that 
implies the static notion of dominance. To prove this the- 
orem, we first prove a lemma that allows us to replace the 
loops in a program with functions. Before presenting the 
lemma, however we need to definte some terms. 

The scope of an if-then-else is all the statements, 
including the pseudo-assignments at its end. The scope 
of a loop is all the statements, including the pseudo- 
assignments at the end, contained within it. 

A node IL is an input to a executable function node m 
of the value graph if there is an edge from m to n. A node 
n is an input to a $if or 4exit node m if there is a path 
from m to n in the value structure and if n is the first node 
not contained in the scope of m. 

A well-formed substructure of a value structure con- 
tains the root of the value structure and a set of nodes. All 
the nodes contained in the structure are reachable from the 
root. If a node n is in a well-formed substructure, then all 
nodes on the path from n to its inputs are in the substruc- 
ture. The inputs of the substructure are all nodes m not in 
the substructure but such that there is an edge to m from a 
node in the substructure. 

A well-formed substructure node is pinned if it contains 
a join 4. 

We construct a function for a well-formed and un- 
pinned substructure as follows. If the root of the structure 
is an executable function, recursively construct the func- 
tions for its arguments and append the application of the 
executable function to the evaluation of its arguments. If 
the root of the structure is a $if, then construct a func- 
tion that evaluates the recursively created function for the 
test child of the root and then evokes the recursively cre- 
ated function for the appropriate branch. If the root of 
the structure is a 4exit, then construct the functions for 
the inputs to the loop, and construct the functions for the 
well-formed substructures consisting of the second child of 
each of the +enter nodes (i.e. the values coming around 
the loop). Construct the function which first evaluates the 
inputs to the loop and stores them. The function then re- 
peatedly evaluates the test (i.e. the first child of the dexit) 
and if the test fails, it evaluates the functions for the sec- 
ond argument to the #enter functions applied to the stored 
values, and stores the result. When the test succeeds, the 
result of the value function (i.e. the second child of the 

9 exit) is returned. 
Note that these functions are constructed in such a 

way that they perform the same calculation on their inputs 
as the original program. 

Lemma: If two nodes are congruent and the smallest well- 
formed substructures containing them are unpinned, then 
the functions derived from them are identical. 

The proof follows from an induction on the size of the 
smallest well-formed substructures. 

Let a variable be active at a moment during execu- 
tion if and only if either of the following two conditions is 
satisfied: 

1. The defining assignment of the variable is not con- 
tained in a loop and has already been executed. 

2. The innermost loop containing the defining assignment 
of the variable is currently executing and the assign- 
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ment has already been executed during the current it- 
eration. 

Theorem: Two active, congruent variables have the same 
value. 

Proof of the Theorem: The proof proceeds by contra- 
diction. Execution is stopped at the first moment at which 
the theorem breaks down. Assume x and y are active, con- 
gruent variables that have different values. Without loss of 
generality, assume also that the defining assignment of x 
has just been executed. 

Let r and s be the roots of the value structures for x 
and y, respectively. We will derive a contradiction for each 
possible labeling of r. 

Case 1: r is labeled by either a function symbol f, or an 
unpinned 4if, or an unpinned $exit. 

By the lemma, the values of x and y are computed by 
the same function of their inputs, since they are congru- 
ent. Furthermore, because they are congruent, their inputs 
must be congruent. Since x and y have different values, at 
least one pair of their inputs, x’ and y’, must have differ- 
ent values. By construction, the inputs to a structure are 
active at the beginning of the structure. Therefore x’ and 
y’ are active at the beginning of the scopes that define x 
and y, respectively. Also, anything active at the beginning 
of a scope is active at the end (by definition). Therefore, x’ 
and y’ are active at the definitions of x and y, respectively. 
Finally, if a is active at the definition of b then a is active 
wherever b is. Therefore, y’ is active at the definition of x 
(since y is). Thus, x’ and y’ are active, congruent variables 
with different values at the definition of x. This contra- 
dicts our assumption that the theorem first breaks down 
after the definition of x. 

Case %: r is labeled by a join 4, or a pinned 4if or a pinned 
4 axit. The defining assignments to x and y occur at the 
same node, since otherwise the value structures would not 
be congruent. These assignments give x and y values of 
variables that were active immediately preceding the node. 
The value structures for these variables are corresponding 
substructures of the value structures for x and y, and hence 
are congruent. The contradiction follows immediately. 

Case 3: r is labeled 4anter. Since both x and y are ac- 
tive, the innermost loop containing the definition of y must 
contain the innermost loop containing the definition of x. 
Since x and y are congruent, the loops for x and y must be 
nested at the same depth, since there are distinct bentar 
functions for each level of nesting. Thus, x and y are de- 
fined in the same loop. If x and y have different values 
before the first iteration of the loop, then the congruent 
variables corresponding to the first children of the roots of 
the value structures for x and y have different values before 
the loop. If x and y have different values after the nth itera- 
tion of the loop, then the congruent variables corresponding 
to their second children have different values before the end 
of the nth iteration. In either case there is a contradiction. 

Corollary: Two congruent variables are equivalent at a 
point p if their definitions dominate p. 

The corollary follows immediately from the observation 
that a variable must be active at a point if its defining 
assignment dominates the point. 

4 Simple Modifications to the 
Part it ioning Algorithm 

Code optimization is a combination of analysis and trans- 
formation. These can feed on each other synergistically. 
Performing a transformation may provide an opportunity 
that can be exposed by further analysis. This can permit 
a second transformation that may expose further opportu- 
nities. As a result, there has been considerable discussion 
of the proper ordering of optimizations [Po186] and several 
authors have suggested repeated invocations of one or more 
optimizations to achieve a better result [AH821 [RWZSS]. 

Some optimizations can be combined into a single algo- 
rithm which can do more than can repeated invocations of 
the separate transformations [Weg75] [WZ85]. The advan- 
tage of combining over repeated invocation occurs when 
each analysis can be performed optimistically. An opti- 
mistic analysis proceeds by making too many assumptions 
and then eliminating any of those assumptions that it can- 
not justify on the basis of the state of the current analysis. 
If two methods of analysis are running in parallel, it may 
be that some assumptions need not be dropped because the 
other analysis method can justify it. 

The algorithm presented here can be profitably com- 
bined with other optimizations. This can be done either 
by iteratively repeating them or by unifying them. As 
discussed above, unification may produce a more powerful 
algorithm which may also be considerably more complex. 
The decision to unify must be based on engineering issues. 

There are many possible transformations that could 
be combined. In this section, we will discuss three such 
transformations and will show how to integrate the last 
two transformations into this algorithm. 

4.1 Constant Propagation 

The algorithm can benefit from other kinds of preprocess- 
ing. Function symbols need not be entirely uninterpreted. 
Reif and Lewis [RL77] perform constant propagation before 
their algorithm, a strategy which has several advantages. 

Our congruence algorithm deals with variables in a 
purely symbolic manner and does not interpret functions. 
It is easy to interpret the behavior of functions on constant 
operands at compile time; one simply applies them and de- 
termines the result. 

While it is true that the algorithm presented here may 
provide further opportunities to discover constants, unifi- 
cation of the two algorithms will be complex. 

4.2 Symmetry 

Our requirement that functions be uninterpreted might be 
relaxed in order to allow the observation that addition is 
commutative. Thus, we know that 33+17 equals 17+33 QED 
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(even if we don’t know that both equal SO). The partition 
algorithm would not discover this equivalence since the first 
edge out of the first node points to a node labeled 33, while 
the first edge out of thle second points to a node labeled 17. 
If we knew which equivalence classes the children of the t 
were in at preprocessing time, then they could be sorted. 
But we don’t. The solution is to allow the t node to have 
a single hyperedge to both of its children. 

This solution will require that the partitioning algo- 
rithm handle functions whose range is sets of elements 
rather than just single elements. The function from the 
+ node has as its value the set containing both of its chil- 
dren. This requires no change in how the inverse3 of a 
function is stored. However, it will no longer be sufficient 
to split a partition (e.g. B[j]) into two pieces (e.g. B[j] 
and B[d) depending on whether or not an element is in the 
inverse image of the splitting partition (e.g. B[i]). Rather, 
a partition will be split into several pieces depending on 
the number of times an element occurs as an inverse of the 
other partition. 

The modifications to the a.lgorithm are: 1) partition 
B[j] may have to be split even if it is wholly contained in 
INVERSE; 2) when a partition is split, two elements will end 
up in different partitions if they have a different number of 
children in B[i]; and 3) but the largest partition is placed 
on the WAITING queue (as before, when there was a single 
non-largest partition to put on the queue). 

4.3 Combining Congruent Values 

Suppose we wish to recognize that X and Y are equal after 
the following program segment: 

X c AtB 
if P 

then Y c AtB 
else Y c x 

Then we need to extend our definition of congruence. 
Two nodes are congruent if and only if they have the same 
label and their children are congruent (as before), or if one 
of the nodes is labeled +if and its first two children are 
congruent to the other. 

Our strategy will be to transform the value graph as if 
we knew that the then branch and the else branch of an 
if-then-else produced the same value. As the algorithm 
proceeds, it may discover that this assumption was false. It 
will then undo the transformation. 

The transformation is to replace all edges to a & 
with edges to its then branch (this has the same effect 
as using the else branch, since we are assuming they are 
equal). This transformation can be applied in linear time by 
proceeding upwards from the leaves of the value structure. 
We also optimistically delete the #if nodes from the graph 
(and from any partitioning thereof). In an auxiliary data 

3We are stretching notation here. Technically, the inverse of the 
function takes a set of elements as its argument. We say that the 
inverse of the function applied to an element yields those elements 
the function maps to sets containing the element. 

structure, we store the pairs of nodes that are optimistically 
assumed equal and the $ii which had them as its children. 

When a partition is split, the nodes that are split from 
the partition (e.g. B Cql ) are examined. If one of these 
elements has a partner that was assumed to be equal to 
it, then that partner is further examined. If it is in the 
same partition (e.g. B[q]) or not in the value graph, we 
ignore it. If it is in another partition, then we undo the 
transformation. This will cause a +if to be placed into 
the value graph and will reattach edges to it. (If this new 
node belongs in a partition with other elements they will 
be created at the same step.) The new nodes in the value 
graph must be examined and tested to see if they have 
partners. If so, the process is repeated. 

This procedure can still be implemented in 0( E log E). 

5 Conclusion 
The detection of equivalence of variables is an undecidable 
problem. We have presented an algorithm which detects 
many of the statically detectable classes of equalities. Our 
algorithm is efficient and will, we hope, be fairly easy to 
understand and implement. 

It should be possible to extend the techniques pre- 
sented here so as to detect additional classes of equalities. 
An engineering decision will have to be made about which 
additional improvements to the algorithm are worth their 
implementation expense. As programming practice changes 
and aa different optimizations are added to programming 
languages, these decisions may change. 
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