
K
This

Detecting Equality of Variables in Programs

Bowen Alpern

Mark N. Wegman
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598

F. Kenneth Zadeck
Department of Computer Science

Brown University

Providence, RI 02912

Introduction
paper presents an algorithm for detecting when two

computations produce equivalent values. The equivalence
of programs, and hence the equivalence of values, is in gen-
eral undecidable. Thus, the best one can hope to do is to
give an efficient algorithm that detects a large subclass of
all the possible equivalences in a program.

Two variables are said to be equivalent at a point p if
those variables contain the same values whenever control
reaches p during any possible execution of the program.
We will not examine all possible executions of the program.
Instead, we will develop a static property called congruence.
Congruence implies, but is not implied by, equivalence. Our
approach is conservative in that any variables detected to be
e:quivalent will in fact be equivalent, but not all equivalences
are detected.

Previous work has shown how to apply a technique
c.alled value numbering in basic blocks [CS70]. Value num-
bering is essentially symbolic execution on straight-line pro-
grams (basic blocks). Symbolic execution implies that two
expressions are assumed to be equal only when they consist
of the same functions and the corresponding arguments of
these functions are equal. An expression DAG is associated
with each assignment statement. A hashing algorithm as-
signs a unique integer, the value number, to each different
expression tree. Two variables that are assigned the same
integer are guaranteed to be equivalent. After the code

BcA+3
C+-B*5
D+-(A+3)*5

the value number of C and D is the hash value of “(A+3)*5”.
Because calculation is done only symbolically;nothing

can be said about variables with different value numbers.
If the assignment to D had read

D +(A*5)+ 15

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

@ 1988 ACM-O-89791-252-7/88/0001/0601 $1.50

no value numbering algorithm would recognize that C and
D are the same, since value numbering is based on symbolic
computation. It is easy to generalize value numbering to
extended basic blocks.

Reif and Lewis [RL77] h ave given a complex and ef-
ficient algorithm for detecting a somewhat more general
form than extended basic blocks, but their algorithm can-
not detect that in the following sequence J and K must be
equal:

if P then J t 5. else J + 6
if P then K t 5 else K + 6

One contribution of this paper is to give an efficient
algorithm for detecting equality in the presence of control
structures, including if -then-else and loops. Instead of
associating an expression DAG with every assignment, we
associate nodes in a directed, cyclic value graph. Because
cycles may be present, it is not clear how to represent values
so that they may tested easily for equality. We therefore
define the notion of congruence for nodes of the value graph.
Determining which nodes are congruent is a partitioning
problem an so is essentially the same problem as minimizing
a finite-state machine, which Hopcroft [Hop711 has shown
can be computed in O(E log E).

Intuitively, our algorithm will make a list of sets of
variables it has discovered to be equivalent. Such a list is a
fixed point if the variables associated with two expressions
are in the same set when they have the same functions and
when the list contains the information that their subexpres-
sions are equal. When the program has loops, there can be
a chicken-and-egg problem: if the results of two expressions
are later used in the computations determining the value
of their sub-expressions, it is not immediately clear how
equality should be determined.

As with other flow analysis algorithms, we will find a
maximal fixed point [Weg75] [GW76]. The maximal fixed
point is a fixed point that contains the most equal values.
The algorithms presented here are optimistic: they proceed
by initially assuming that all values are equal and then
separate them into more and more sets of possibly equal
variables.

Another advantage of our algorithm is that it can be
easily extended to exploit additional facts about program
semantics. We will give two such extensions to the algo-
rithm: others are clearly possible.

[Proceedings of the Fifteenth Annual ACM

1 SIGACT-SIGPLAN Symposium on Princi-

ples of Progremming Languages, San Diego,
California (January 1968)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73560.73561&domain=pdf&date_stamp=1988-01-13

1.

2.

3.

4.

5.

Uses of this algorithm include:

Register Allocation: There is no need to load a value if
a register already contains ,a value which can be shown
to be equal.

Common Sub-Expression Elimination: There is no
need to recalculate a value if it has already been cal-
culated. If an expression is calculated at a node u and
later at a node v, if u dominates v, and if we can show
that the variables are congruent at v, then the calcu-
lation at v need not be performed.

Movement of Invariant Code: Detection whether or
not an expression will calculate the same value in a
different location is a key concern.

Branch Elimination: If a value is guaranteed to be
equal to another value, equality tests can be elimi-
nated. This condition can be expected in code in which
procedures have bleen integrated.

Branch Fusion and Loop Jamming: If there are two
if-then-else statements one right after the other,
and their predicates result in equal values, then the
code on each branch of the second statement can be
moved into the appropriate branch of the first and the
second test can bte eliminated. Similarly, if two loops
have predicates we find equivalent, then the loops are
executed the sam.e number of times; if there are no
dependencies, then the loops can be combined. Both
of these program transformations may make further
analysis easier and allow other optimizations to take
place.

Section 2 presents the basic algorithm and shows how
to use it when programs are viewed as flow graphs. Sec-
tion 3 shows how to use program structure to discover ad-
ditional equivalences. lSection 4 presents more two general-
izations of the basic algorithm which can be used to detect
more equalities. We conclude in, Section 5.

2 Equivalence of Variables in
Simple Pr,ograms

Here we introduce the basic maclhinery used to detect equiv-
alences. This will be the basis of more sophisticated algo-
rithms in Sections 3 and 4. First we need to define further
what it means for variables to be equivalent. Consider the
following program text:

if Q
then do

It5
Jt5

end
else do

It6
J- + 7

end

Are variables I and J equivalent? At the end of the
if-then-else there are two pos,sible answers; when viewed
dynamically, the answer dependls on the value of Q; when

2

viewed statically, the answer must be no since we wish our
algorithm to be conservative. However, at the end of the
then block, the answer is yes even viewed statically.

We introduce the notion of congruence which is one
of the two conditions that we need to detect equivalence.
Congruence is a relationship between two variables with-
out respect to location in the program. To make it possible
to detect such equivalences at difFerenct points in the pro-
gram, we introduce several new variables for each variable
in the original program. Thus, in the above example, we
will break I into three distinct variables: one in the then
clause, one in the else clause, and the third at the end of
the if-then-else. (This will be explained more fully in
Section 2.2.) The I in the then clause will be congruent to
the J in the then clause.

Even in the then clause, it is not clear what it means
to say that I and J are equivalent. I equals J only after the
assignment to J. We can assert that two variables are equiv-
alent at a point p only if we know the assignments to both
variables will have been executed whenever control reaches
p. We can determine statically that the assignments have
been executed if both assignments dominate p. A node a in
a rooted, directed graph is said to dominate b if all paths
from the root to b go through a. We will introduce auxil-
iary assignments (and auxiliary variables) so that each use
ofa variable is dominated by an assignment to the variable.

1.

2.

3.

4.

The algorithm can be broken into four steps:

Build a control flow graph that represents the program.

Replace each variable (both scaler and arrays) in the
original program with several new variables. These
new variables have the property that there is only one
assignment to them in the program. This form is called
static single assignment form, or SSA form.

Build an auxiliary structure called the value graph that
represents the symbolic execution of the program. La-
bel each of the assignments in the SSA program with a
node in the value graph. (In Section 3 we will modify
the value graph so that we can discover a larger set
of congruences which are dependent on control struc-
ture.)

Determine congruence of nodes in the value structure.
Two variables will be equivalent at a point p if their
assignments dominate p and are labeled by congruent
nodes. (In Section 4 we will modify the algorithm to
detect further congruences.)

The example in Figure 1 will be used throughout this
section.

2.1 Building the Control Flow Graph
We. construct a control flow graph for the program and each
node corresponds to a basic block in the program. Each
edge in the control flow graph corresponds to a branch in
the program. There may be multiple edges into a node.
Such nodes are called join points and we assume the in-
coming edges are ordered. Such a construction is fairly
standard in the study of compilers; see Allen [Al1701 for
details.

if (I < 29)
then do

J+-I
K+i

end
else do

Jc2
Kc2

end
if (I < 29)

then Ltl
else Lc-2

Figure 1: A Simple Example

In Figure 2, each box represents a basic block; the
edges connecting the boxes are the control flow graph edges
and the numbers to the side of the boxes are the labels for
each basic block. They can be assigned in any way that
gives a unique name to each block.

(6) L-t 1 Lt2 (6)

Figure 2: Control Flow Graph of Simple Example

2..2 Translation to Static Single
Assignment Form

The translation to static single assignment (or SSA) form
involves separating each variable V in the program into sev-
eral variables Vi, each of which has only one assignment.
When node i contains an assignment to V, we replace the
last assignment to V, at that node, by an assignment to
Vi. The uses of the variable V are replaced by the appro-
priate variable Vi, where i dominates the use. In order
to accomplish this we need to introduce additional assign-
ments at join points, so that there is always a dominating
assignment. These pseudo-assignments will be of the form

X t qb(Y, Z), which means that if control reaches this node
along the first entering edge, X is assigned the value Y, and
if along the other edge1 X is assigned the value of Z. These
pseudo-assignments allow us to always determine at value
of X, given the correct incoming edge. The SSA form for
Figure 1 is given in Figure 3.

(I> 1 ? I<29

(2)
Jl+-I J2 + 2
Kl t-1 K2 ~2 (3)

(4)

(5) Li + 1 L2 +2 (6)

Figure 3: SSA Form of Simple Example

Following Shapiro and Saint [SS70], we describe the
nodes at which 4’s must be inserted as pseudo-assignments.
A node n gets a pseudo-assignment for a variable X if and
only if there are two paths to n from distinct assignments
or pseudo-assignments for X such that n is the only node
common to the two paths. A naive algorithm which runs
in O(N2) for each variable can be constructed which marks
all nodes which can be reached from each assignment and
pseudo-assignment, stopping the marking when another as-
signment (or pseudo-assignment) is reached. The first node
which is marked by two different assignments is another
pseudo-assignment. The process is then repeated.

Better algorithms exist for determining the loca-
tions to insert the 4 functions. Rosen, Wegman and
Zadeck [RWZSS] g ive a relatively straightforward algorithm
for reducible algorithms that works in O(E log E) (where E
is the number of edges in the control flow graph) for each
variable. Reif and Tarjan [RTS2] give a complex algorithm
that works for irreducible graphs in O(EaE) (where cr is the
inverse of Ackerman’s function) bit vector operations where
the number of bits grows with the number of variables’.

For each node n which is a pseudo-assignment, we will
create a join 4 function dn. This function has as many

‘If there are more than two entering edges, the 4 will take the
appropriate number of arguments.

2Reif and Tarjan call pseudo-assignments join birthpoints.

3

arguments as there are entering edges to the node. The
value of this function is assigned to a new variable Vn, and
all uses of the original variable V that are dominated by n
are replaced by Vn. A variable Vn is present at a node a if
on all paths to a the Ilast assignment or pseudo-assignment
to V took place at n.. The itlh argument of the q5 whose
value is assigned to Vn is the variable present at the node
u where the edge (u,n> is the ith edge into to node n.

2.3 Building t:he Value Graph

We will build a value graph representing symbolic execu-
tion of the program. The value graph is a labeled, directed
graph. Figure 4 is the value graph of the simple exam-
ple. Each edge of the value graph corresponds to a connec-
tion between the use of a variable and the assignment at
which the value of that variable is generated. The gener-
ating assignment for the use of a variable is normally the
assignment to that variable. However, if this assignment
is a ttivial assignmen. (one of the form A + B), then the
generating assignment for A is the generating assignment
for B.

Jl 52 Kl KS

Figure 4: Valne Graph of Simple Example

Each node of the value graph corresponds to an indi-
vidual function in the program.. The graph has two types
of nodes, corresponding to the two types of assignments:

Executable Function For every normal assignment in
the program, there is a node labeled with the func-
tion symbol on the right-hand side of the assignrnent.
One edge leaves the node for each argument to the
function.

q5 Function For each. pseudo-assignment there is a node
labeled by the q!~ function for that join point. One edge
leaves the node for each atrgument of the 4 function
(i.e., the nodes corresponding to the assignments that
reach the join point).

The edges are ordered corresponding to the order of the
arguments Iof the function.

Figure 4 shows the value graph for our simple exam-
ple. For purposes of exposition, we have placed variable
names next to the nodes that they are associated with.
These names are not part of the graph. The empty node
in the value structure for the predicate is a consequence of
the example being incomplete. This node would normally
represent the calculation producing I.

2.4 Congruence

We will show that two variables have the same value at
a point p if the nodes in the value graph corresponding
to the assignments to these variables are congruent and
if both these assignments dominate p. Two nodes in the
value graph are said to be congruent if both of the following
conditions hold:

1. the nodes have identical function labels.

2. the corresponding destinations of the edges leaving the
nodes are congruent.

As we have defined congruence, it is a symmetric, reflexive
and transitive relation.

In the program fragment in Figure 4, the following are
congruence classes:

l (JIIKbLl)
. (JZ,KZ,LZ)

. (J3,K3)

l (L3)

Notice that L3 is in a different congruence class from J3
and Kg, since the two different join nodes have different c$
functions associated with them.

Figure 5: Control Flow Graph of Loop Example

The previous conditions are not enough to define con-
gruence because they are circular and in fact ambiguous.
The ambiguity allows multiple solutions. We desire the one
that gives the maximal number of congruences. Congru-
ence is defined as the maximal fixed point that satisfies the

4

Jo Ko

1 1

JI 2 ’ K 2

11 42 J K d2 K

J4
+ + K +

4s 4%

Figure 6: Value Graph of Loop Example

previous two conditions. The solution is determined opti-
mistically. That is, all variables are assumed to be the same
initially and this assumption is refined until a fixed point
is reached. It is possible to compute a pessimistic solution
by assuming that the variables are different and combining
those that can be proven congruent. The fixed point found
by a pessimistic algorithm will not, in general, be maximal,
as shown by Figure 5 and 6.

While it is true that the value graphs for J and K in
Figure 6 are identical, a pessimistic algorithm cannot de-
termine that the nodes are congruent because of the cycles.
By definition, for two nodes to be congruent, the desti-
nations of all of the edges must be the same. The cycle
inhibits discovering these congruences, unless they are as-
sumed from the start.

It is not necessary to represent the congruences as pairs
since the congruence relation is transitive, reflexive and
commutative and moreover, there are O(N’) possible pairs.
R.ather, we represent them by sets of congruent nodes. The
collection of all of the sets of nodes is called a partitioning
of the nodes. Each set is called a partition.

2.5 Two Partitioning Algorithms
We begin with an initial partitioning of the nodes that puts
all possibly congruent nodes in the same partition. (Non-
congruent nodes may also start out in the same partition.)
We then create a new partitioning at each step of the al-
gorithm. Each partitioning is a refinement of the previous
one. In the final partitioning, two non-congruent nodes
must be in different partitions.

T:he following simple algorithm can be used to discover con-
gruent nodes in the value graph.

Silmple Algorithm

step 1: Place all nodes with the same label in the same
partitions.

step i+l: Two nodes will be in the same partition in par-
titioning i+l if, in partitioning i, the nodes are in the
same partition and the corresponding destinations of
their edges are in the same partitions.

5

The algorithm terminates when two successive partitioning
are identical and takes O(N’) operations.

Aho, Hopcroft, and Ullman [AHU74] give a fast
algorithm for partitioning based on an algorithm by
Hopcroft [Hop711 for minimizing a finite-state machine.
We will use the fast partitioning algorithm directly from
[AHU74]. It is shown in Figure 7 in a generalized form
similar to one they suggest. In this algorithm, the input is
an initial partitioning of the set into p equivalence cIasses,
and a collection of k functions f i from the set to itself. In-
tuitively, each function f i which maps a node u to a node
v corresponds to the edge (u,v> in the value graph.

The algorithm makes use of two arrays, F-l and B.
The elements of the ith partition are stored in B[i]. The
inverse image of element x under frz is stored in F-‘[m, x].
The final partitioning has the property that two elements,
x and y, are in the same partition only if both a) they were
originally in the same partition and b) there is no function
such that fi(x) is not in the same partition as fi(y).

WAITING + (I, 2, . . . p }

9 + Pi
while WAITING # 8 do

select and delete an integer i from WAITING;
for m from I to k do

INVERSE c 8
for x in B[i] do

INVERSE +- INVERSE UF-‘[m, x]
end
for each j such that B[j]n

B[j] e INVERSE do

q+q+i
create a new block B[d;
B[d + B[j]flIBVERSE

%I t B[jl - %I
if j is in WAITING

INVERSE # 8 and

then add q to WAITING

else if IlWl I PhIlI
then add j to WAITING
else add q to WAITING

end
end

end

Figure 7: Hopcroft’s Partitioning Algorithm

To fit congruence detection into this framework, the
nodes in the value graph are initially partitioned by their
label. The ith function maps a node to its ith child. The
final partitioning of the’algorithm leaves the nodes in the
same partition if and only if the nodes are congruent.

This partitioning algorithm is based on the following
ideas. At each step, partitions are split. A partition is not
examined unless it needs to be split. It needs to be split
if two nodes in it point to nodes in separate partitions.
Splitting works by creating a new partition. Nodes are
moved out of the original partition into the new one. This
is in such a way that the new partition has no more than
half the nodes that were in the original partition. Splitting

a partition can force other partitions to be split. Hence,
new partitions are placed on a queue to be examined later.
We observe that a node can be in a partition which is placed
on the queue only a logarithmic number of times, since each
time the partition is half the size of the previous partition
of which the node was a part.

In the worst case, the congruence classes can be deter-
mined in O(E log E) time, where E is the number of edges
in the value graph.

The algorithms presented in this section discov-
ers exactly the same equivalences as that of Reif and
Lewis [RL82]. Their a:lgorithm runs in 0(.&E) time where
a is the inverse of Ackerman’s function. The algorithm pre-
sented in this section has two significant advantages over
the one by Reif and Lewis:

1. As formulated as a partitioning problem, our algorithm
is easier to understand and1 implement.

2. Our algorithm can be modified to discover substan-
tially more equivatlences, as shown in Sections 3 and 4.

The key results of this paper are the extensions to our al-
gorithm that allow us to discover more equivalences. These
extensions are the subject of the rest of the paper.

3 Taking A.dvantage of Control
Structure

In this section, we show how to detect that variables are
congruent when they have been produced by identical func-
tions within identical control structures in different parts of
the program. In the previous section, we created unique 4
functions for every join point. As a result, we have not yet
been able to recognize equal values produced by the same
control structure in two different places in the program.
In this section, we will create new 4 functions which re-
flect the semantics of c.ommon high-level control structures.
These I$ fnnctions can be used in several locations in the
program and thus, we can recognize that two variables are
congruent even when they are defined in different locations.
Such a construction is similar in spirit to the PDG of Fer-
rante, Ottenstein, and. Warren [FOW87]. The congruence
algorithm of the preceding section can now discover more
equivalences.

High-level control structures can either be derived from
the source program by parsing techniques or can be deter-
mined from the control flow graph by analysis techniques
such as those of Baker [Bak77] and Sharir [Sha80]. We will
assume in the rest of this section that the high-level control
structures have been identified in the SSA graph.

In this section, we provide value structures for two of
the most common control structures, if-then-else and a
very general loop. Other control structures can be handled
by similar techniques. It is not necessary for the program
to be wholly constructed from a given set of high-level con-
trol structures, since any parts of the program not using our
high-level control structures (e.g. loops with multiple exits)
can be modeled using the + functions of the previous sec-
tion. The consequence of using lthe original r# functions will
be merely that some equivalences will not be discovered.

It is instructive to note why we do not model this as a
classical dataflow analysis problem. In a typical framework,
the information about variables is represented at nodes and
is propagated along the edges in a control flow graph. Here,
the control flow is part of the information being propagated.
Hense, it would be costly to model this as a dataflow prob-
lem.

3.1 Conditional Statements

Two variables contain the same values when they are the
results of assignments in conditionals provided that 1) on
the corresponding branches of the if-then-else they are
given the same values and 2) the predicates controlling the
branching are congruent. Structures can be created in the
value graph that allow the partitioning algorithm to deter-
mine congruences in this case.

At each identified if-then-else, we use a function
+if to combine values coming from the different branches.
This function has three arguments:

1. The variable coming from the then side of the
if -then-else.

2. The variable coming from the else side of the
if-then-else.

3. The predicate. Note that join 4 nodes do not contain
the predicate.

Since the 4if contains an edge to the predicate, congru-
ence of two 4if structures implies that the corresponding
if-then-else control structure branch in the same direc-
tion. It also implies that the values computed on those
branches of the if-then-else are also congruent.

Consider the example in Figure 1. The new value
graph, shown in Figure 8, has a 4if associated with J3,
Kg, and L3. The first edge out of each of these three nodes
will be to a node labeled with the constant function I; the
second edge will be to a node labeled 2; the third edge will
point to a substructure representing the predicate I C 29.
The partitioning algorithm now detects that J3, K3, and
L3 are congruent.

Now, if we apply our previous partitioning algorithm,
the values of J3, K3, and L3 are congruent and dominate the
point at the end of the program (node (7) in the flow graph
in Figure 2). We therefore say that they are all equivalent
at that point.

3.2 Loops

Two variables contain the same values when they are the
results of assignments inside loops, provided that 1) they
have the same initial values; 2) they are modified in the
same way; and 3) the loops will be executed the same num-
ber of times. This section will show how to construct value
graphs that allow the partitioning algorithm to detect these
congruences.

The loop we consider is a control structure with a single
entry, some statements, a predicate under whose control
the loop is exited, and some more statements. Either set of
statements may be empty. This structure can easily model
either a while loop or a repeat-until loop.

For identified loops we create a 4enter function and a
4 oxit function for each variable modified in the loop. The

6

J3 4if
c)

K I(2

1 2

‘t:

Q

K +if -

Figure 8: Better Value Graph for if

cjenter functions is at the beginning of the loop. It com-
bines the value coming into the loop and the value coming
around the loop and takes two arguments:

1. The variable coming into the loop.

2. The variable that has been modified at the bottom of
the loop.

‘rhe dexit function takes two arguments:

1. The predicate which controls when the loop is exited.

2. The variable whose assignment dominates that point.

For reasons, to be described later, there are distinct &,ter
functions for eanh nesting level of loops. Thus, in a program
in ,which the deepest-nested loop .is three-deep, there are
three distinct +snter functions.

Again, the partitioning algorithm is used .to determine
t,he congruences.

14-I
Jc2
while (I # 5) do

I+I+I
J+J*s

end

Figure 9: Loop Example

Consider the program in Figure 9 and it’s associated
SSA form in Figure 10. Both I and J are modified in the
loop, and hence we have two #enters at the beginning of
t,he loop. Since the loop is an outermost loop, we use the
f$,,ter,i function. Note that the first argument to the

I2 + 4entsr,l(Zl I I31

J2 + 4enter,l(J1 9 J3)

I

when 12=5 exit
I

Figure 10: SSA Form of Loop Example

4 exit which assigns to J4 depends only on 12 and not on’
a value of J, since J does not participate in the predicate.

Now let us consider why we have separate +enter func-
tions for each nesting level. Inside the innermost loop in
Figure 11, the values of I and J may be different even
though I and J have the same initial value, are incremented
by the same amount, and have the same exit conditions.
The reason for the possible clZerewnce in values is that the
loops may be on different iterations. By incorporating the
nesting level into the 4 we prevent the partitioning algo-
rithm from determining that the variables are congruent.

I+1
J+l
while (I # 17) do

Jtl
while (J # 17) do

J+-J+i
end
It.I+I

.end

Figure 11: Nested Loop Program

3.3 Useful Examples
In this section we present two examples to illustrate the
power of our analysis.

The first example is provided by arrays. Arrays (and
other structured variables) can be modeled very easily. A
use of the ith element of an array, A[i], can be modeled as
the result of the function subscript applied to A and i.
Assignments to A[i] can be modeled by an assignment to A
of an array computed by the update function which takes
the array, an index to change, and a new value. Thus,

A[i] c A[i] + I
becomes

A + update(A, i, subscript(A, i) + 1).

The algorithm will detect that A and B are equivalent at
the end of the program fragment in Figure 12.

7

A+-B
for I + I to 10 do

AII] - A[I] + I;
for J c I to 10 do

B[J] - B[J] + J;

Figure 12: Pascal Array Example

if InListP (List, Key)
then ChangeList (List, Key, Value)
else InsertList (List, Key, Value)

. . .
function InListP (P , Key) : boolean

while (P # 8 /\ Pl.Key) do
P c Pf.Next

end
return Pf .Key + Key

end InListP

function ChangeList(P, Kley, NewValue)
while (P # 8 /\ Pt .Key) do

P + Pt.Next
end
if (Pt.Key = Key)

then Pt .Va!Lue t NewValue
else call Brror

end ChangeList

Figure 13: Example of IData Abstraction

The second example can be used to compensate for
a common inefficiency introduced by the use of data ab-
straction. One disadvantage of data abstraction is that the
programmer has little control over the code generated. For
example, a programmer might well write code such that
shown in Figure 13.

However, if the operations InListP and ChangeList
are written straight-forward manner, then ChangeList will
have to traverse the list that ‘was already traversed by
InListP. Assuming that the code has been expanded in-
line, however our algorithm will discover that the two loop
traversals are the same. Other algorithms may then be able
to exploit this fact by combining the loops.

Pointers are handled in the same way as arrays. In
fact, every subfield can be modeled as an array. Thus, in
the above example, there would be an separate array for
Key, Value andNext.

3.4 The Fundarnental Theorem
and Its Pro’of

In this section, we prove that two variables are equivalent
at a point p if they are congruent and if their defining as-
signments dominate p. We prove this as the corollary to a
more general theorem dealing wi.th a dynamic notion that
implies the static notion of dominance. To prove this the-
orem, we first prove a lemma that allows us to replace the
loops in a program with functions. Before presenting the
lemma, however we need to definte some terms.

The scope of an if-then-else is all the statements,
including the pseudo-assignments at its end. The scope
of a loop is all the statements, including the pseudo-
assignments at the end, contained within it.

A node IL is an input to a executable function node m
of the value graph if there is an edge from m to n. A node
n is an input to a $if or 4exit node m if there is a path
from m to n in the value structure and if n is the first node
not contained in the scope of m.

A well-formed substructure of a value structure con-
tains the root of the value structure and a set of nodes. All
the nodes contained in the structure are reachable from the
root. If a node n is in a well-formed substructure, then all
nodes on the path from n to its inputs are in the substruc-
ture. The inputs of the substructure are all nodes m not in
the substructure but such that there is an edge to m from a
node in the substructure.

A well-formed substructure node is pinned if it contains
a join 4.

We construct a function for a well-formed and un-
pinned substructure as follows. If the root of the structure
is an executable function, recursively construct the func-
tions for its arguments and append the application of the
executable function to the evaluation of its arguments. If
the root of the structure is a $if, then construct a func-
tion that evaluates the recursively created function for the
test child of the root and then evokes the recursively cre-
ated function for the appropriate branch. If the root of
the structure is a 4exit, then construct the functions for
the inputs to the loop, and construct the functions for the
well-formed substructures consisting of the second child of
each of the +enter nodes (i.e. the values coming around
the loop). Construct the function which first evaluates the
inputs to the loop and stores them. The function then re-
peatedly evaluates the test (i.e. the first child of the dexit)
and if the test fails, it evaluates the functions for the sec-
ond argument to the #enter functions applied to the stored
values, and stores the result. When the test succeeds, the
result of the value function (i.e. the second child of the

9 exit) is returned.
Note that these functions are constructed in such a

way that they perform the same calculation on their inputs
as the original program.

Lemma: If two nodes are congruent and the smallest well-
formed substructures containing them are unpinned, then
the functions derived from them are identical.

The proof follows from an induction on the size of the
smallest well-formed substructures.

Let a variable be active at a moment during execu-
tion if and only if either of the following two conditions is
satisfied:

1. The defining assignment of the variable is not con-
tained in a loop and has already been executed.

2. The innermost loop containing the defining assignment
of the variable is currently executing and the assign-

8

ment has already been executed during the current it-
eration.

Theorem: Two active, congruent variables have the same
value.

Proof of the Theorem: The proof proceeds by contra-
diction. Execution is stopped at the first moment at which
the theorem breaks down. Assume x and y are active, con-
gruent variables that have different values. Without loss of
generality, assume also that the defining assignment of x
has just been executed.

Let r and s be the roots of the value structures for x
and y, respectively. We will derive a contradiction for each
possible labeling of r.

Case 1: r is labeled by either a function symbol f, or an
unpinned 4if, or an unpinned $exit.

By the lemma, the values of x and y are computed by
the same function of their inputs, since they are congru-
ent. Furthermore, because they are congruent, their inputs
must be congruent. Since x and y have different values, at
least one pair of their inputs, x’ and y’, must have differ-
ent values. By construction, the inputs to a structure are
active at the beginning of the structure. Therefore x’ and
y’ are active at the beginning of the scopes that define x
and y, respectively. Also, anything active at the beginning
of a scope is active at the end (by definition). Therefore, x’
and y’ are active at the definitions of x and y, respectively.
Finally, if a is active at the definition of b then a is active
wherever b is. Therefore, y’ is active at the definition of x
(since y is). Thus, x’ and y’ are active, congruent variables
with different values at the definition of x. This contra-
dicts our assumption that the theorem first breaks down
after the definition of x.

Case %: r is labeled by a join 4, or a pinned 4if or a pinned
4 axit. The defining assignments to x and y occur at the
same node, since otherwise the value structures would not
be congruent. These assignments give x and y values of
variables that were active immediately preceding the node.
The value structures for these variables are corresponding
substructures of the value structures for x and y, and hence
are congruent. The contradiction follows immediately.

Case 3: r is labeled 4anter. Since both x and y are ac-
tive, the innermost loop containing the definition of y must
contain the innermost loop containing the definition of x.
Since x and y are congruent, the loops for x and y must be
nested at the same depth, since there are distinct bentar
functions for each level of nesting. Thus, x and y are de-
fined in the same loop. If x and y have different values
before the first iteration of the loop, then the congruent
variables corresponding to the first children of the roots of
the value structures for x and y have different values before
the loop. If x and y have different values after the nth itera-
tion of the loop, then the congruent variables corresponding
to their second children have different values before the end
of the nth iteration. In either case there is a contradiction.

Corollary: Two congruent variables are equivalent at a
point p if their definitions dominate p.

The corollary follows immediately from the observation
that a variable must be active at a point if its defining
assignment dominates the point.

4 Simple Modifications to the
Part it ioning Algorithm

Code optimization is a combination of analysis and trans-
formation. These can feed on each other synergistically.
Performing a transformation may provide an opportunity
that can be exposed by further analysis. This can permit
a second transformation that may expose further opportu-
nities. As a result, there has been considerable discussion
of the proper ordering of optimizations [Po186] and several
authors have suggested repeated invocations of one or more
optimizations to achieve a better result [AH821 [RWZSS].

Some optimizations can be combined into a single algo-
rithm which can do more than can repeated invocations of
the separate transformations [Weg75] [WZ85]. The advan-
tage of combining over repeated invocation occurs when
each analysis can be performed optimistically. An opti-
mistic analysis proceeds by making too many assumptions
and then eliminating any of those assumptions that it can-
not justify on the basis of the state of the current analysis.
If two methods of analysis are running in parallel, it may
be that some assumptions need not be dropped because the
other analysis method can justify it.

The algorithm presented here can be profitably com-
bined with other optimizations. This can be done either
by iteratively repeating them or by unifying them. As
discussed above, unification may produce a more powerful
algorithm which may also be considerably more complex.
The decision to unify must be based on engineering issues.

There are many possible transformations that could
be combined. In this section, we will discuss three such
transformations and will show how to integrate the last
two transformations into this algorithm.

4.1 Constant Propagation

The algorithm can benefit from other kinds of preprocess-
ing. Function symbols need not be entirely uninterpreted.
Reif and Lewis [RL77] perform constant propagation before
their algorithm, a strategy which has several advantages.

Our congruence algorithm deals with variables in a
purely symbolic manner and does not interpret functions.
It is easy to interpret the behavior of functions on constant
operands at compile time; one simply applies them and de-
termines the result.

While it is true that the algorithm presented here may
provide further opportunities to discover constants, unifi-
cation of the two algorithms will be complex.

4.2 Symmetry

Our requirement that functions be uninterpreted might be
relaxed in order to allow the observation that addition is
commutative. Thus, we know that 33+17 equals 17+33 QED

9

(even if we don’t know that both equal SO). The partition
algorithm would not discover this equivalence since the first
edge out of the first node points to a node labeled 33, while
the first edge out of thle second points to a node labeled 17.
If we knew which equivalence classes the children of the t
were in at preprocessing time, then they could be sorted.
But we don’t. The solution is to allow the t node to have
a single hyperedge to both of its children.

This solution will require that the partitioning algo-
rithm handle functions whose range is sets of elements
rather than just single elements. The function from the
+ node has as its value the set containing both of its chil-
dren. This requires no change in how the inverse3 of a
function is stored. However, it will no longer be sufficient
to split a partition (e.g. B[j]) into two pieces (e.g. B[j]
and B[d) depending on whether or not an element is in the
inverse image of the splitting partition (e.g. B[i]). Rather,
a partition will be split into several pieces depending on
the number of times an element occurs as an inverse of the
other partition.

The modifications to the a.lgorithm are: 1) partition
B[j] may have to be split even if it is wholly contained in
INVERSE; 2) when a partition is split, two elements will end
up in different partitions if they have a different number of
children in B[i]; and 3) but the largest partition is placed
on the WAITING queue (as before, when there was a single
non-largest partition to put on the queue).

4.3 Combining Congruent Values

Suppose we wish to recognize that X and Y are equal after
the following program segment:

X c AtB
if P

then Y c AtB
else Y c x

Then we need to extend our definition of congruence.
Two nodes are congruent if and only if they have the same
label and their children are congruent (as before), or if one
of the nodes is labeled +if and its first two children are
congruent to the other.

Our strategy will be to transform the value graph as if
we knew that the then branch and the else branch of an
if-then-else produced the same value. As the algorithm
proceeds, it may discover that this assumption was false. It
will then undo the transformation.

The transformation is to replace all edges to a &
with edges to its then branch (this has the same effect
as using the else branch, since we are assuming they are
equal). This transformation can be applied in linear time by
proceeding upwards from the leaves of the value structure.
We also optimistically delete the #if nodes from the graph
(and from any partitioning thereof). In an auxiliary data

3We are stretching notation here. Technically, the inverse of the
function takes a set of elements as its argument. We say that the
inverse of the function applied to an element yields those elements
the function maps to sets containing the element.

structure, we store the pairs of nodes that are optimistically
assumed equal and the $ii which had them as its children.

When a partition is split, the nodes that are split from
the partition (e.g. B Cql) are examined. If one of these
elements has a partner that was assumed to be equal to
it, then that partner is further examined. If it is in the
same partition (e.g. B[q]) or not in the value graph, we
ignore it. If it is in another partition, then we undo the
transformation. This will cause a +if to be placed into
the value graph and will reattach edges to it. (If this new
node belongs in a partition with other elements they will
be created at the same step.) The new nodes in the value
graph must be examined and tested to see if they have
partners. If so, the process is repeated.

This procedure can still be implemented in 0(E log E).

5 Conclusion
The detection of equivalence of variables is an undecidable
problem. We have presented an algorithm which detects
many of the statically detectable classes of equalities. Our
algorithm is efficient and will, we hope, be fairly easy to
understand and implement.

It should be possible to extend the techniques pre-
sented here so as to detect additional classes of equalities.
An engineering decision will have to be made about which
additional improvements to the algorithm are worth their
implementation expense. As programming practice changes
and aa different optimizations are added to programming
languages, these decisions may change.

6 Acknowledgements
We would like to thank Len Berman, Larry Carter, Ron
Cytron, Jean Ferrante, Brent Hailpern, Susan Horwitz and
Barry Rosen for their help in this work.

10

References

[AH821 M. Auslander and M. Hopkins. An overview of
the PL.8 compiler. Proc. SIGPLAN’82 Symp. on
Compiler Cons2ruclion, 17(6):22-31, June 1982.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The
Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[A1170] F. E. Allen. Control flow analysis. Sigplan No-
tices, July 1970.

[I3ak77] B. S. B k a er. An algorithm for structuring flow-
graphs. J. ACM, 98-120, January 1977.

[(X70] J. Cocke and J. T. Schwartz. Programming Lan-
guages and Their Compilers; Preliminary Notes.
Courant Institute of Mathematical Sciences, New
York University, April 1970.

[FOW87] J. Ferrante, K. J. Ottenstein, and J. D. Warren.

[GW76]

[Hop711

[F’o186]

[RL77]

[~dL82]

[RT82]

A program dependance graph and it’s use in op-
timization. ACM Trans. on Programming Lan-
guages and Systems, 9(3):319-349, July 1987.

S. L. Graham and M. Wegman. A fast and usu-
ally linear algorithm for global flow analysis. J.
ACM, 23(1):172-202, January 1976.

J. Hopcroft. An n log n algorithm for minimizing
the states of a finite automaton. The Theory of
Machines and Computations, 189-196, 1971.

L. L. Pollock. An Approach to Incremental Com-
pilation of Optimized Code. PhD thesis, Depart-
ment of Computer Science, University of Pitts-
burgh, Pittsburgh, Pa. 15260, 1986.

J. H. Reif and H. R. Lewis. Symbolic evaluation
and the global value graph. Conf. Rec. Fourth
ACM Symp. on Principles of Programming Lan-
guages, 104-118, January 1977.

J. H. Reif and H. R. Lewis. E’cent Symbolic
Analysis of Programs. Technical Report TR-37-
82, Harvard University, Aiken Computation Lab-
oratory, 33 Oxford St.,Cambridge, Mass 02138,
1982.

J. H. Reif and R. E. Tarjan. Symbolic program
analysis in almost linear time. SIAM J. Comput-
ing, 11(1):81-93, February 1982.

[RWZSS] B. K. R osen, M. N. Wegman, and F. K. Zadeck.
Global value numbers and redundant computa-
tions. Conf. Rec. Fifteenth ACM Symp. on Prin-
ciples of Programming Languages, Jantiary 1988.

[Sha80] M. Sh arir. Structural analysis: a new approach
to flow analysis in optimizing compilers. Com-
puter Languages, 5:141-153, 1980.

[SS70] R. M. Shapiro and H. Saint. The Representation
of Algorithms. Technical Report CA-7002-1432,
Massachusetts Computer Associates, February
1970.

[Weg75] B. Wegbreit. Property extraction in well-founded
property sets. IEEE Trans. on Software Engi-
neering, SE1(3):270-285, September 1975.

11

[WZ85] M. W g e man and F. K. Zadeck. Constant prop-
agation with conditional branches. Conf. Rec.
Twelfth ACM Symp. on Principles of Program-
ming Languages, 291-299, January 1985.

