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0 such a basis is given by the vectors PE, C?, and

OB

§ 25. The Galilean group.

25.1. Motion of a particle.

The relationships among the conservation laws in clas-
sical mechanics are determined by the structure of the
Galiliean group. We consider first the simplest example of
the free motion of a material point, described by the equa-

tion
mx = 0 , (25.1)

where m is the mass of the particle, x = (xl,xz,xs), and
the dots denote differentiation with respect to t. The
operators

. 3 VvV o U 9
X = - L} X = X - = X EE—— LY
oot HY oxH %’
d _ d _
X =/4—, Y =t—, u,v=1,2,3, (25.2)
L ot u BXU

constitute a basis of the Lie algebra L of the Galilean

group admitted by Eq. (25.1).
When one shifts from the Lorentz to the Galilean group

(by formally letting c¢ > ), the equalities (24.3) and
(24.4) become

AL _ AL _
L&) = {Xu}, (L™ [Yl) = {Xu,Yu} , (25.3)
and

AL
(L) [X1z) {Xu’xuv’Yu

Therefore, algebra L 1is generated by two elements: X,
and another element, for example, X12' Consequently, the
fundamental integrals of motion of a particle in classical

mechanics are the energy

} 222 . (25.4)
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B = Dlz|2, (25.5)

(SYE=i

and the angular momentum M,  and it actually suffices to
take only one component,

w® = m(x'%? - x%%). (25.6)

From (25.4) it follows that, by acting repeatedly on M3
with the adjoint algebra, we can produce the momentum

P =mx , (25.7)
the angular momentum

M=xXxP (25,8)
and the integral

Q = m(x - £x) , (25.9)
corresponding to the operators Y,;: since the vector M
can be obtained from M? through obvious rotations, it suf-
fices to consider P and Q. Note that by (25.3), the

momentum is also related to the energy, and is obtained from
it through the action of ad Yu:

9 9 Q)2 J U
ad Y (¥) = [t—+—._](21x; ) = m = M.
H 3t axM 2

The same conclusion may be reached by using the Galilean
transformation with generator YU.

x'" = x+ ta, where a = (al,az,a3). (25.10)
In fact, this transformation takes every solution of Eq.
(25.1) again into a solution, and so the energy is taken
into the integral
m| . 2 m|. 2 m 2
E"—__""' -— - . —
2|x | 2|x + a| E + Pra + 2Ial .

Since the group parameter a is arbitrary, this shows that



CONSERVATION LAWS 345

P is an integral of motion., One can similarly derive the
vectors P and Q from the angular momentum. Indeed, the
translations x' = x + a take M into the integral M' =
=M~ P X a, and hence, as above, P is an integral of mo-
tion. To obtain the vector Q from M, we use transformation
(25.10):

M' = mx' X X' =m(x+ ta) X (x+a) =M+Q %X a,

This simple example reveals the following general prop-
erties of the mechanical systems invariant under the Galilean
group. In contrast to relativistic mechanics, where the an-
gular momentum provides a basis for the conservation laws,
in classical mechanics both the energy and the angular mo-
mentum are fundamental.*) The above computations also show
that both Lemma 22.4 and the transformations of the conser-
vation laws under the group admitted by the given differen-
tial equation lead to the same results. However, for the more
complex systems that are considered below, application of the
adjoint algebra is easier and, in addition, enables us to
exhibit a basis of conservation laws.

The construction of the Lie-Backlund algebra for the Lag-
rangian equations of motion of a particle reduces (§ 17.1) to
the solution of -the defining equation (17.3) for the operator

X = nl(t,x,v)'§—5-+..., where v = x = Dt(x). Consider,

oxX
for example, the two~body problem, i.e., the motion of a
particle in Newton's gravitational field U =-%-, r = lx!,

o = const. Here the defining equation has the form

. . i 3
i o |
t rg

where

*) It is of interest to note that by the time the
fundamental principles of mechanics were established, Daniel
Bernoulli (in a letter addressed to Euler in February 1744;
published in the book of Fuss [1]) already advanced the idea
that the linear and angular moménta might not be independent;
he assumed that the conservation of the angular momentum
could be derived from the conservation of momentum. It seems
that Euler regarded these two conservation laws as independent

(see Truesdell [1], p. 256).
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9 i 3 ol i 9
= ——— -——-_"+‘—'—'"X .
3t

i i
ox mr > ov

d_
dt

To the infinitesimal operators of the invariance group of point
transformations there corresponds a solution of this equation
that is linear in x and v:

, . . ik
nl = (3at + b)v1 + (ci - ZaS;)x .

. . k . .
where a, b, ci = const., and ci + ¢4 = 0. Substitution
of functions nt of the more general form

nt = al (6,09 + b (e, %)

in the defining equation yields three additional Lie-Backlund
operators:

i d

vk - (x'v)ﬁi) — +..., k =1,2,3,
k i
9X

Xk = (ZXkVi - X

which leave invariant the equation of motion,

x_

r3

mx = o

For these operators and the Lagrangian I = E'-]vl2 -2
we have 2 r

k
X @) = w200 = GV - @] - p_(a 2.

On the particle's trajectories these equalities hecome XRCL) =
k

= Dt(— 2a-§~), and hence Theorem 22.3 and Remark 22,2 yield

the Laplace integrals %)
k
A = n{lv]2 - v +e X, k=1,2,3
These are the components of the vector

A=v XM+ a‘f s

. *) Laplace [1], Livre II, Ch. III n° 18, formula (P).
In Quantum mechanics, the vector A {s also known as the
Runge-Lenz vector.
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the conservation of which yields Kepler's First Law after we
substitute the expression of A 1in the scalar product A-x.
As Theorem 22.4 shows, A can be alternatively produced
by letting the operators Xk act on the angular momentum M.
In Hamiltonian mechanics, associated with every first
integral of motion, F(x,p), there is a one-parameter group
of canonical transformations with the infinitesimal operator

which preserves the Hamiltonian (see Goldstein [1], § 8.6).
The operator corresponding to the integral Ak through this
formula is

Y =[2xkvl—x1vk—(x°v)5l) §—7-+(vlvk+-9—g-x X —([ | +-—~)6 ) 9 .
k k i i
ox ov
(v =-% p). The Lie equation for the one-parameter group of
canonical transformations with operator Y (that is, the
Hamiltonian system with Hamlltonian Ay) has three palrw1se~
- = — 2 2 - _d
commuting integrals, Ak’ E >m | l + 2 = and M, 4 =X pJ Xp,

(i,j # k), and thus, according to Liouville's theorem, can be
integrated by quadratures. With respect to Lagrangian mechanics,
Yy is not a Lie-Backlund operator, because it does not preserve
the equality v = D¢(x). However, due to the fact that Yy = X
on the particle's trajectories, the canonical transformations
generated by Yy _are well defined on these trajectories, and
form a group of Backlund transformations which leave invariant
the Langrangian equation of motion.

25.2. Perfect gas.

Consider the equations describing the motion of a per-
fect polytropic gas
1
v, + (veV)v + E-Vp = 0,

pt + veVp + p div v = 0, (25.11)

Pt + v*Vp + yp div v = 0, Yy = const.,
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where t and x = (xl...,x®) are the independent variables,
while the differential variables are the components of wveloc-
ity v = (vi...,vI)), the pressure p, and the density p;

n assumes the values 1,2, or 3 for a one-dimensional, planar,
or spatial flow, respectively. System (25.11) is invariant
under a vector representation of the Galilean group and a
3-parameter dilatation group. A basis of the corresponding
Lie algebra is supplied by the operators

x1=§~,Xi.~-xJ”a 19 g8 __ A3
5% 3 9%+ 9% ov v
_ 9 9,9 -+ 9 L, 13
X'n+1 oot Yl =t i + i? n+2 t ot tox i?
ox ov ox
z =2t 2+t @ T2 0@ 5=, 0, (25.12)
1 3t Nxct - ap
and
- 9 :
Ry =P 55+ P 5 - (25.13)

This group is maximal in the case of an arbitrary adiabatic
exponent 7Y, whereas for

(25.14)

it can be enriched: to (25.12) and (25.13) one adds the oper-
ator

&

_ 2 O 193 i .09 9 a_
2= t? oo+ tx I + (¥ -tv7) = - ntp 55 -~ (e 5
X ov
(25.15)

(Ovsyannikov [2]). The operator Xn+3 commutes with all the
others, and has no role in the construction of conservation
laws; we therefore omit it from further consideration. The
structure of our algebra is defined by equalities (25.3) and
(25.4), and the following commutation relations (which are
the only ones we shall use):
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ad z,(x . ) = - Zl(mod X ..}, ad zz(zl) =-22. (25.16)

In hydrodynamics, it is customary to write conservation
laws (22.6) in the form

Dt(T) + div (v + &) = 0. (25.17)

Let §(t) be an arbitrary n-dimensional domain representing
a volume of fluid in motion, and denote by S(t) and Vv

the boundary of Q(t) and the unit outer normal to S(t),
respectively. By the standard procedure (i.e., integrating
over the (n+l)-dimensional cylinder X [t1’tz] and using
the Gauss-Ostrogradskii formula) we can rewrite the differen-
tial conservation law (25.17) in the integral form

%; f tdx = - Eevds (25.18)
£(t) S(t)

which has a suitable physical interpretation. The classical
conservation laws of the mass, energy, momentum, and angular
momentum for system (25.11) have the form

d
- f pdx = 0 ,
dtQ(t)
d 1
Ly oz e e - 1 pveas
dtQ(t) 2 Y-1 S(t)
~%€ f pvdx = - f pvdS , (25.19)
Q(t), S(t)
-%E f p(x X v)dx = - f p(x x v)ds.
Q(t) S(t)

In addition, there is the conservation law

4

] P(tv - x)dx = - [tpuds , (25.20)

Q(t) S(t)

which can be written, using the conservation of mass, as the
center—-of-mass theorem:
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where

[

R -1 f pxdx, V = f pvdx, M = f pdx.
S e Q(t) a(t)

=

By analogy with the mechanics of material points, it is
natural to expect that, in view of (25.3) and (25.4), the
energy and the angular momentum constitute a basis of con-
servation laws, despite the fact that the conditions of
Theorem 22.4 are not fulfilled in our case (Egs. (25.11) do
not have a Lagrangian). We verify this by a straightforward
computation, observing first that it suffices to examine the
densities of our conservation laws. We choose, for example,
an operator Y;, and write it in the canonical form

T, =l _

i i i i
ox oV

using the formula (16.17). We have

= (1 p i 1 P i
Yi[i pr{Z +?_—1—] = p‘vl - Di[t(i plv|2 +—_Y—__—l]] 5] le .

Hence, under the action of ad Y;, the energy becomes the
momentum. The other transformations are effected in a similar
manner, In particular,

Y, (ovd) = p(S:ij - Di[tpvj] ~ pc’SJ::L , (25.21)

i.e., ad Y; takes the momentum into the mass, although
[Yi,Xs] = 0; we remove this formal discrepancy with diagram
(22.21) by considering potential gas flows, which admit a
variational formulation.

Under the assumption that the adiabatic exponent Y
and the dimension n are related as in (25.14), there are
two additional conservation laws. They were originally dis-
covered by applying Noether's theorem to the 2-parameter group
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with operators Z, and Z,, admissible for our problem
(Ibragimov [12]). These conservation laws can be easily de-
rived from the energy by using Lemma 22.4, together with re-
lation (25.16). Rewriting Z, in the canonical form:

- i i i i
Z = [tzv1 + tx*VWw + tv - X ]‘Q_T +
2 t v

+ t(tpt + x-Vp + np) %5-+ t(tpt + x*Vp + (n+2)p) %5 .

we find that
z 1 D|Vt2 + 2 Pl = l1v|2[t2p + div(tpx)] +
212 2 AR t
+-121~-[t2pt + 2tp + div(tpx)] + pv-[tzvt + t{(x*V)v + tv - x] =

= t{p|v|? + np) - px*v + div[t(%plvlz +-% p)(x - tv) - t2pv].

This shows that the conservation of energy is taken into a
new conservation law (25.18), with density

Tl = t[p’vl2 + np) - pxev ., (25.22)

The vector & 1is found from the equality

v+ e =7 [[Lolvl? + @+ Do)vIm [Elolv] o) Gtv)-t?pv]

and can be shown to be equal to

Applying E; to the functions T, and El, we obtain another
conservation law, with density

T, = tz[p|v|2 + np) - px*(2tv - x) (25.23)

and vector
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g2 = 2tp(tv - X).

Therefore, for ¥ = (n+2)/n, one can add the following con-
servation laws to (25.19) and (25.20):

L [[tlolv|? + np) - pxev]ldx = - [p(2tv - x)+vds, (25.24)
QL) S(t)
and
(25.25)
'%E I[tz(plvlz + np) - px'(ZtV-XJ]dx = - f2tp(tv—x)'vd5.
Q(t) s(t)

To explain the conservation laws in gas dynamics in
terms of Noether's theorem, we may consider a potential isen-
tropic flow. Let v = V® and entropy S = const. The equa-
tion of state p = e5pY becomes

p=cp’ , ¢ = const., (25.26)

we can take c¢ = 1, for example. Then the Lagrange-Cauchy
integral is written in the form

Ligolz ¢ X oY1 _
o, + 5[vel? + vy e 0, (25.27)

and system (25.11) is replaced by the following second-order
equation for the potential &(t,x):

1
o . + 2V0eVE_ + V@-(V@-V)V®+[Y—1)[®t + §1V®|2]A® = 0.
(25.28)

This equation is given by the Lagrangian
- 1 Y/ (y=1)
L= (@t + 5] v8|?)

and inherits the group properties of the original system
(25.11). For arbitrary <Y, a basis of the admissible algebra
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is supplied by the operators

0 0 0 j 9 i 9
X = RF s X-='_-__.-, X = wT X =X T = X =T
o 00 i g0 nt1 ot ij Nyt 85c)

_ io ., 0 i 3 2

Yi = t —— + G Xn+2 t T + x —+ 0 5
0xX 0

_ i 9 2ytn(y-1) _ 9o  2-n(y-1) . 9

z1 = X 8xi + o) t st BES d 55 (25.29)

for vy = (nt+2)/n, we add to these the operator

- 2 9 19 L L4223
z = t? g+ tx g + le{ 55 - (25.30)

From here, by extension to the first derivatives of ¢, we
can obtain the operators (25.12) and (25.15) using the
Lagrange—Cauchy integral. All the operators (25.29) (except
X,+,) and (25.30) satisfy the conditions of Noether's theorem,
and therefore Theorem 22.4 applies. In particular, the. con-
servation of mass corresponds to the operator X,, while

the commutation relations [Xin] = GJXO explain (25.21).
To derive the conservation laws listeé above from Noether's
theorem, we may construct them first for Eq. (25.28), and
subsequently eliminate ¢ by using the equalities V¢ = v,
(25.27), and (25.26). We can do this for all conservation
laws, except for the one corresponding to Z, and having

the form

oy (220D (o 4 2o ey - 2OED=2 g e -

dtQ(t) v+1 2 Y-1 v+1
== [p |2O=D o glevas (25.31)
S(t) Y+1

From here, we can eliminate the potential only if condition
(25.14) is fulfilled, and then (25.31) becomes (25.24). This
means that Z leads to a new conservation law, either for
arbitrary gas flows with adiabatic exponent Y = (n+2)/n, or
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for potential flows of an arbitrary polytropic gas.

In connection with the conservation laws (25.24) and
(25.25) the question arises of whether there is a field in
which the motion of a material point has analogous integrals
of motion. Since, for n = 3, formula (25.14) gives vy = 5/3
for the adiabatic exponent, i.e., characterizes a monocatomic
gas, we actually deal with a field describing a monoatomic
gas. Therefore, we first consider a Coulomb field with
potential

U =& 0 = const. (25.32)

BT

But, in this field, the integrals of motion are the energy
E =-E|ilz + o the angular momentum M = m(x X x), and the
2 lx] ? ’

Laplace vector A = x X M + a-TiT which is peculiar to the
field (25.32) (m dis the mass of the particle). Comparing
these integrals with formulas (25.22) and (25.23) we see
that the Coulomb field is not appropriate. Thus, let us

take 'a more general, central field with an arbitrary power
potential

U =a|x|¥ . (25.33)

One can show that a nontrivial integral of motion corresponds
to the dilatation group (with some operator of the form (5.1))
only for k = -2, 1i.e., only for the potential

i

o = const. (25.34)

(25.35)

describing the motion of a particle in this field, the
Galilean group is represented by the operators X, and XUV
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from (25.2):; the absence of Xﬁ and Y, 1is explained by
our choice of the fixed center - the origin of coordinates.
In addition, Eq. (25.35) is invariant under the 2-parameter
group consisting of dilatations with operator

7 =2t Q-4+ xH (25.36)
1 ot axu

and of projective transformations with operator

7 = t? ~g—t+ tx" ﬁ——ﬂ i (25.37)
2 oxX

The prolongations of these operators to v = X coincide with
Z, and Z, from (25.12) and (25.15), if one eliminates the
variables p and p. According to (25.16), to construct

the integrals of motion corresponding to Z, and Z,, it
suffices to transform the energy

m|.|2 o
E=+[x]"+ —— (25.38)

by using ad Zz' We thus get

7 o= (e -2 A M- Mo 2y 2, (25.377)
2 axH 3%"

and hence

Z (€) = nx+x - t(n|]? + 2 2} - t2%e (mk - 20 2.
X

This says that the integral
I = 2tFE — mv°*x. (25.39)
] -

corresponds to the operator Zl. Letting operator (25.37")
act on Il, we obtain the second integral
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12 = 2t%E - mx*(2tv - x), (25.40)

which corresponds to Z_. Therefore, Eq. (25.35) possesses
six first integrals, given by (25.38)-(25.40) and the angular
momentun M = m(x X v). The integrals (25.39) and (25.40)
coincide with the densities (25.22) and (25.23), so that the
field with potential (25.34) has the required properties. This
potential belongs to the class of the so-called integrable
power potentials. Namely, the equation of the orbit of a
particle moving in a central field with potential (25.33) can
be integrated by means of elementary (trigonometric) func-
tions only in one of the following three cases (see, for-
example, Goldstein [11, § 3.5):

k=2, -1, -2,

i.e., for the harmonic oscillator, for the Coulomb field (or
Newton's gravitational field), and for the potential (25.34).
In the last case, the solutions of the equation of motion
(25.35) are found by using the six first integrals given
above, with no additional quadratures.

25.3. Incompressible fluid.

For flows of an incompressible fluid, the Galilean
relativity principle is replaced by the more general invari-
ance under the shift to an arbitrary coordinate system in
translational motion. For the equations

v, + (veV)v+Vp =0, divv=0, (25.41)
describing a perfect, imcompressible fluid flow (here the

density is set equal to one), this generalized relativity
principle is characterized by the operator

X = £ Spa et Sp o e &

. (25.42)
£ 9% ov op

which §eneralizes the Xi and Yi given by (25.12); here

f = (f (t),...,fn(t)] is an arbitrary vector-function of



