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Adiabatic quantum computing for random satisfiability problems

Tad Hogg
HP Labs, Palo Alto, California 94304

~Received 10 June 2002; revised manuscript received 20 November 2002; published 28 February 2003!

The discrete formulation of adiabatic quantum computing is compared with other search methods, classical
and quantum, for random satisfiability~SAT! problems. With the number of steps growing only as the cube of
the number of variables, the adiabatic method gives solution probabilities close to 1 for problem sizes feasible
to evaluate via simulation on current computers. However, for these sizes the minimum energy gaps of most
instances are fairly large, so the good performance scaling seen for small problems may not reflect asymptotic
behavior where costs are dominated by tiny gaps. Moreover, the resulting search costs are much higher than for
other methods. Variants of the quantum algorithm that do not match the adiabatic limit give lower costs, on
average, and slower growth than the conventional GSAT heuristic method.

DOI: 10.1103/PhysRevA.67.022314 PACS number~s!: 03.67.Lx
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I. INTRODUCTION

Quantum computers@1–4# can rapidly evaluate all searc
states of nondeterministic polynomial~NP! problems@5#, but
appear unlikely to give short worst-case solution times@6#.
Of more practical interest is whether their average per
mance improves on conventional heuristics.

Adiabatic quantum computing, using a slowly changi
time-dependent Hamiltonian, appears to give polynomial
erage cost growth for some NP combinatorial search pr
lems@7#. These observations, while encouraging, are limi
to small problems for which other methods, both conve
tional and quantum, can have even lower costs. Furtherm
although adiabatic methods apparently show exponen
cost scaling for set partitioning@8# and finding the ground
state of spin glasses@9#, the typical performance of adiabat
quantum computing for large NP search problems remain
open question. Thus it is of interest to compare the adiab
method with other techniques for NP problems having
well-studied class of hard instances.

This paper provides such a comparison fork-satisfiability
(k-SAT), consisting ofn Boolean variables andm clauses. A
clause is a logicalOR of k variables, each of which may b
negated. A solution is an assignment, i.e., a value, true
false, for each variable, satisfying all the clauses. An
ample 2-SAT instance with three variables and two clause
v1 OR ~NOT v2) andv2 OR v3, which has four solutions, e.g
v15v25false andv35true. For a given instance, let th
costc(s) of an assignments be the number of clauses it doe
not satisfy.

For k>3, k-SAT is NP-complete@5#, i.e., among the
most difficult NP problems in the worst case. For avera
behavior we use the randomk-SAT ensemble, in which them
clauses are selected uniformly at random. That is, for e
clause, a set ofk variables is selected randomly, and ea
selected variable is negated with probability 1/2. The al
rithms we consider are probabilistic, so cannot definitiv
determine that no solution exists. Thus we use soluble
stances: after random generation, we solve the instances
an exhaustive conventional method and only retain th
with a solution. This ensemble has a high concentration
hard instances near a phase transition in search diffic
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@10–13#. For 3-SAT, we generate instances near this tran
tion by usingm[m/n54.25, although, for thosen not di-
visible by 4, half the samples hadm5 b4.25nc and half hadm
larger by 1.

The remainder of this paper describes several quan
search algorithms in the context of satisfiability problem
and then compares their behavior.

II. ALGORITHMS

The adiabatic technique@7# is based on two Hamiltonian
H (0) andH (c). The first is selected to have a known grou
state, while the ground states ofH (c) correspond to the solu
tions of the problem instance to be solved. The algorit
continuously evolves the state of the quantum computer
ing H( f )5(12 f )H (0)1 f H (c) with f ranging from 0 to 1.
Under suitable conditions, i.e., with a nonzero gap betw
relevant eigenvalues ofH( f ), the adiabatic theorem guaran
tees that, with sufficiently slow changes inf, the evolution
maps the ground state ofH (0) into a ground state ofH (c), so
a subsequent measurement gives a solution. The choice
H (0) and H (c) and how f varies as a function of time ar
somewhat arbitrary.

In matrix form, one Hamiltonian with minimal-cost as
signments as ground states isHr ,s

(c)5c(s)d r ,s , for assign-
mentsr ands, whered r ,s is 1 if r 5s and 0 otherwise. This
Hamiltonian introduces a phase factor in the amplitude
assignments depending on its associated costc(s).

For H (0), we introduce a non-negative weightwi for vari-
able i, let v[( i 51

n wi , and take

Hr ,s
(0)5H v/2 if r 5s,

2wi /2 if r and s differ only for variable i ,

0 otherwise .
~1!

This Hamiltonian can be implemented with elementary qu
tum gates by use of the Walsh-Hadamard transformW, with
elementsWr ,s522n/2(21)r •s ~treating the statesr and s as
vectors of bits so their dot product counts the number
variables assigned the value 1 in both states!. Specifically,
H (0)5WDWwhereD is a diagonal matrix with the value fo
©2003 The American Physical Society14-1
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stater given by the weighted sum of the bits:( i 51
n wir i with

r i representing the value of thei th bit of r. In particular, if all
the weights equal 1,Dr ,r just counts the number of bits equ
to 1.

The adiabatic method is a continuous process. To com
with other algorithms, we use the algorithmically equivale
discrete formulation@14,15# acting on the amplitude vecto
initially in the ground state ofH (0), i.e., cs

(0)522n/2. This
formulation consists ofj steps and a parameterD. Steph is a
matrix multiplication:

c (h)5e2 i t( f )H(0)De2 ir( f )H(c)Dc (h21) ~2!

with the mixing phase functiont( f )512 f , cost phase func-
tion r( f )5 f , and taking\51. After these steps, the prob
ability of finding a solution isPsoln5(suc ( j )u2, with the sum
over all solutionss.

As a simple choice for the evolution, we takef to vary
linearly from 0 to 1. We exclude the steps withf 50 and 1
since they have no effect onPsoln. Specifically, we takef
5h/( j 11) for steph, ranging from 1 toj.

The expected number of steps required to find a solu
is C5 j /Psoln, providing a commonly used proxy for th
computational cost of discrete methods, pending furt
study of clock rates for the underlying gate operations a
the ability of compilers to eliminate redundant operations.
also observed with conventional heuristics, the cost distri
tion for randomk-SAT is highly skewed, so a few instance
dominate the mean cost. Instead, we use the median co
indicate typical behavior. The time for the continuous form
lation is T5 j D, so the adiabatic limit isj D→`. By con-
trast, in the discrete formulation,D parametrizes the opera
tors of Eq.~2! rather than determining the time required
perform them.

Equation ~2! follows the continuous evolutionc (h11)

'e2 iH ( f )Dc (h) when DuuHuu→0, which holds whenD
!1/n @14,15#. This last condition uses the fact that the no
uuHuu is the largest eigenvalue ofH, which isO(n) since we
considerk-SAT problems withm}n. As a specific choice
we useD51/Aj . Other scaling choicesD51/j a with 0,a
,1 give qualitatively similar behaviors to those report
here while maintaining correspondence with the continu
evolution for sufficiently largej.

The unweighted H(0) uses equal weights:wi51 so v
5n. Alternatively,wi can be the number of times variablei
appears in a clause@7#, as also used by some convention
heuristics to adjust the importance of changes in each v
able. This choice givesv5mk. By matchingH (0) to the
problem instance, one might expect such weights to impr
performance. Instead, for random 3-SAT these weights g
higher costsC, requiring aboutn times as many steps t
achieve the samePsoln as the unweighted choice. If instea
these weights are normalized so their average value is 1
performance is about the same as in the unweighted case
still slightly worse. In light of these observations, we use
unweightedH (0) in this paper.

We compare the adiabatic limit with two other method
summarized in Table I. First, for thediscrete adiabaticcase
we takeD independent ofn and j, violating the condition
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Dn→0 so Eq.~2! no longer closely approximates the co
tinuous evolution and does not necessarily givePsoln→1 as
j→`. In this case, a discrete version of the adiabatic th
rem, described in the Appendix, ensures thatPsoln is close to
1 if D is not too large.

Second, theheuristicmethod, studied previously@16,17#,
hasD51/j and forms fort( f ) and r( f ) that do not range
between 0 and 1. Instead, these phase functions must b
lected appropriately to give good performance. Identifyi
such choices and characterizing their performance are m
issues for this algorithm, although mean-field approxim
tions based on a few problem parameters, e.g., the ratiom/n
for k-SAT, can give reasonably good choices. This meth
does not correspond to the adiabatic limit:Psoln has a limit
less than 1 asj→`.

For all these techniques, the expected costC5 j /Psoln is
minimized for intermediate values ofj rather than takingj
→` as used in the limits listed in Table I. Identifying th
parameters and phase functionsr( f ) and t( f ) giving mini-
mal cost for a given problem instance depends on detail
the search space structure unlikely to be available prio
solving that instance. However, as described below, takinj
to grow only as a fairly small power ofn provides relatively
modest costs, on average, for problem sizes feasible to s
late.

III. BEHAVIOR

For the adiabatic method, Fig. 1 shows the medianPsoln
for various growth rates of the number of steps.Psoln→1 as
j increases. At least forn&20, Psoln'1 when j 5n3, so
median costs areO(n3), a substantial improvement over a
known classical methods if it continues for largern. How-
ever, for smaller powers ofn, Psoln values decrease, but thi
is only evident forj 5n2 for n.20. This raises the possibil
ity of such a decline, at somewhat largern, for larger j as
well. Provided such a decline only leads toPsoln decreasing
as a power ofn, corresponding to a straight line on the lo
log plot of Fig. 1, median costs would still only grow as
power of n. The remainder of this section describes the
gorithm behaviors in more detail.

TABLE I. Summary of quantum search algorithms using pro
lem structure. The heuristic method requires finding appropr
choices for the phase functions to give good performance and
the number of stepsj to increase with problem sizen. The adiabatic
methods require sufficiently large values ofT5 j D. A constant
value for a parameter in this table means it is taken to be indep
dent ofn and j.

Parameter

Algorithm T D Phase function

Adiabatic T→` D→0 r(0)505t(1)
Discrete adiabatic T→` Constant r(0)505t(1)
Heuristic Constant D→0 Suitabler, t
4-2
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ADIABATIC QUANTUM COMPUTING FOR RANDOM . . . PHYSICAL REVIEW A67, 022314 ~2003!
A. Energy gap

Asymptotically, the adiabatic method’s cost is dominat
by the growth of 1/G2 whereG5minfg(f) and g( f ) is the
energy gap inH( f ), i.e., the difference between the groun
state eigenvalue and the smallest higher eigenvalue co
sponding to a nonsolution. Evaluation using sparse ma
techniques@19# for n<20 gives the medianG in the range
0.3–0.5, as illustrated for one instance in Fig. 2, and, m
significantly, it does not decrease over this range ofn. This
minimum is not much smaller than other values ofg( f ).
Hence, unlike for largen, the cost is not dominated by th
minimum gap size and so the values of Fig. 1 may not refl
asymptotic scaling.

FIG. 1. Log-log plot of medianPsoln for the adiabatic method vs
n with the number of stepsj equal ton, the integer nearestn3/2, n2,
andn3 ~solid curves, from bottom to top, respectively!. We useD
51/Aj . For comparison, the dashed curve showsPsoln for the heu-
ristic method using at mostn steps. The error bars show the 95
confidence intervals@18# @p. 124# of the medians estimated from th
random sample of instances. The same instances were solved
each method. We use 1000 instances for eachn up to 20, and 500
for largern, except only 100 forj 5n3 for n>16.

FIG. 2. Difference between eigenvalues of the lowest five
cited states and the ground state vsf for an instance withn
520, m585, and five solutions. The inset shows the actual eig
values, with the gray curve showing the expected cost^c& in the
ground state.
02231
d

re-
ix

e

ct

By contrast, Fig. 3 illustrates the behavior of an instan
with a small minimum gap. One characterization of t
eigenstates ofH( f ) is their expected cost, i.e.,̂c&a
5(sc(s)ufs

(a)( f )u2 wheref (a)( f ) is theath eigenvector of
H( f ). In particular, fora51 this gives the expected cost i
the ground state, which we denote simply as^c&. The ex-
pected cost in the ground state drops rapidly at the minim
gap location, in contrast to the smooth behavior for instan
with larger gaps~as, for example, in Fig. 2!. We thus see a
difference in behavior of the ground state for instances w
small gaps, presumably representative of typical behavior
larger n, and the behavior of more typical instances forn
'20.

With the adiabatic method andT sufficiently large, the
actual state of the quantum computer after steph, c (h),
closely approximates the ground state eigenvectorf (1), up
to an irrelevant overall phase. Thus the computation will a
show the jump in expected cost.

Detailed quantitative comparison of the typical behavio
due to small minimum gaps and conventional heuristics
quires larger problem sizes. Nevertheless, we can gain s
insight from instances with small gaps forn'20, which tend
to have high costs for both the quantum methods and c
ventional heuristics, such as GSAT@20#, even when restrict-
ing comparison to problems with the same numbers of v
ables and solutions. For the instance shown in Fig. 3, GS
trials readily reach states with one or two conflicts, but ha
a relatively low chance of finding the solution. This behavi
typical of conventional heuristics@21#, corresponds to the
abrupt drop in̂ c& of Fig. 3. Thus finding assignments wit
costs below this value dominates the running time of b
the quantum and conventional methods. These observa
suggest that small energy gaps characterize hard prob
more generally than just for the adiabatic method, wh
may provide useful insights into the nature of search alo
with quantities such as the backbone~i.e., variables with the
same values in all solutions@13#!.

Simple problems or algorithms ignoring problem structu
allow determining the gap for largen @14,15,22#. This is
difficult for random SAT. For instance, although rando
k-SAT corresponds to random costs forH (c) and the extreme

ith

-

-

FIG. 3. Lowest two eigenvalues vsf for an instance withn
520, m585, one solution, and a particularly small minimum ga
The gray curve shows the expected cost^c& in the ground state,
equal tom/2k510.625 atf 50. Note the abrupt drop at the locatio
of the minimum gap. The ground state forf 51 is the solution
whose cost is zero, sôc&→0 as f→1.
4-3
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TAD HOGG PHYSICAL REVIEW A 67, 022314 ~2003!
eigenvalues of random matrices can be determined whe
ements are chosen independently@23,24#, the costs of nearby
states for SAT instances are highly correlated since t
likely conflict with many of the same clauses. Alternative
upper @25# and lower @26# bounds for eigenvalues can b
based on classes of trial vectors. For instance, vectors w
components for states depend only onc(s) give fairly close
upper bounds for the ground state of random 3-SAT, on
erage, as well as a mean-field approximation for the heur
method@16#. However, simple lower bounds for higher e
ergy states are below the upper bound for the ground s
for some values off, and so do not give useful estimates f
G. Furthermore, typical soluble instances have exponenti
many solutions~although still an exponentially small fractio
of all states!. Thus a full analysis of performance based
energy values must also consider the behavior of the m
eigenvalues corresponding to solutions, which can be c
plicated, as illustrated in Fig. 2.

B. Search cost

Even if n&20 does not identify asymptotic behavior, th
range of feasible simulations allows comparing algorith
costs. Such comparisons are particularly relevant for qu
tum computer implementations with relatively few qub
and limited coherence times which are thus limited to sm
problems and few steps. Figure 4 compares the median
ues of the expected search costsC. For the adiabatic method
using j 5n3 gives large costs, far higher than those of co
ventional heuristics and other quantum methods. Using
enough steps to achieve moderate values ofPsoln reduces
cost@7#, e.g.,j 5n2. Alternatively, for eachn, testing various
j on a small sample of instances indicates the numbe
steps required to achieve a fixed value ofPsoln, e.g., 1/8. In
our case, the latter approach has median costs about

FIG. 4. Logarithmic plot of median search cost vsn for the
heuristic ~diamond! and unstructured~box! searches, GSAT with
restarts aftern steps~circle! and the adiabatic search withj 5n2

~triangle!. The values are based on the same instances as in F
The lines are exponential fits to the unstructured~dashed! and adia-
batic ~solid! methods.
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lower than the former, but with the same cost growth ra
Because this improvement is minor compared to the diff
ences with other algorithms shown in the figure, and to av
the additional variability due to estimatingj from a sample of
instances, we simply takej 5n2 to illustrate the adiabatic
method.

The figure also shows Grover’s unstructured search@27#
~without prior knowledge of the number of solutions@28#!
and the conventional heuristic GSAT@20#. The unstructured
search cost grows ase0.32n. The exponential fit to the adia
batic method ise0.13n. This fit gives a residual about one-ha
as large as that from a power-law fit. The growth rate
about the same as that of GSAT.

Figure 4 shows that the heuristic search, using at mon
steps, gives low costs due to its fairly high values forPsoln
shown in Fig. 1. The constantD scaling for the discrete
adiabatic method also gives largePsoln values forj 'n. Thus
bothD51/j andD independent ofj make better use of quan
tum coherence in the discrete formulation than the conti
ous adiabatic limit~with 1/j !D!1/n) for hard random
3-SAT. These behaviors are shown in Fig. 5.

Because these quantum methods and GSAT consist
series of independent trials, they can be combined with a
plitude amplification to give an additional quadratic perfo
mance improvement@29#. However, this is only a significan
benefit whenPsoln is fairly small, which is not the case fo
the heuristic and GSAT methods for these problem sizes

For the adiabatic method, takingr( f ) andt( f ) in Eq. ~2!
to vary according tog( f )2 reduces costs@15,22#. This con-
centrates steps at values off close to the minimum gap
While g( f ) is costly to evaluate for SAT instances, usin
average values ofg( f ) based on a sample of instances giv
some benefit. For example, forj 5n2, Psoln increases from

1.

FIG. 5. Logarithmic plot of median search cost vsn for GSAT
~circle!, the heuristic method~diamond!, both of which are also
shown in Fig. 4, and two versions of the discrete adiabatic meth
D51.2 with linear phase functions~triangle! and the cubic polyno-
mial variation withf ~gray box! described in the text. The lines ar
exponential fits to GSAT~dashed! and the two discrete adiabati
quantum methods. The figure uses the same instances as Fig.
4-4
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ADIABATIC QUANTUM COMPUTING FOR RANDOM . . . PHYSICAL REVIEW A67, 022314 ~2003!
around 0.4 shown in Fig. 1 to a range of 0.5–0.6 but t
does not appear to reduce the cost’s growth rate.

Similar improvement occurs with constantD. Optimizing
t and r separately for each step on a sample of instan
gives values close to a cubic polynomial inf. Restricting
attention to such polynomials, for a set of 100n512 in-
stances the best performance was withD51.312 75, r( f )
5p( f ), and t( f )512p( f ), where p( f )51.927 08f
22.661 79f 211.734 71f 3. This cubic is similar to the func-
tional form optimizing the adiabatic method for unstructur
search@15,22#. Figure 5 shows the resulting cost reductio
Hence, tuning the algorithm to the problem ensemble is b
eficial as also suggested by a mean-field analysis of the
ristic search@16#.

The simulations also show that these quantum algorith
have a large performance variance among instances
givenn andm, and no single choice forr andt is best for all
problem instances. Thus portfolios@30# combining a variety
of such choices can give further improvements.

IV. CONCLUSION

In summary, for random SAT, the adiabatic method i
proves on unstructured search and provides a general
nique to exploit readily computed properties of hard sea
problems through the choice of Hamiltonians. Howev
nonadiabatic-limit algorithms require fewer steps, com
rable to GSAT, and appear to have slower cost growth. A
caveat, small energy gaps appear to be associated wit
stances difficult to solve with both quantum and classi
methods. Thus the simulation results presented here, b
on fairly small problem sizes for which most instances ha
fairly large energy gaps, may not reveal the asymptotic s
ing of the typical search cost for hard random SAT problem
Evaluating the behavior of these algorithms and, more g
erally, identifying better ways to use state costs in quant
algorithms remain open questions.

Quantum computers with only a moderate number of
bits could test algorithms beyond the range of simulato
and hence provide useful insights even if the problem s
are still readily solved by conventional heuristics. Such st
ies could help address the question of whether, with suita
tuning based on readily evaluated average properties
search states, the ability to operate on the entire search s
allows quantum computers to effectively exploit weak cor
lations among state costs in ways classical machines can
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APPENDIX: DISCRETE ADIABATIC BEHAVIOR

When D is held constant, the steps of Eq.~2! do not
approximate the continuous evolution induced byH( f ), and
hencec (h) does not closely follow the ground state ofH( f )
when T→`. Nevertheless,c (h) does closely follow an
eigenstate of the unitary operator involved in Eq.~2!. This
02231
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discrete version of the adiabatic theorem ensures good
formance of the algorithm provided the continuous change
the eigenvector takes the initial ground state into the fi
one, rather than into some other eigenvector.

1. The discrete adiabatic limit

Consider a smoothly changing sequence of unitary ma
ces U( f ) defined for 0< f <1 and vectors c (h11)

5U( f )c (h) with f 5h/ j for h50, . . . ,j 21. Lete2 iur ( f ) and
êr( f ) be ther th eigenvalue and~normalized! eigenvector of
U( f ).

We start with c (0) equal to the eigenvectorê1(0) of
U(0), which we assume to be nondegenerate for simplic
Provided the difference between eigenvalues is boun
away from zero, for sufficiently largej , c ( j ) will be close to
an eigenvector ofU(1). To seethis let e51/j and expand
c (h)5( rcr( f )L r( f )êr( f ) in the eigenbasis ofU( f ) where

L r~h/ j ![expS 2 i (
k50

h21

u r~k/ j !D .

First order perturbation theory gives the change in thecr
values during one step to beO(e). After j steps, it might
appear that these changes could build up toO(e j )5O(1).
However, this is not the case due to the rapid variation
phases whenj is large. Specifically, the changes in coef
cients forr 5” 1 are

dcr

d f
5P1,r~ f !F r~ f !, ~A1!

wherePs,r(h/ j )[e2 i j Qs,r ( f ),

Qs,r~ f ![
1

j (
k50

h21

@us~k/ j !2u r~k/ j !#,

and

F r[
^r udU/d f u1&

e2 iur2e2 iu1
.

Sincecr(0)50, Eq. ~A1! gives

cr~ f !5E
0

f

e2 i j Q1,r (k)F r~k!dk.

As j increases, the integrand oscillates increasingly rap
so the integral goes to zero asj→` by applying the
Riemann-Lebesgue lemma, sincedQ1,r /d f5u12u r is non-
zero anduF r( f )u is bounded for allf and rÞ1, by the as-
sumption of no level crossing. Hencecr( f )→0 so c ( j ) ap-
proachesê1(1), up to anoverall phase factor, asj→`.

2. An example

An important caveat in applying this result to quantu
algorithms is that, whilej→` suffices to ensurec (h) closely
follows the evolution of an eigenvector ofU( f ), this evolu-
4-5
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TAD HOGG PHYSICAL REVIEW A 67, 022314 ~2003!
tion may not lead to the desired eigenvector ofU(1), i.e.,
corresponding to solutions to the search problem. This
because the eigenvalues ofU( f ) lie on the unit circle in the
complex plane and can ‘‘wrap around’’ asD increases.
Hence, in addition to ensuring that the eigenvalue gap d
not get too small, good performance also requires selec
appropriateD. Alternatively, one could start from a differen
eigenvector ofU(0), which would be useful if one could
determine which eigenvector maps to the solutions.

One guarantee of avoiding this problem is thatnoneof the
eigenvalues ofU( f ) wrap around the unit circle, i.e.
DuuHuu→0, corresponding to the continuous adiabatic lim
Simulations show that performance remains good for m
erate values ofj even ifD does not go to zero, providedD is
below some threshold value. For hard random 3-SAT pr

FIG. 6. Energy valuesu r( f ) corresponding to the two eigenva
ues of U( f ) vs f for D51 ~gray! and 4 ~black!. The values are
defined only up to a multiple of 2p, and we take2p,u<p. The
ground states ofH (0) and H (c) correspond tou(0)50 and u(1)
50, respectively. The values forD51 are close to those of th
combined HamiltonianH( f )5(12 f )H (0)1 f H (c). However, the
D54 values do not remain close to those ofH( f )D.
n

nt

ex
s,
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lems with j }n, this threshold appears to be somewhat lar
than 1.

To illustrate these remarks consider then51 example

H (0)5
1

2 S 1 21

21 1 D , H (c)5S 0 0

0 2D ,

so U( f )5e2 iH (0)(12 f )De2 iH (c)f D. Figure 6 shows the behav
ior of the two eigenvalues ofU( f ) for two values ofD. For
D54 the initial ground state eigenvector, with eigenvalue
evolves into the second eigenvector ofU(1) rather than the
eigenvector corresponding to the ground state ofH (c).

Figure 7 shows the consequence of this behavior: wheD
is too large,c (h) follows the evolving eigenvector to th
wrong state whenf 51, giving Psoln→0 as j→`. As an-
other observation from this figure,Psoln( j ) exhibits oscilla-
tions ~although they are quite small forD51). With appro-
priate phase choices, these oscillations can be quite la
allowing Psoln to approach 1 with only a modest number
steps even whenPsoln approaches 0 for largerj. This obser-
vation is the basis of the heuristic method.

FIG. 7. Psoln vs j for D51 ~gray! and 4~black!. For comparison,
the dashed curve usesD51/Aj corresponding to the continuou
adiabatic limit.
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