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Adiabatic quantum computing for random satisfiability problems
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The discrete formulation of adiabatic quantum computing is compared with other search methods, classical
and quantum, for random satisfiabili{@AT) problems. With the number of steps growing only as the cube of
the number of variables, the adiabatic method gives solution probabilities close to 1 for problem sizes feasible
to evaluate via simulation on current computers. However, for these sizes the minimum energy gaps of most
instances are fairly large, so the good performance scaling seen for small problems may not reflect asymptotic
behavior where costs are dominated by tiny gaps. Moreover, the resulting search costs are much higher than for
other methods. Variants of the quantum algorithm that do not match the adiabatic limit give lower costs, on
average, and slower growth than the conventional GSAT heuristic method.
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[. INTRODUCTION [10-13. For 3-SAT, we generate instances near this transi-
tion by usingu=m/n=4.25, although, for thosa not di-
Quantum computerisl—4] can rapidly evaluate all search visible by 4, half the samples hawl=|4.25] and half hadn
states of nondeterministic polynomi®P) problemg5], but  larger by 1.
appear unlikely to give short worst-case solution tirhés The remainder of this paper describes several quantum
Of more practical interest is whether their average perforsearch algorithms in the context of satisfiability problems,
mance improves on conventional heuristics. and then compares their behavior.
Adiabatic quantum computing, using a slowly changing
time-dependent Hamiltonian, appears to give polynomial av- Il. ALGORITHMS
erage cost growth for some NP combinatorial search prob- i ) ) ) o
lems[7]. These observations, while encouraging, are limited (‘)I'he adiabatic techniqe] is based on two Hamiltonians
to small problems for which other methods, both convenH® andH(C). The first is selected to have a known ground
tional and quantum, can have even lower costs. Furthermorgtate, while the ground states léf® correspond to the solu-
although adiabatic methods apparently show exponentidions of the problem instance to be solved. The algorithm
cost scaling for set partitioning8] and finding the ground pontmuously evolveos the state of the quantum computer us-
state of spin glassd$9)], the typical performance of adiabatic "9 H(f)f(l_f)H( )_TLfH(C_) with f ranging from O to 1.
quantum computing for large NP search problems remains aender su¢able conditions, i.e., W|th a nonzero gap between
open question. Thus it is of interest to compare the adiabatitélevant eigenvalues ¢i(f), the adiabatic theorem guaran-
method with other techniques for NP problems having dees that, with sufficiently slow changes finthe evolution
well-studied class of hard instances. maps the ground state 6f? into a ground state dfi(®, so
This paper provides such a comparison Kesatisfiability =~ & %ubsequent measurement gives a solution. The choices of
(k-SAT), consisting of Boolean variables anh clauses. A H® and H® and howf varies as a function of time are
clause is a logicabr of k variables, each of which may be Somewhat arbitrary. o S
negated. A solution is an assignment, i.e., a value, true or !N matrix form, one Hamiltonian with minimal-cost as-
false, for each variable, satisfying all the clauses. An exSignments as ground states k§%=c(s) 5, s, for assign-
ample 2-SAT instance with three variables and two clauses igentsr ands, whereé, s is 1 if r=s and 0 otherwise. This
v1 OR (NOT v5,) andv, ORv3, which has four solutions, e.g., Hamiltonian introduces a phase factor in the amplitude of
vi=v,=false andvy=true. For a given instance, let the assignmens depending on its associated cogs).
costc(s) of an assignmerg be the number of clauses it does ~ ForH®, we introduce a non-negative weight for vari-

not satisfy. ablei, let 0=3]_,w;, and take
For k=3, k-SAT is NP-complete[5], i.e., among the , B
most difficult NP problems in the worst case. For average w2 if r=s,
behavior we use the randodkaSAT ensemble, in which the HQ={ —w;/2 if r ands differ only for variable i,
clauses are selected uniformly at random. That is, for each -
. . 0 otherwise .
clause, a set ok variables is selected randomly, and each 1)

selected variable is negated with probability 1/2. The algo-

rithms we consider are probabilistic, so cannot definitivelyThis Hamiltonian can be implemented with elementary quan-
determine that no solution exists. Thus we use soluble intum gates by use of the Walsh-Hadamard transfévnwith
stances: after random generation, we solve the instances witlementsW, ;=2 "2(—1)"'S (treating the states ands as

an exhaustive conventional method and only retain thosgectors of bits so their dot product counts the number of
with a solution. This ensemble has a high concentration ofariables assigned the value 1 in both stat&pecifically,
hard instances near a phase transition in search difficultid(¥ = WDWwhereD is a diagonal matrix with the value for
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stater given by the weighted sum of the bits{_,w;r; with TABLE I. Summary of quantum search algorithms using prob-
r; representing the value of thih bit of r. In particular, if all Iem_ structure. The heuristic_: methoo! requires finding appropriate
the weights equal 1), , just counts the number of bits equal choices for the phgse_functlons t_o give good _performan_ce a_nd for
to 1. ’ the number of stepisto increase with problem size The adiabatic
The adiabatic method is a continuous process. To compafetheds require sufficiently large values Bf=jA. A constant
with other algorithms, we use the algorithmically equivalentvalue for a pgrameter in this table means it is taken to be indepen-
discrete formulatiorf14,15 acting on the amplitude vector dent ofn andj.
initially in the ground state oH(©, i.e., y{¥=2""2 This

: ) . . Parameter
formulation consists of steps and a paramet&r Stephis a
matrix multiplication: Algorithm T A Phase function
¢(h):efir(f)H(O)Aefip(f)H(C)Al//(hfl) ) Adiabatic T—® A—0 p(0)=0=17(1)
Discrete adiabatic T—oo Constant  p(0)=0=7(1)
with the mixing phase function(f)=1—f, cost phase func- Heuristic Constant  A—0 Suitablep, T

tion p(f)=f, and takingi=1. After these steps, the prob-
ability of finding a solution isP =24 |2, with the sum

over all solutionss. An—0 so Eq.(2) no longer closely approximates the con-
~ As a simple choice for the evolution, we takdo vary  tinyous evolution and does not necessarily gig,— 1 as
linearly from O to 1. We exclude the steps with-0 and 1 ;.. | this case, a discrete version of the adiabatic theo-
since they have no effect oRs,,. Specifically, we takef o gescribed in the Appendix, ensures thag, is close to
=h/(j+1) for steph, ranging from 1 tg. 1if A is not too large.

The expected number of steps required to find a solution Second, thdeuristicmethod, studied previousfL6,17
IS C=]/Pson, providing a commonly used proxy for the hasA=1/j’and forms forr(f) :;md p(f) that do not r,anglje

computational cost of discrete methods, pending furthe(%etween 0 and 1. Instead, these phase functions must be se-

study of clock rates for the underlying gate operations an ted iately to o q ‘ Identifvin
the ability of compilers to eliminate redundant operations. AgeCled appropriately o give good performance. lden ifying

also observed with conventional heuristics, the cost distribuSUCh choices and characterizing their performance are major
tion for randomk-SAT is highly skewed, so a few instances SSués for this algorithm, although mean-field approxima-
dominate the mean cost. Instead, we use the median cost #§nS based on a few problem parameters, e.g., the mgo
indicate typical behavior. The time for the continuous formu-for k-SAT, can give reasonably good choices. This method
lation is T=jA, so the adiabatic limit ijA—o. By con-  does not correspond to the adiabatic linf, has a limit
trast, in the discrete formulatiody parametrizes the opera- less than 1 ag—co.
tors of Eq.(2) rather than determining the time required to  For all these techniques, the expected @@stj/Pqq, is
perform them. minimized for intermediate values ¢frather than taking
Equation (2) follows the continuous evolutions("*1) —o as used in the limits listed in Table I. Identifying the
~e MDAy when A||H||—0, which holds whenA  parameters and phase functign) and =(f) giving mini-
<1/n [14,15. This last condition uses the fact that the normmal cost for a given problem instance depends on details of
[[H]| is the largest eigenvalue &f, which isO(n) since we the search space structure unlikely to be available prior to
considerk-SAT problems withm=n. As a specific choice, solving that instance. However, as described below, taking
we useA = 1/\/j. Other scaling choiced =1/j* with 0<a  to grow only as a fairly small power of provides relatively

<1 give qualitatively similar behaviors to those reportedmodest costs, on average, for problem sizes feasible to simu-
here while maintaining correspondence with the continuouggte.
evolution for sufficiently large.

The unweighted ) uses equal weightsy,=1 so @
=n. Alternatively,w; can be the number of times variable
appears in a claugd], as also used by some conventional
heuristics to adjust the importance of changes in each vari- For the adiabatic method, Fig. 1 shows the medbay),
able. This choice givess=mk. By matchingH® to the  for various growth rates of the number of stePgy,— 1 as
problem instance, one might expect such weights to improvg increases. At least fon<20, P,~1 whenj=n3 so
performance. Instead, for random 3-SAT these weights givenedian costs ar®(n®), a substantial improvement over all
higher costs C, requiring aboutn times as many steps to known classical methods if it continues for largerHow-
achieve the samPg, as the unweighted choice. If instead ever, for smaller powers of, P, values decrease, but this
these weights are normalized so their average value is 1, thig only evident forj =n? for n>20. This raises the possibil-
performance is about the same as in the unweighted case, hityt of such a decline, at somewhat largerfor largerj as
still slightly worse. In light of these observations, we use thewell. Provided such a decline only leadsRg,, decreasing
unweightedH(? in this paper. as a power of, corresponding to a straight line on the log-

We compare the adiabatic limit with two other methods,log plot of Fig. 1, median costs would still only grow as a
summarized in Table I. First, for théiscrete adiabaticcase  power of n. The remainder of this section describes the al-
we takeA independent oh andj, violating the condition gorithm behaviors in more detail.

IIl. BEHAVIOR
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FIG. 3. Lowest two eigenvalues Msfor an instance withn
0.01 =20, m=85, one solution, and a particularly small minimum gap.
The gray curve shows the expected c@st in the ground state,
8 12 18 20 24

equal tom/2¢=10.625 atf =0. Note the abrupt drop at the location
of the minimum gap. The ground state fér=1 is the solution
FIG. 1. Log-log plot of mediaP,, for the adiabatic method vs whose cost is zero, s@)—0 asf—1.

n with the number of stepisequal ton, the integer neares®?, n?,
andr\1/3_ (solid curves, from bottom to top, respectivelyVe useA
=1/j . For comparison, the dashed curve sh®yg, for the heu- - . . .
ristic method using at most steps. The error bars show the 95% elgenstates(a)ofHZ(f) IS th(i)'r e?(pected Cc.)St’ L.e{c),
confidence intervalgl8] [p. 124 of the medians estimated from the :ESC(S)M’S ,(f)| where ¢ (_f) '_S theath eigenvector Of_
random sample of instances. The same instances were solved wi (f). In particular, fora=1 this gives the expected cost in

each method. We use 1000 instances for eaap to 20, and 500 the ground _state, which we denote simply(a$. The EX-
for largern, except only 100 foj =n? for n=16. pected cost in the ground state drops rapidly at the minimum

gap location, in contrast to the smooth behavior for instances
with larger gapqas, for example, in Fig.)2 We thus see a
A. Energy gap difference in behavior of the ground state for instances with
Asymptotically, the adiabatic method’s cost is dominategSmall gaps, presumably.representatlve Qf typ|cal behavior for
by the growth of 162 where G=min,g(f) andg(f) is the larger n, and the behavior of more typical instances for
. . ; ~20.
energy gap irH(f), i.e., the difference between the ground , . . -
state eigenvalue and the smallest higher eigenvalue corre- With the adiabatic method and sufficiently Iarge,(ht)he
sponding to a nonsolution. Evaluation using sparse matrig@ctual state of the quantum computer after stepy,
techniqueg 19] for n=20 gives the media in the range ~Cl0Sely approximates the ground state eigenvegtdr, up
0.3-0.5, as illustrated for one instance in Fig. 2, and mord0 an irrelevant overall phase. Thus the computation will also
significantly, it does not decrease over this ranga.othis ~ SNoW the jump in expected cost. _ _
minimum is not much smaller than other values giff). Detalled quantitative comparison of the typical behaviors
Hence, unlike for largen, the cost is not dominated by the due to small minimum gaps and conventional heuristics re-

minimum gap size and so the values of Fig. 1 may not reﬂec_gui_res Iarger_ problem si_zes. Nevertheless, we can gain some
asymptotic scaling. insight from instances with small gaps for= 20, which tend

to have high costs for both the quantum methods and con-

ventional heuristics, such as GSMO], even when restrict-

gap ing comparison to problems with the same numbers of vari-

1 / ables and solutions. For the instance shown in Fig. 3, GSAT

trials readily reach states with one or two conflicts, but have

a relatively low chance of finding the solution. This behavior,
typical of conventional heuristick21], corresponds to the
abrupt drop in{c) of Fig. 3. Thus finding assignments with
costs below this value dominates the running time of both
the quantum and conventional methods. These observations
suggest that small energy gaps characterize hard problems
more generally than just for the adiabatic method, which

£ may provide useful insights into the nature of search along
with quantities such as the backbofe., variables with the

FIG. 2. Difference between eigenvalues of the lowest five ex-Same values in all solutiorfd3]).

cited states and the ground state fvdor an instance withn Simple problems or algorithms ignoring problem structure

=20, m=85, and five solutions. The inset shows the actual eigenallow determining the gap for large [14,15,23. This is

values, with the gray curve showing the expected ¢ostin the  difficult for random SAT. For instance, although random

ground state. k-SAT corresponds to random costs 6t and the extreme

soln
(=]
=

By contrast, Fig. 3 illustrates the behavior of an instance
with a small minimum gap. One characterization of the

w

energy
[

022314-3



TAD HOGG PHYSICAL REVIEW A 67, 022314 (2003

100

7 4

» 50

1000
adiabatic

500

a a + heuristic
Va n
8 unstructured ., 8 1
d
j ‘ 1 cubic
100 4 30 .
e O 1
m Ggsat ©
sol - @ 9
s @ ‘ ’ o
o *? 2
@ % heuristic 20 ’ S
Q L7
(b/
12 14 16 18 _ 20 22 24 26 13
n 12 14 16 18 20 22 24 26

n
FIG. 4. Logarithmic plot of median search cost nsfor the
heuristic (diamond and unstructuredbox) searches, GSAT with (circle), the heuristic methoddiamond, both of which are also

; : A . 2
re;tarts aftem steps(circle) and the adlabatlc.search leh:.n _shown in Fig. 4, and two versions of the discrete adiabatic method:
(triangle). The values are based on the same instances as in Fig. X

The i il fi h h . '=1.2 with linear phase functionigriangle and the cubic polyno-
€ lines are exponential fits to the unstructufgashediand adia- mial variation withf (gray box described in the text. The lines are
batic (solid) methods.

exponential fits to GSATdashed and the two discrete adiabatic
gquantum methods. The figure uses the same instances as Fig. 4.
eigenvalues of random matrices can be determined when el-

ements are chosen independenf§,24], the costs of nearby
states for SAT instances are highly correlated since the
likely conflict with many of the same clauses. Alternatively,
upper [25] and lower[26] bounds for eigenvalues can be
based on classes of trial vectors. For instance, vectors Who?’r?stances, we simply takg=n? to illustrate the adiabatic
components for statedepend only orc(s) give fairly close method

upper bounds for the ground state of random 3-SAT, on av- The figure also shows Grover's unstructured sedg

erage, as well as a mean-field approximation for the heuriStiﬁNithout prior knowledge of the number of solutiofi2s])

method[16]. However, simple lower bounds for higher en- and the conventional heuristic GSAZ0]. The unstructured
ergy states are below the upper bound for the ground sta

. : Gearch cost grows &3 The exponential fit to the adia-
for some values of, and so do not give useful estimates for batic method i=%1®. This fit gives a residual about one-half
G. Furthermore, typical soluble instances have exponentiall%lS large as that frbm a power-law fit. The arowth rate is
many solutiongalthough still an exponentially small fraction about%he same as that oprSAT ' 9
of all states. Thus a full analys_ls of performa_nce based on Figure 4 shows that the heuriétic search, using at most
energy values must also consider the behavior of the many, '

eigenvalues corresponding to solutions, which can be Coméheor\)/iﬁ gilr:/elfi Iov; C?ﬁ; ggﬁsttc;r;tls ;iglﬁlnh'?cgrvﬂgeji&f_’g‘te
plicated, as illustrated in Fig. 2. 9- % 9

adiabatic method also gives lar§g,, values forj~n. Thus
bothA =1/} andA independent of make better use of quan-
tum coherence in the discrete formulation than the continu-
Even if n=20 does not identify asymptotic behavior, this ous adiabatic limit(with 1/j<A<1/n) for hard random
range of feasible simulations allows comparing algorithm3-SAT. These behaviors are shown in Fig. 5.
costs. Such comparisons are particularly relevant for quan- Because these quantum methods and GSAT consist of a
tum computer implementations with relatively few qubits series of independent trials, they can be combined with am-
and limited coherence times which are thus limited to smalplitude amplification to give an additional quadratic perfor-
problems and few steps. Figure 4 compares the median vatance improvemer29]. However, this is only a significant
ues of the expected search coStd-or the adiabatic method, benefit whenPg, is fairly small, which is not the case for
using j =n® gives large costs, far higher than those of con-the heuristic and GSAT methods for these problem sizes.
ventional heuristics and other quantum methods. Using just For the adiabatic method, takingf) and 7(f) in Eq. (2)
enough steps to achieve moderate valuegf, reduces to vary according ta(f)? reduces costgl5,22. This con-
cost[7], e.g.,j =n?. Alternatively, for eachn, testing various centrates steps at values bfclose to the minimum gap.
j on a small sample of instances indicates the number dfVhile g(f) is costly to evaluate for SAT instances, using
steps required to achieve a fixed valueRyf,,, e.g., 1/8. In  average values aj(f) based on a sample of instances gives
our case, the latter approach has median costs about 208vme benefit. For example, fpe=n?, P, increases from

FIG. 5. Logarithmic plot of median search costv$or GSAT

lower than the former, but with the same cost growth rate.
Because this improvement is minor compared to the differ-
ences with other algorithms shown in the figure, and to avoid
the additional variability due to estimatifdgrom a sample of

B. Search cost
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around 0.4 shown in Fig. 1 to a range of 0.5—-0.6 but thigdiscrete version of the adiabatic theorem ensures good per-

does not appear to reduce the cost’s growth rate. formance of the algorithm provided the continuous change in
Similar improvement occurs with constahit Optimizing  the eigenvector takes the initial ground state into the final

7 and p separately for each step on a sample of instanceene, rather than into some other eigenvector.

gives values close to a cubic polynomial inRestricting

attention to such polynomials, for a set of 186-12 in- 1. The discrete adiabatic limit

stances the best performance was witk 1.312 75, p(f)

=p(0), an T(f)_13_ p(f), where p(f)=1.92708 . U(f) defined for G<f<1 and vectors yp(""1)

—2.66179°+1.734 7%°. This cubic is similar to the func- —U(H) ™ with f=hj for h= o —~i6,(f)

. ; . j forh=0,...,j—1. Lete and

tional form optimizing the adiabatic method for unstructured. th ) ]

search[15,27. Figure 5 shows the resulting cost reduction. &(f) be ther™ eigenvalue andnormalized eigenvector of

Hence, tuning the algorithm to the problem ensembile is ber¥ (). R

eficial as also suggested by a mean-field analysis of the heu- We start with (®) equal to the eigenvectoe;(0) of

ristic search 16]. U(0), which we assume to be nondegenerate for simplicity.
The simulations also show that these quantum algorithm®rovided the difference between eigenvalues is bounded

have a large performance variance among instances witaway from zero, for sufficiently largg ) will be close to

givenn andm, and no single choice fqgr andr is best for all an eigenvector ofJ(1). To seethis let e=1/j and expand

problem instances. Thus portfolig80] combining a variety M =3 ¢ (f)A,(f)e,(f) in the eigenbasis of/(f) where
of such choices can give further improvements.

h—1
IV. CONCLUSION Ar(h/J)EeXP< —igo 9r(k/j))-

In summary, for random SAT, the adiabatic method im- . . . .
; First order perturbation theory gives the change inche
proves on unstructured search and provides a general tech-

nigue to exploit readily computed properties of hard searcr\\/alues during one step to [@(e). After j steps, it might

problems through the choice of Hamiltonians. However2PPear that these changes could build u{@;j) =O(1).

. I . . However, this is not the case due to the rapid variation in
nonadiabatic-limit algorithms require fewer steps, compa-

rable to GSAT, and appear to have slower cost growth. As ghases when is large. Specifically, the changes in coeffi-
caveat, small energy gaps appear to be associated with iﬁlems forr#1 are
stances difficult to solve with both quantum and classical
methods. Thus the simulation results presented here, based d—;zPlyr(f)d)r(f), (A1)
on fairly small problem sizes for which most instances have
fairly large energy gaps, may not reveal the asymptotic ScalwhereP (h/j)=e 19s/(
ing of the typical search cost for hard random SAT problems. St '
Evaluating the behavior of these algorithms and, more gen- 1
erally, identifying better ways to use state costs in quantum O, ()=~ E [6s(K/j)—6,(KIj)],
algorithms remain open questions. ] k=0

Quantum computers with only a moderate number of qu-
bits could test algorithms beyond the range of :simulators‘,”md
and hence provide useful insights even if the problem sizes (r|du/df|1)
are still readily solved by conventional heuristics. Such stud- P, =
ies could help address the question of whether, with suitable
tuning based on readily evaluated average properties of
search states, the ability to operate on the entire search space
allows quantum computers to effectively exploit weak corre- §
lations among state costs in ways classical machines cannot. Cr(f):f e 191N (k)dk.

0

Consider a smoothly changing sequence of unitary matri-

e i _a i1

Sincec,(0)=0, Eq.(Al) gives

ACKNOWLEDGMENTS As j increases, the integrand oscillates increasingly rapidly
o the integral goes to zero gs—~ by applying the
iemann-Lebesgue lemma, sind®, ,/df=6,— 6, is non-

zero and|®,(f)| is bounded for alf andr#1, by the as-

sumption of no level crossing. Heneg(f)—0 so ¢ ap-

APPENDIX: DISCRETE ADIABATIC BEHAVIOR proacheél(l), up to anoverall phase factor, gs— .

| have benefitted from discussions with Rob Schreiber an
Wim van Dam.

When A is held constant, the steps of E) do not
approximate the continuous evolution inducedHbf), and
hencey" does not closely follow the ground state td¢f) An important caveat in applying this result to quantum
when T—o. Nevertheless,{" does closely follow an algorithms is that, whilg— o suffices to ensure/™ closely
eigenstate of the unitary operator involved in Eg). This  follows the evolution of an eigenvector tf(f), this evolu-

2. An example
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£ FIG. 7. P¢y,vsj for A=1 (gray) and 4(black). For comparison,

FIG. 6. Energy value$, () corresponding to the two eigenval- the dashed curve uses= 11j corresponding to the continuous
ues of U(f) vs f for A=1 (gray and 4 (black. The values are adiabatic limit.
defined only up to a multiple of 2, and we take- m< <. The
ground states ofH(® and H(® correspond to9(0)=0 and 6(1)
=0, respectively. The values fak=1 are close to those of the
combined HamiltonianH (f)=(1—f)H©+fH(®. However, the
A=4 values do not remain close to thoseHbff)A. 1( 1 _1) © (0 0)

0O=Z
H 2 0 2

lems withjen, this threshold appears to be somewhat larger
than 1.
To illustrate these remarks consider the 1 example

-1 1
tion may not lead to the desired eigenvectorlfl), i.e.,

corresponding to solutions to the search problem. This isoU(f)=e " @1-N3g-Hf Figyre 6 shows the behav-
because the eigenvaluesdff) lie on the unit circle in the ior of the two eigenvalues dfi (f) for two values ofA. For
complex plane and can “wrap around” a8 increases. A=4 the initial ground state eigenvector, with eigenvalue 1,
Hence, in addition to ensuring that the eigenvalue gap doesavolves into the second eigenvectorldfl) rather than the

not get too small, good performance also requires selectingigenvector corresponding to the ground statéi 6.
appropriateA. Alternatively, one could start from a different Figure 7 shows the consequence of this behavior: when
eigenvector ofu(0), which would be useful if one could is too large, ™ follows the evolving eigenvector to the
determine which eigenvector maps to the solutions. wrong state wherf=1, giving Pgo,—0 asj—o. As an-

One guarantee of avoiding this problem is thaheof the  other observation from this figur®.,(j) exhibits oscilla-
eigenvalues ofU(f) wrap around the unit circle, i.e., tions (although they are quite small fdr=1). With appro-
A]|H||—0, corresponding to the continuous adiabatic limit. priate phase choices, these oscillations can be quite large,
Simulations show that performance remains good for modallowing P, to approach 1 with only a modest number of
erate values of even if A does not go to zero, providellis  steps even wheR,,, approaches 0 for larggr This obser-
below some threshold value. For hard random 3-SAT probvation is the basis of the heuristic method.
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