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"The extraordinary significance of Lie's work for the gen- 
eral development of geometry can not be overstated; I 
am convinced that in years to come it will grow still 
greater" - - s o  wrote Felix Klein [13] in his nomination of 
the results of Sophus Lie on the group-theoretic founda- 
tions of geometry to receive the N. I. Lobachevskii prize. 
This prize was established by the Physical-Mathematical 
Society of the Imperial University of Kazan in 1895 and 
was to recognize works on geometry, especially non- 
Euclidean geometry, chosen by leading specialists. The 
first three prizes awarded were to the following: 

1897: S. Lie 
1900: W. Killing 
1904: D. Hilbert 

(Nominator: E Klein) 
(Nominator: E Engel) 
(Nominator: H. Poincar6). 

There can be no doubt that the work of Lie in dif- 
ferential equations merits equally high evaluation. One 
of Lie's striking achievements in this domain was the 
discovery that the majority of the known methods of in- 
tegration, which until then had seemed artificial and not 
intrinsically related to one another, could be introduced 

all together by means of group theory. Further, Lie gave 
a classification of ordinary differential equations of arbi- 
trary order in terms of the admitted group, thereby iden- 
tifying the full set of equations which could be integrated 
or reduced to lower-order equations by group-theoretic 
considerations. But these and a rich store of other results 
of his did not lend themselves to popular expositions 
and remained for a long time the special preserve of a 
few. Today we find that this is the case with methods of 
solution of the problems of mathematical physics: Many 
of them have a group-theoretic nature yet are taught as 
though they were the result of a lucky guess. 

It was my good fortune to get interested in application 
of groups to differential equations at the very beginning 
of my university work, and to write my first paper un- 
der the direction of Professor L. V. Ovsiannikov, who has 
done so much to awaken interest in this discipline and 
establish it as a contemporary scientific field. In my later 
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work I saw over and over how effective a tool Lie the- 
ory is for solving complicated problems. It significantly 
widens and sharpens the intuitive notion of symmetry, 
supplies concrete methods to apply it, guides one to the 
proper formulation of problems, and often discloses pos- 
sible approaches to solving them. 

This article presents my view of the role of Lie group 
theory in mathematical physics, drawing on parts of 
some of my lectures over the years at Moscow University 
and Moscow Institute of Physics and Technology. 

H i s  L i f e  S t o r y  

Marius Sophus Lie was born 17 December 1842 in the 
town of Nordfjordeid, Norway, the sixth and youngest 
child of the Lutheran pastor Johann Herman Lie. He 
studied in Christiania (now Oslo) from 1857, first in gym- 
nasium and then (1859-1865) at the University. Among 
the events of Lie's life which set his creative course, these 
stand out: his independent study in 1868 of the geomet- 
ric works of Chasles, Poncelet, and Plficker; his travels 
in Germany and France in 1869-1870; his contacts there 
with Felix Klein, Chasles, Jordan, and Darboux; and his 
close friendship with Klein, leading to a long collabora- 
tion. Lie worked at the University of Christiania from 
1872 to 1886, then from 1886 to 1898 at Leipzig. He died 
18 February 1899 in Christiania. 

The life and intellectual development and works of the 
greatest Norwegian mathematician are described in rem- 
iniscences of his colleagues and later biographies (see, for 
example, [7, 22, 27, 29], and references therein). I call spe- 
cial attention to the painstaking introduction of F. Engel 
to Lie's Collected Works [21]. These give detailed insight 
into the essence of Lie's ideas and a picture of him as a 
person. 

S y m m e t r y  o f  D i f f e r e n t i a l  E q u a t i o n s  

The notion of differential equations really has two com- 
ponents. For an ordinary first-order differential equa- 
tion, for example, it is necessary 

1. to specify a surface F(x, y, y') = 0 in the space of the 
three variables x, y, y~; we will call this surface the 
skeleton of the differential equation; 

2. to define the class of solutions; for example, a smooth 
solution is a continuously differentiable function 
~(x) such that the curve 

y = y, _ o (x) 

Ox 
lies on the surface, i.e., 

F Oz ] = 0  

identically in x; going over to discontinuous or 
generalized solutions (keeping the same skeleton) 
changes the situation altogether. 

A decisive move in integrating differential equations 
is simplifying the skeleton by means of a suitable change 
of variables. For this purpose, one uses the symmetry 
group of the differential equation (or its admissible group), 

Figure 1. The skeleton of the Riccati equation yS+ 
y2- 2/z ~ = 0 is a surface invariant under the group of in- 
homogeneous  deformations ~ = ze ~, ~ = ye -~, ~ = y~e -~'. 

r 

L~ 

Figure 2. The skeleton of the equation u s + u 2 - u - 2 = 0, 
obtained from the Riccati equation ys + i/2_ 2/x2 = 0 by the 
change of variables t ~- In x, u = ~ .  
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Table 1. Lie's group classification of second-order equations. 

Group Basis of the Lie Algebra Equation 

Cl Xl  = o~ yt! = f (y ,  yt) 

x~ = ~  x~ = ~  V ' = f ( V )  
~ r s(r G2 X1 = ~ ,  )(2 = X y ~ ----- 

G3 

G8 

x , = s 1 6 3  x 2 : x s 1 6 3  

x ,=s  x , : x s 1 6 3  

x , : s  X.:xs x .=ys  
x 2 o --x('VO X 8 = x Y o 2 7 + y 2 o ~  X6 = y o-~ , X7 = ~7 -t- y ~ , 

y" +2  ( V+cV3/2+V2~ = 0 
\ = - y  / 
y" = Cy -3 

ytt : Ce-y '  

y" = Cy '(k-2)(k-1), k # 0, �89 

y/" ~ 0 

defined as the group  of transformations of the (x, y)- 
plane whose extensions to the derivatives y ' , . . ,  leave 
the equation's skeleton invariant. 

EXAMPLE. The Riccati equation y' + y2 _ 2 i x  2 = 0 ad- 
mits the group of transformations ~ = xe  a, ~ = ye -a,  for 
the equation's skeleton (Fig. 1) is invariant  unde r  the in- 
homogeneous  stretching �9 = xe a, ~ = ye -a ,  ~' = y' e -2a 
which is obtained by  extending the transformations of 
the group to the first derivative y'. The substitution 
t = In x, u = xy  leads to the differential equat ion 
u' + u 2 - u - 2 = 0. Thus, it straightens out  the skeleton 
of the original Riccati equation, taking it to a parabolic 
cylinder (Fig. 2); concomitantly, the stretchings are re- 
placed by a group of translations t = t + a, ~ = u, and 
E l ~ .U I" 

G r o u p  C l a s s i f i c a t i o n  

In a short communication to the Scientific Society of 
G6ttingen (3 December 1874), I gave, among other things, a 
listing of all continuous transformation groups in two vari- 
ables x, y, and specially emphasized that this might be made 
the basis of a classification and rational integration theory of 
all differential equations f (x ,  y, y', . . . .  y(m)) = 0 admitting 
a continuous group of transformations. The great program 
sketched there I have subsequently carried out in detail. 
(S. Lie [16], p. 187) 

This and the next  two sections give some of the main 
results of implement ing the program, as it applies to or- 
dinary second-order  differential equations. The restric- 
tion to second order  is motivated not by  anything essen- 
tial about  the me thod  bu t  by a desire to concentrate on 
concrete cases and give brief but  definitive statements. 

For second-order equations the group classification 
[16] looks especially simple. The second-order  classifica- 
tion result is stated briefly and explicitly in [18], w and 
appears here as Table 1. Remember  that Lie carried out  
his classification in the complex domain,  using complex 
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substitutions and complex bases of algebras as needed.  
For example,  the equation 

y"  = C(1 + yt2)3/2eq arctan y '  C, q = const, 

admits a 3-dimensional Lie algebra with basis 

0 0 0 0 
X l  = Ox'  X2 = ~y ,  X3 = ( q x + Y ) ~ x + ( q y - X ) ~ y .  

No real substitution takes this to any of the equations of 
Table 1. But it is t ransformed to the equation 

k - 2  k _ q + l  
y"  = C ~ .  k'-~- l ' q - 1 

by the complex substitution �9 = �89 (y - ix),  y = �89 (y + ix) .  

A l g o r i t h m  o f  I n t e g r a t i o n  

I noticed that the majority of ordinary differential equations 
which were integrable by the old methods were left invari- 
ant under certain transformations, and that these integra- 
tion methods consisted in using that property. Once I had 
thus represented many old integration methods from a com- 
mon viewpoint, I set myself the natural problem: to develop 
a general theory of integration for all ordinary differential 
equations admitting finite or infinitesimal transformations. 
(S. Lie [17], p. iv) 

If a second-order  equat ion admits  a Lie algebra of di- 
mensionali ty r _> 2, then it can be integrated by a group-  
theoretic quadrature  method.  This can be done in various 
ways, one of which is given in Table 3. It is based on the 
simple fact that in the complex case any Lie algebra of 
dimensional i ty r > 2 has a dist inguished 2-dimensional 
subalgebra. But the structure of a 2-dimensional Lie al- 
gebra with basis 

~ x  0 0 ,  
X ~ = ~  ( , y ) ~ x + r l ~ ( x , y ) - ~ y  a = l , 2 ,  



Table 2. Canonical form of 2-dimensional Lie algebras and invariant second-order equations. 

Basis of L2 in Canonical 
Type L2 structure Variables Equation 

I [Xa,X2]=O, X a V X 2 # O  X, = o ,  X2-- o V't=f (v ' )  

II [X1, X2] 7--- O, X1 V X 2  = 0 X l  7-- 0"~ ' X2 ---- x O_Ou Y" = f ( x ) 

III [X1,X2]=X1, X1VX2#O Xa=o-~u, X 2 = x ~  y , ,=�89  
_ 0 y -  IV [Xl:  X2] = X l ,  X l  V X2 = 0 X l  = ~y, X2 --  y ~yy = f ( x ) y  t 

can be described simply in terms of the commutator  

[ X l ,  X2] = X l X 2  - -  X 2 X l  

and the pseudo-scalar product 

X 1 V X 2 = ~1T]2 --  771~2. 

This description is given in Table 2; for details, see [4, 6, 
11, 12, 19, 23, 32]. 

EXAMPLE. 
equation 

Let us apply the group algorithm to the 

y . _  y' 1 
y2 xy " 

First step: finding the admissible algebra. This is done 
by use of the so-called determining equation. It turns out, 
as a consequence of standard and straightforward com- 
putations, that our  equation admits the Lie algebra L2 
with basis 

X l  = X 2 0 CO 

Or' 

0 y O  
X 2 = - - X  

Ox 2 0 y "  

From Table 3 we see that we can pass at once to the third 
step. 

Third step: finding the type of the algebra L2. We have 

[Xl, )(2] -- Xl, Xl V )(2 ---- lx2y r O. 

Consequently, the algebra L2 belongs to type III of 
Table 2. 

Fourth step: finding the integrating change of variables. 
From the equations 

x i ( t )  = 0, = 1, 

we find the substitution 

y 1 
t = --, u = ----, 

X X 

taking the 1-parameter group generated by the operator 
X1 (group of projective transformations) to the group of 
translations in u. After this substitution, the basis of Z 2 
takes the form 

0 t O  0 
X1 = -~U' X2 - 2 0 t  + u 0---~ 

and coincides (up to the inessential coefficient �89 in X2) 
with the canonical basis for type III in Table 2. Here we 
exclude solutions of the form y = Cz. This substitution 
has put  the equation into the integrable form 

u" 1 
u,-- ~ + ~ = O. 

Solving it gives 

t 2 t 1 
u =  - ~ - + C  and u =  ~-~-i + ~212 lnlC, t - l l + C 2 .  

Table 3. Algorithm for integrating a second-order equation using a 2-dimensional Lie algebra. 

Step Operation Result 

Compute the admitted Lie algebra Lr. 
If r = 2, go to the next step; if r > 2, then distinguish any 

2-dimensional subalgebra L2 of Dr. (If r = 1, the order of the equation 
may be lowered; if r = 0, the group method is not applicable.) 

Determine the type of the algebra L2 obtained by Table 2. For this 
one computes the commutator [X1, X2] of X1 and X2 and their pseudo- 
scalar product X1 V X2; if [X1, X2] is neither 0 nor X1, then choose 
a new basis X~, X~, such that [X~, X~] = X~. 

Bring the basis of L2 into agreement with Table 2 by going over to 
canonical variables x, V. Rewrite the equation in canonical variables 
and integrate it. 

Rewrite the solution in terms of the original variables. 

A basis of Lr: X1, . . . ,  Xr 
A basis of L2: Xl, X2 

Reduction of structure to a 
canonical form from Table 2 

Finding the integrating 
change of variables 

Solution of the equation 
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Fifth step: finding the solution in the given variables. 
N o w  replace t , u  in the foregoing formulas by their 
expressions, and recall the excluded special solutions 
y = Cx. We obtain the general solution of the given 
second-order differential equation in the form 

y = Cx, y = +V/2x + C x  2, 

Cly + C2x + x ln Cl Y - 1  + C 2 = 0 .  
x 

Linearization 

In the s tudy of ordinary differential equations it is use- 
ful to have simple tests for linearizability. Summing up  
Lie's results on this question, we  can state the following 
theorem ([16], Part III, w see also [11, 12]). 

THEOREM 1. The following are equivalent: 

(i) the second-order ordinary differential equation 

v" = f (x ,  y, v') (1) 

can be linearized by change of variables; 
(ii) Equation (1) has the form (2): 

y" +F3(x, y)y'3+F2(x, y)y'2+F1 (x, y)y'  +F(x ,  y) = 0 

with coefficients F3, F2, F1, F satisfying the compatibil- 
ity conditions of the auxiliary system 

Oz OF 
OX - -  Z 2 -  F w -  F l z  + - ~ y  q- F F 2 ,  

Oz 1 OF1 2 OF1 
Oy - zw  + f F3 - -~ 0---~ + ~ O--y' 

Ow 1 OF1 2 OF1 
- zw  - FF3 - -  + 

Ox 3 0 y  3 0 x '  

(3) 

OF3 Ow _ w2 + F2w + F3z + __~z _ F~ Fa; 
Oy 

(iii) Equation (1) admits an 8-dimensional Lie algebra; 
(iv) Equation (1) admits a 2-dimensional Lie algebra with 

basis X1, X2 such that 

X1 V X2 = 0. (4) 

EXAMPLE 1. The equation y" = e -y'  from Table I is not 
linearizable, for it does  not have the form (2) in (ii). 

EXAMPLE 2. Suppose  in Eq. (2) that F1 = F2 = F3 = 0. 
Then Equations (3) take the form 

Zx ": Z 2 - F w  + F y ,  Zy = - - Z W  

Wx = ZW~ Wy = - - W  2, 
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and the compatibility condition zxv = zvx gives F w = 0. 
Consequently, the equation y" + F(x ,  y) = 0 having an 
F(x,  y) not already linear in y cannot be linearized. 

EXAMPLE 3. Let us see when  the equation y" = f(y~) in 
Table 1 can be linearized. According to (ii) of Theorem 1, 
it is required for linearizability that f (y ' )  be a polynomial  
of at most  third degree, i.e., that the equation be of the 
form 

y" + A3y '3 + A2y 12 + Aly '  + A0 = 0 (5) 

with constant coefficients A~. When one writes out  the 
auxiliary system (3) for Eq. (5), one easily sees it is com- 
patible. Consequently, Eq. (5) is linearizable for arbitrary 
coefficients Ai. 

EXAMPLE 4. N o w  consider this equation from Table 1: 

v,, = ! y(y,). 
x 

Linearizability requires it to be of the form (2), i.e., 

y .  + _1 (A3y,3 + A2y,2 + Aly' + Ao) = 0 
x 

(6) 

with constant coefficients Ai. The compatibility condi- 
tions of its auxiliary system (3) come out to 

A2(2 - A1) + 9AoA3 = 0, 3A3(1 + A1) - A 2 = 0. 

Setting A3 = - a ,  A2 = -b ,  this gives 

A , = - ( l + 3 ~  ) ,  
b b 3 ) 

A o = -  ~aa+2--~a 2 �9 

Hence, Eq. (6) can be linearized if and only if it is of the 
form 

[ y,, 1 ay,3 q_byt2 + 1 +  _~ a y, q_ _~a + 2_~a2 " (7 / 
x 

It is convenient  to find the linearizing substitution from 
assertion (iv). Let us do this for Eq. (7) in the case a -- 1, 
b = 0: 

vl, = 1 (y, + v,3). (8) 
x 

This equation admits the algebra L2 with basis 

1 0  y O  
Xl  - x Ox, X E -  x Ox, (9) 

satisfying condition (4). This algebra L2 belongs to type 
II of Table 2, and the linearizing substitution is obtained 
by going over to the canonical variables �9 = y, ~ = x2/2, 
relative to which Eq. (9) take the form X1 = 0/0-~, X2 = 
~(0/0-~). Aside from the particular solutions p = const, 
this transforms Eq. (8) into ~" + 1 = 0. 

Invariant Solutions 

Special types of exact solutions, now widely known as 
invariant solutions, have long been used to advantage on 



concrete problems. They have grown familiar in math- 
ematics, mechanics, and physics even before there was 
any group theory, acquiring the status of folklore. Lie [20] 
elucidated their group-theoretical meaning and studied 
the possibility of integrating partial differential equa- 
tions when the group is sufficiently rich (see [20], Chaps. 
III and IV). 

Subsequently, group theory made it possible to clarify, 
sharpen, and extend many intuitive ideas, and incor- 
porate the method of invariant solutions as an essen- 
tial component of modern group analysis. It was exactly 
by the notion of invariant solution that group theory 
was able to transfer its area of application from ordinary 
differential equations to the problems of mathematical 
physics, especially thanks to the works [1, 5, 24, 26, 31]. 

EXAMPLE. Consider the equation 

y- = y-3 

from Table 1, admitting a 3-parameter group. Its solution, 

y = V/1 + X 2, 

is invariant under a 1-parameter group, whose generator 
is 

," 0 0 
X 1 - ~ - X  3 = (1 q - X  2) ~XX + X y ~ y .  

Subjecting this invariant solution to the transformations 
of the 3-parameter admissible group gives 

y = [C1 x2 q- 2 ~  - 1 x + C2] 1/2, 

which is the general solution. This means every solution 
of this equation is invariant under some 1-parameter 
subgroup of the admissible 3-parameter group (details 
in [12]). 

The Invariance Principle in the Problems of 
Mathematical Physics 

When we pass from ordinary to partial differential equa- 
tions, it becomes impossible (with rare exceptions) and 
anyway not particularly useful to write out general 
solutions. But mathematical physics in any case seeks 
only those solutions that satisfy given side condit ions--  
initial conditions, boundary conditions, etc. In solving 
many problems of mathematical physics it is advanta- 
geous to use the following semiempirical rule, which is 
rigorously based only in certain cases (see [5, w 25, w 
28]). 

THE INVARIANCE PRINCIPLE. If a boundary-value 
problem is invariant under a group, then we should seek a 
solution among functions invariant under this group. 

Invariance of a boundary-value problem means in- 
variance of the differential equation, also of the manifold 
where the data are given, and also of the data themselves. 

When invariance of the boundary conditions is lost 
(as often happens), the principle stated can be put to 
use in other ways. This is what happens, for exam- 
ple, in the method of the majorant in the proof of the 
Cauchy-Kovalevskaya theorem (on the method of the 
invariant majorant, see [9]). Another example is the Rie- 
mann method, which reduces the Cauchy problem with 
arbitrary (hence not invariant) data to the special Gour- 
sat problem, which is invariant and can be solved by the 
invariance principle. Here, we only indicate briefly the 
essence of this approach, referring for details to [12]. 

The Group Approach to Riemann's Method 

This section is an attempt at synthesis, at combining 
Riemann's method [30] of integrating linear hyperbolic 
second-order equations with Lie's group classification 
[16] of such equations. Also important here is the invari- 
ant formulation (in terms of Laplace invariants) of Lie's 
results, as given by Ovsiannikov [25]. 

Riemann's method reduces the problem of integrating 
the equation 

L[u] - U~y + a(x, y)ux + b(x, y)uy + c(x, y)u 

= f ( x , y )  (10) 

to the construction of an auxiliary function v satisfying 
the adjoint equation with given conditions on the char- 
acteristics: 

Y 

L* [v] = 0, vlx=~ o = exp a(xo, 71) &l, 
a Y0 

F vl~=~o = exp b(G yo) d(. 
J Z 0 

(11) 

Once v is found, the solution of the Cauchy problem for 
Eq. (10) with data on an arbitrary noncharacteristic curve 
is obtained by the known integral formula. The function 
v is called the Riemann function, and the boundary-value 
problem (11) which determines it is called the character- 
istic Cauchy problem or Goursat problem. 

The quantities 

h = a~ + a b -  c, k = by + a b -  c 

are called the Laplace invariants for Eq. (10). They remain 
unaltered by any linear transformation of u with variable 
coefficients, with x, y not being transformed. In contrast, 
the quantities 

k 1 (ln h)xy (12) p = ~ ,  q =  

are invariant under the general equivalence transforma- 
tion ~ = a(x) ,  ~ = fl(y), ~ = )~(x, y)u of the homoge- 
neous equation (10). These invariants are useful for the 
classification of Eq. (10) according to the dimensionality 
of the admissible group. Namely, the homogeneous equa- 
tion (10) ( f  = 0) admits a 4-dimensional Lie algebra [more 
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precisely, the quotient algebra with respect to the ideal 
generated by X = r y) with r y) an arbitrary solu- 
tion of Eq. (10)] if the quantities (12) are constant; whereas 
if at least one of them fails to be constant, then Eq. (10) can 
admit at most a 2-dimensional algebra. For proof, see [25], 
w Using this result, one proves the following theorem 
(see [11] or [12]): 

THEOREM 2. Assume that Eq. (I0) has constant invariants 
(12). Then the Goursat problem (11) admits a 1-parameter 
group. Therefore, the invariance principle is applicable, and the 
Riemann function can be found from a second-order ordinary 
differential equation. 

EXAMPLE 1. For the telegrapher's equation uxy + u = 0 
we have p = 1, q = 0. Hence, Theorem 2 applies. The 
Goursat problem (11), namely, 

v~y + v = O, v]x=~o = 1, v]y=~0 = 1 (13) 

must by Theorem 2 admit a 1-parameter group with 
generator 

0 0 
x = ( x  - x0)  - (y  - y0) 

Functionally independent invariants of this group are v 
and z = (x - xo)(y - yo). Therefore, the invariant solu- 
tion has the form v = V(z), and after substitution in 
Eqs. (13), we get a form of Bessel's equation: zV"  + V' + 
V = 0 with condition V(0) = 1. Consequently, for the 
telegrapher's equation, a Riemann function is the Bessel 
function do. 

EXAMPLE 2. Riemann ([30], w applied the technique 
he introduced to the equation 

f 
u~u + (x + y)~ u = 0, ~ = const r 0. (14) 

In the corresponding problem (11), the condition on the 
characteristics has the form 

v]x=~ 0 = 1, v]y=y 0 = 1. (14') 

Riemann reduced the problem (14), (14') to an ordinary 
differential equation (leading to the special hypergeo- 
metric function of Gauss), considering v as a function of 
the variable 

z = ( x  - x o ) ( v  - v o )  (15)  

+ y0)(  + v ) "  

Here is how this looks from the group point of view. 
The invariants (12) of Eq. (14) are p = 1, q = 2/L Hence, 
Theorem 2 applies here. Solving the determining equa- 
tion, we find the operator 

0 0 
x = (x  - x0)(  + y0) - (y  - y 0 ) ( y  + 

admissible for the Goursat problem (14), (14r). Invari- 
ants for this operator are v and the quantity z given by 
Eq. (15). Therefore, the invariant solution has the form 

v = V(z) .  This is just the invariant solution found by 
Riemann! 

EXAMPLE 3. Next take the equation 

uxy+ u = 0 ,  g =  const ~ 0 ,  
x + y  

an "intermediate case" between the telegrapher's equa- 
tion (13) and Eq. (14). The invariants (12) are p = 1, q = 
1/ f (x  + y). But q not being constant, Theorem 2 is not 
applicable. 

A full catalog of equations to which Theorem 2 applies 
is in [11]. 

Fundamental Solutions 

Keeping the same orientation as in the preceding sec- 
t i o n - t h e  application of the invariance principle to 
boundary-value problems with arbitrary data by reduc- 
tion to an invariant problem of a special fo rm- - l e t  us 
see what Lie group theory can offer for the construction 
of fundamental solutions in the case of the three fun- 
damental equations of mathematical physics. This nat- 
ural line of development of group analysis, passing to 
the space of distributions, was sketched in [10], giving 
heuristic considerations and statement of the problems. 
Yurii Berest [3], my student, recently got remarkable re- 
sults applying this method to wave equations in Rieman- 
nian manifolds with nontrivial conformal group. Some 
details of infinitesimal group techniques applicable to 
distributions may be found in [12]. 

The Laplace Equation. Let us consider the equation 

Au = 6(x), x E ~n, (16) 

for a fundamental solution as a boundary-value prob- 
lem, where at a fixed point, the origin, a &function sin- 
gularity is given. This boundary problem is invariant 
under the group of rotations and dilations, generated by 
the operators 

Xij  = xj  __O _ xi 0 i , j = l ,  .. n, 
Ox i cgxJ ' " ' 

Z = x i O 0 + (2 - n)u -~u" 

A basis of the invariants of this group consists of the 
single function d = ulxl '~-2. According to the invariance 
principle, the fundamental solution is to be sought as 
an invariant solution, determined by the equation d = 
const. Thus, 

u = C]x] 2-n. (17) 

Substituting Eq. (17) into Eq. (16), we find the value of 
the constant, C = 1/(2 - n) fin, where f~,~ is the mea- 
sure of the surface of the unit sphere in n-space. Thus, 
the fundamental solution was determined from the condition 
of invariance up to a constant multiple, and the differential 
equation served only for the normalization. 
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The Heat Equation. The equation 

ut - a u  = 5(t, x)  (18) 

with n-dimensional Laplace operator in the space of 
variables x ~ is invariant under  the group of rotations, 
Galilei transformations, and dilations, which is gener- 
ated by 

X i j  = x j  0 - x i 0 O . 0 
Ox---]' Yi = 2t -~  - x~u O--u' 

0 0 -nu f f - -~ .  
Z = 2 t - ~ + x ~ - ~ x i  

This group has the invariant 

J = utn/2eIxl2/4t. 

Therefore, an invariant solution has the form 

u = c t - n l 2 e  -Ix1214t. (19) 

Equation (18) serves as a normalizing condition: Substi- 
tution of Eq. (19) into Eq. (18) yields the value of the 
constant, C = (2v~) -n.  

The Wave Equation. For the equation 

utt - A u  = 5(t, x) ,  (20) 

the group of symmetries is generated by 

Xij = x~ 0 _ x J  0 0 0 
Ox i , y~ = t ~ + x ~ -5i' 

0 xi  0 0 
Z = t - ~ +  --Ox i + ( 1 - n ) U o - u u ,  i , j = l , . . . , n .  

The operators Xij and Yi generate the group of rotations 
and Lorentz transformations and have two invariants: u 
and T = t 2 -- IXl 2. Therefore, an invariant solution is to be 
sought of the form u = f(7).  The condition of invariance 
under  the group of dilations with generator Z takes the 
form 

2 r f ' ( T )  + (n -- 1)f(r)  = 0. (21) 

Let us look only at odd n, for in the case of even n we 
would have to use the method of balayage of Hadamard.  
Then, setting n = 2m + 1, m = 0, 1 , . . . ,  we write Eq. (21) 
as  T f f ( T )  + m f ( T )  : O, which is known to have general 
solution 

v i a ( r )  + c2  
f ( T )  = C16(m_U(T) + C2T_ m 

f o r m  = 0  
f o r m  r 0. 

Substitution of these formulas in Eq. (20) gives C1 = 
�89 -m, C2 = 0. In this way, the invariance principle yields 
the fundamental  solution 

�89 -Ix12), n = 1 

?.t : 17r(l--n)/2~(n--3)/2(t2 -- IX12), n _> 3, 

where 8 is the Heaviside function and (~(n-3)/2 is the 
derivative of order (n - 3)/2 of the &function. 

Kepler's Laws 

The motion of a material point under  a central force with 
potential V = a / I x  I satisfies the obvious law of conser- 
vation of angular momen tum M = m ( x  x v),  where m 
is the mass of the particle and x and v are its coordi- 
nate and velocity, respectively. This conservation law, 
known in celestial mechanics as Kepler's Second Law, 
is a corollary of the invariance of the Lagrange equa- 
tions of motion under  the group of rotations and follows 
from Noether 's  theorem. Write the infinitesimal trans- 
formation of the rotation group with vector parameter 
a = (a 1 , a 2, a 3) in the form 

= x + 6x, 6x = x x a. (22) 

Then from the group point of view, Kepler's Second Law 
expresses the invariance of the problem under infinitesimal 
rotations (22). 

The Kepler problem is also invariant under  the inho- 
mogeneous dilation generated by the operator 

0 0 
X = 3t ~ + 2 x  i Ox i.  

An invariant both of the rotation group and of this dila- 
tion is the quantity d = t2 / v  3. The existence of this invariant 
is called in celestial mechanics Kepler's Third Law. 

Finally, the Kepler problem has a special group of sym- 
metries, which in the notation of Eqs. (22), can be written 

= x + 6x, 6x = (x x v) x a + x x (v x a). (23) 

A. V. Biicklund 
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This 3-parameter group differs from ordinary Lie groups 
of point and contact transformations, being more gen- 
eral; it is called the group of Lie-Bficklund transformations 
[2]. The computat ion of the symmetry  group (23) is car- 
ried out in [9], p. 346. From Noether 's  theorem one gets 
a vector integral of the motion 

X 

A = v x M + a l x  I, 

found first by Laplace [14]. Taking the scalar product of 
Laplace's vector A with the radius vector x, one readily 
infers that the orbit of Keplerian motion is an ellipse. This 
is Kepler's First Law. So from the group point of view, 
Kepler's First Law expresses the invariance of the problem 
under the 3-parameter Lie-Biicklund group with infinitesimal 
transformation (23). 

Thus, all three of Kepler 's Laws of celestial mechanics 
have a group-theoretic nature. 

Concluding Remarks 

I could continue in this spirit, for there are many  enter- 
taining applications of Lie theory, and nowadays  newly 
developed methods  of group analysis are awaiting ap- 
plication. But I hope what  I have said is enough to con- 
vince you that acquaintance with the classical founda- 
tions and modern  group-theoretic methods  has become 
an important part  of the mathematical culture of anyone 
constructing and investigating mathematical  models of 
natural problems. For this, one can go to the beautiful 
books of Lie, Bianchi, and so on, and more recent works 
(see the References). 

In conclusion, I would like to carry over to Lie theory 
in mathematical physics Einar Hille's remark [8]: "I hail 
a [semi-]group when  I see one and I seem to see them 
everywhere! Friends have observed, however, that there 
are mathematical objects which are not [semi-]groups." 
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