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An experiment proposed by Wesley involving passing current through a mercury cell of varying cross section has been per- 
formed and appears to confirm the existence of Ampere tension (Ampere longitudinal forces). 

1. Background 

A question originating in the earliest days of clas- 
sical electrodynamics concerning the applicability of 
Newton’s third law (equality and collinearity of ac- 
tion-reaction) to the interaction of nonrelativistic 
“current elements” has never been empirically re- 
solved. The first investigator, Ampere, devised and 
observationally supported a law that conformed to 
Newton’s third law. Written in terms of electric cur- 
rent densities J,, J2, Ampere’s law [ 1 ] for the dif- 
ferential of ponderomotive force in dynes exerted by 
conductive volume element d3r1 on element d3r2 is 

+3(J1 -r12 ) (J2-r12 )/&I , (1) 

where current is in abamperes and ri2 is the position 
vector from element 1 to 2. Later investigators [ 2 1, 
beginning with Grassmann and continuing with Biot, 
Savart, Riemann, Lorentz, Heaviside, etc., ques- 
tioned the need to honor Newton’s third law in other 
than an integrated sense. They felt free to add to Am- 
pere’s law any exact differential - since this inte- 
grates to zero around any closed circuit external to 
the test element and thus can introduce no observ- 
able distinction. It is worth pointing out that one of 
Newton’s basic assertions about forces between bod- 
ies, the equality of action and reaction, has almost 
no place in relativistic mechanics. 

But consider action-reaction within a single cir- 

cuit: If the test element (e.g., in Ampere’s case a wire 
floating in mercury cups) forms a finite current-car- 
rying segment that is mechanically decoupled from 
(or very loosely coupled to) the remainder of its own 
circuit, then the observable motions of the test ele- 
ment are uninfluenced by currents flowing within it- 
self (which in acting upon each other exert only in- 
ternal stresses without ponderomotive “bootstrap- 
lifting”). Observable motions of the test element can 
thus be produced only by the action upon it of cur- 
rents flowing in the external partial circuit. An exact 
differential integrated around a partial circuit does 
not in general yield zero. Hence in principle there 
should exist experimental possibilities to resolve the 
choice among the infinitude of force-law options dis- 
tinguished only by an additive exact differential. 
Contrary theoretical claims [3,4] result from inte- 
grating around the full circuit, hence from ignoring 
the observability requirement just mentioned. 

2. Wesley’s mercury experiment 

An experiment concerned with the choice in ques- 
tion, proposed by Wesley [ 51, has been performed. 
Since Ampere’s law, eq. ( 1 ), predicts longitudinal 
forces [ 1 ] of repulsion between collinear current ele- 
ments, whereas Lorentz’s law predicts none, Wesley 
suggested seeking evidence of the existence of this 
“Ampere tension” in the behavior of current-car- 
rying liquid mercury. Specifically, he proposed pass- 
ing direct current through a wedge-shaped mercury 
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cell and observing its effect on the meniscus heights 
in two vertical tubes located at positions of different 
current density, as shown in fig. 1, wherein the cell 
used in the presently reported experiment is sketched. 

If wi denotes the (square) cross sectional area of 
mercury transverse to current flow in the vicinity of 
tube A in fig. 1, wi the same at tube B, then an Am- 
pere pressure (tension) difference AP=F,/wi - 
FJwi arises according to eq. ( 1 ), where the F’s are 
longitudinal ponderomotive Ampere forces exerted 
by current flowing in the fixed external partial cir- 
cuit upon the contents of the cell. This pressure dif- 
ference can be considered to produce an “Ampere 
driving force” Fd=Tcrf AP=k2Z2 acting upon the 
mercury in the vertical tubes of inner radius ri and 
within the region of the cell connecting those tubes. 
By integration eq. ( 1) for idealized simple geome- 
try, Wesley [ 51 obtained a closed-form result, 

k _ ‘6 “+ln(Lo/wB) c’+ln(L,/w,) 
2 

- 

100 2 

(2) 

which serves as an approximation for our actual ge- 
ometry. Here Lo is the side length of the (assumed 

tube f3 

square) circuit containing the mercury cell, C’ is a 
constant shown [ 51 to have the value 1.03107, and 
abamps are replaced by amps. In our experiment 
&=12.5 cm,w,=4.57 cm, w,=3.05 cm, r,=0.54 
cm; consequently 

k2=0.001511, 

a value to be used in the equation 

(3a) 

rms force in dynes = k2Z2 , (3b) 

where Z is rms current in amperes. Internal stresses 
produced by interactions among current elements 
within the cell could also affect the observable mer- 
cury levels in the tubes - but only to the extent that 
mercury is compressible. To first approximation we 
may treat mercury as incompressible and neglect such 
effects. 

3. ac version of the experiment 

-Suppose that sinusoidally alternating current (ac) 
of angular frequency o/2 is applied to the electrodes 

tube A 

Pyrex 
1.08cm 

i. d. ,dewar 

0.025 in.’ 

nickel 

ice 0.25 in. lucite 

water 

0. 025 in. nickel 

doubled 

Fig. 1. Sketch of lucite cell with sheet nickel electrodes used as mercury container in the experiment. 

7 



Volume 146, number 1,2 PHYSICS LETTERS A 7 May 1990 

at the two ends of the mercury cell in fig. 1, 
Z,4cos(ot/2). We have 

F,(t)=k,z:=k& cos2(wt/2) 

The oscillatory part of this force produces a har- 
monic mechanical driving force 

Fd =fk21: cos wt=k212 cos ot . (4) 

The mechanical frequency f= 0/2rt is twice the elec- 
trical excitation frequency as a result of the square 
law, eq. (3b). (For any I2 law the direction or sign 
of current makes no difference, so there are two force 
pulses per electrical cycle.) 

Let z measure mercury meniscus height above 
equilibrium level. The equation of motion of a mass 
m of mercury is 

mi!+Ri+Kz=Fd=k212cosot, (5) 

where R measures the effect of energy dissipation and 
K is proportional to restoring force (gravity). The 
motion in question is a “swinging” between tubes of 
some portion of the total mercury mass contained in 
the cell. We do not attempt to treat the fluid dynam- 
ics, but limit ourselves to inferences from observa- 
tional data. This damped, driven harmonic oscilla- 
tor has a solution [ 6 ] that when time-averaged over 
a cycle yields rms vertical displacement from equi- 
librium of 

k212 
Z 

rms= 2,/R202+ (mw2-K)2 ’ 
(6) 

An observed (amplified) rms electrical signal S, 
designed to measure meniscus departure from equi- 
librium, will obey S=k,z,,, where k, is a constant 
to be determined by some calibration procedure. This 
signal will also obey S= b12, where the slope param- 
eter is a function of frequency, b= bcf ). Combining 
these results, we get 

bcf)=;= 
aI 

a2f2+ Cf’-as)’ ’ 
(7a) 

k,k2 R2 K 
al= 8x2m’ a2= 47c2mZ’ a3=fi=q--mT (7b) 

which describes a resonance with peak near fre- 
quency fo. 

To generate this electrical signal optical amplifi- 
cation is employed, as indicated in fig. 2. This per- 
mits observation of the micron-sized meniscus os- 
cillations predicted (for moderate currents) by eqs. 
(3), (6 ). He-Ne laser light, focused in the vicinity 
of tube A or B (these tubes being transparent), is 
partly shadowed by the meniscus and is detected by 
a photodiode, the output of which passes via a load 
resistor to the A or B preamplifier channel of a lock- 
in amplifier (WA) tuned to frequency f of eq. (7). 

(This J; as noted, is the mechanical oscillation fre- 
quency of the mercury system, equal to twice the fre- 
quency of electrical current applied to the cell.) By 
phase comparison of the A and B channel LIA sig- 
nals it is verified that the coherent signals detected 
are 180 degrees out of phase, corresponding to a 

4mm 
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aperture 
beamsplitter 

50;50% 

25 cm 

F. L. 

lenses 
meniscus 

1 B tube , r) , phoydiodes 

channel 

- ::A 

Top view 

mirror 
A t,6e 

(adjustable) 

Fig. 2. Schematic of optical amplification method of verifying existence of ponderomotive oscillations of mercury by means of two 
photodiodes and lock-in amplifier (LIA) capable of monitoring phase relathionships of A and B meniscus motions. 
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“swinging” mode of oscillation of the mercury (up 
in one tube when down in the other). Apart from the 
need to verify ponderomotive transport of mercury 
there was no advantage in observing both channels. 
The data reported here were obtained by observing 
the B,channel alone (straight-through beam of fig. 2). 

The experiment consists in choosing a fixed fre- 
quency f and observing LIA coherent signal S as a 
function of current I. A computer program deter- 
mines by least-squares fitting the slope parameter 
bcf) in the square law, S=bCf)Z2, and evaluates the 
statistics of the fit. This procedure is repeated at a 
number of frequencies near the resonance frequency 
fo. A program then plots the resonance curve of bcf) 
versus f and determines by least-squares the best 
three-parameter (al, a2, a3) fit to the b(j) data 
among all curves of the type of eq. (7a) in terms of 
minimizing the statistical chi-squared [ 7 1. Given 
the‘se fitted a values, the equation of motion param- 
eter values m, R, K are inferred from eq. (7b). Their 
plausibility is examined and possible alternative ex- 
planations of the observations are considered. 

4. Calibration 

For the procedure just described to yield quanti- 

tative results it is necessary to possess values of the 

parameters k,, k2. Wesley’s theory, eq. (3a), pro- 
vides k,, but k, requires calibrating the sensitivity of 

the optical amplification scheme. Several methods 
were tried, the most successful of which consisted in 

immersing in the mercury of tube A or B a vertical 
wire or small-diameter rod. By changing the immer- 
sion depth an amount measured by micrometer, it is 
possible to infer the change in displaced volume of 
mercury and in meniscus height. Observation of the 
change in dc voltage signal across the photodiode load 
resistor accompanying this known change of menis- 
cus height permits the evaluation of k,. 

A difficulty arose in that not all data exhibited 

simple proportionality of voltage change of immer- 
sion depth change. Consequently all data were sub- 
jected to two types of least-squares linear fitting pro- 
cedures, a one-parameter and a two-parameter fit. 
(The one-parameter fit evaluates the slope of a best- 
fitting straight line constrained to pass through the 
origin. The two-parameter fit evaluates the slope and 
intercept of a best-fitting straight line not so con- 
strained - only the slope parameter being relevant to 
the calibration.) Fig. 3 shows an example of im- 
mersion calibration raw data in which the two slopes 
thus obtained are quite similar. In some other cases 
poorer agreement was obtained. For this reason data 
were taken for a number of different types of rods 

Fig. 3. Example of one-parameter (solid line) and two-parameter (dashed line) least-squares fits of straight lines to 41 data points 
obtained by recording signal dc level changes accompanying changes of immersion depth in tube B of a 0.0535 inch diameter quartz rod 
- typical of data obtained by immersion calibration procedure. 
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and wires with the aim of reducing unknown biases 
due to peculiarities of any particular case by aver- 
aging all results. 

The following rods or wires were used (diameter 
in cm being indicated in parentheses): Pyrex rod 
(0.201), quartz rod (0.136), quartz rod (0.294), 
#22 nickel wire (0.0644), #22 chromel-A wire 
(0.0626). The average of all data for these five 
yielded k, = 6.146 x 1 O6 for the one-parameter fit and 
k, = 4.5 15 x 1 O6 for the two-parameter tit. Immer- 
sions of all rods and wires took place in both the A 
and B tubes, with observation of signal from the B 
channel photodiode in all cases. The A and B tube 
immersion results for a given rod or wire showed 
rough consistency. Both are included in the averages 
just cited. Finally, taking the average of the one- and 
two-parameter fits and letting the discrepancy of this 
average from either of the averaged values serve as 
an error indicator (not error estimate), we have as 
a best single figure 

k,(5.33?0.82)x106 (rmsmv/rmscm). (8) 

Since we are dealing with possible unidentified sys- 
tematic errors, the actual error might conceivably be 
much greater - the usual “statistical” error analyses 
being irrelevant. 

5. Results 

Typical single-frequency data showing LIA signal 
plotted against the square of rms current (amps) are 
shown in fig. 4. These are well fit by a one-parameter 
straight line (constrained to pass through the ori- 
gin), the slope of which is b(J) co.444 atfz2.3 Hz, 
with slope standard deviation ob = 0.005 1. The chi- 
squared of the fit to 2 1 data points is 52.6, which may 
be compared with a value of 1375 for the chi-squared 
of a best one-parameter tit to the same data plotted 
against current to the first power. It is clear that a 
square law better describes the data. 

Slope values b(J) from current-squared plots sim- 
ilar to that of fig. 4 were evaluated at 13 frequencies 
in the vicinity of the mechanical resonance fre- 
quencyfo= 2.2 1883 Hz. They are plotted against fre- 
quency in fig. 5. The data bar heights show f 1 stan- 
dard deviation (Go) of the slope data. Clearly a 
resonance exists. This is the main qualitative point 
of the experiment. The solid curve in fig. 5 is a least- 
squares best fitting curve of the form of eq. (7a), ob- 
tained by adjusting the three a parameters so as to 
minimize chi-squared (min x2 = 99.05 ). The result- 
ing best values of these parameters, with their in- 
dependently inferred 90% confidence intervals [ 7 1, 
are 
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Fig. 4. LIA signal at tuned frequency 2.3 Hz versus 1’ (I=rms amperes). Straight line is best one-parameter least-squares fit to 21 raw 
data points shown, yielding slope k0.444 (rms mv/lz) with slope std. dev. ub=O.O05 1. Chi-squared of the fit is 52.6. 
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Fig. 5. Resonance curve showing slope parameter b(f) versus frequency f; obtained from single-frequency square-law data plots such as 
fig. 4, for observations made at 13 frequencies. Bar heights denote f 1 std. dev. Us of b values. Solid curve is best three-parameter tit of 
the form of eq. (7a), corresponding to minimum x2 = 99.05. 

a,=0.207364f0.002279, 

a,=0.0156874f0.0005575, 

a3=4.92322f0.00874. (9) 

Applying eq. (7b), we have three equations in the 
three unknown physical parameters m, R, K. Ac- 
cepting the k-values from eqs. (8) and (3a), we get 
the results tabulated in table 1 under “Observation”. 
The error indicators given there result entirely from 
the uncertainty in the calibration constant kr. This 
possible systematic error overwhelms all other purely 
“statistical” error sources in the measurements. In 

particular the a parameter estimated errors of eq. (9) 
are essentially negligible. 

6. Plausibility assessment 

To judge the plausibility of the observed results 
listed in table 1, let us apply elementary physical rea- 
soning. The mass m in motion cannot exceed the to- 
tal mass of mercury present, about 1500 g. This sets 
an upper limit, it being likely in view of the cell shape 
that much of the mercury is stagnant. A lower limit 
follows from considerations of continuity and in- 

Table 1 
Equation of motion parameters m, I, Kfrom observation plus eqs. (7b), (9) and as estimated by elementary theory. 

Parameter 
(cgsu) 

Elementary theory Observation (assuming 
k,=5.33xlO (rmsmv/rmscm), 
k,=O.O01511 (rmsdynes/rmsamps)) 

m 
R 

K 

188<rn<l500 
> 6.3 
24410 
(for gravity only) 

492k75 
387k60 
956OOk 15000 
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compressibility of the mercury: The moving mass can 
hardly be less than the mass of mercury contained in 
the two tubes plus that contained in an imaginary 
tube of the same diameter lying within the body of 
the cell and directly joining the two tubes. This con- 
sideration leads to an estimated lower limit of 188 

g. 
Without a detailed fluid dynamical analysis be- 

yond the scope of this inquiry it has not been pos- 
sible to set meaningful theoretical limits on the dis- 
sipation parameter R. If tube wall friction were the 
only dissipative mechanism, we would have R = 8x/q 
where v is the viscosity of mercury and 1 is the ef- 
fective length of container wall wetted by the moving 
mercury. Estimating the latter to be about 15 cm, we 
get R> 6.3 (cgsu). Obviously some other mecha- 
nism of loss predominates - probably turbulence as- 
sociated with non-streamlined flow within the cell. 
This speculation cannot be verified here and the 
question of plausibility of the measured R value must 
be left open. 

The action of the restoring force, gravity, is easily 
estimated. If the meniscus in one tube rises a dis- 
tance z above equilibrium level, the incompressibil- 
ity of mercury implies a fall through distance z in the 
other tube. The total out-of-equilibrium mass is thus 
rn* = 2zxr:p, where r, is tube radius and p is mercury 
density. The force of gravity on this mass is m*g, and 
this (if gravity is the sole restoring agent) may be 
equated to the restoring force Kz in the equation of 
motion. Thus for rl=0.54 cm we calculate K= 
2lcr:pg= 244 10 (cgsu). From table 1 it is evident that 
the agreement with the observed K value is poor. It 
seems possible that the four times too large restoring 
force observed in this experiment (table 1) is “real”, 
in the sense that for micron-sized meniscus excur- 
sions a contribution of surface tension may be added 
to that of gravity. Mercury is notable for large sur- 
face tension, seven times that of water. 

In summary, the plausibility checks in table 1 are 
satisfactory as to order of magnitude, but suggest the 
desirability of a less crude theoretical analysis. The 
indication that about one-third of the mercury mass 
in the cell participates in the “swinging” oscillation 
seems inherently reasonable in view of the sharply 
angular cell geometry. The large value of dissipation 
constant R observed - far beyond that accounted for 
by wall friction - indicates that other mechanisms 
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connected with the “lossy” motion of a substantial 
fraction of the fluid in the cell predominate. The poor 
check of K values indicates that an accurate quan- 
titative description of the motion will not be possible 
without more sophisticated analysis. But all ob- 
served parameters are seen to be consistent with 
Wesley’s prediction within better than an order of 
magnitude. 

7. Alternative explanations 

It may thus be said that to a reasonable (though 
not quantifiable) degree of confidence the Ampere- 
Wesley theory is confirmed by observation. This 
being contrary to currently widely held opinions 
about the nature of physical forces, we must weigh 
alternative explanations for what has been observed: 

( 1) A heating effect is responsible for the obser- 
vations. This is ruled out by the facts that (a) the 
mercury cell was maintained during all observations 
in a large Dewar vessel at the temperature of melting 
ice, (b) the electrical resistance of the cell is below 
0.0 1 ohm and the currents used never exceeded 11.6 
amps rms. No detectable heat generation occurred 
within the cell. 

(2) An inductive effect is responsible. This is im- 
plausible since mechanical oscillation frequencies 
never exceeded 2.7 Hz, meaning electrical frequen- 
cies not over 1.35 Hz. The experiment was therefore 
a quasi-static one. 

( 3 ) Some eflect of paramagnetism is at work. Again 
implausible, since the susceptibility of mercury is not 
excessive, about like that of silver. 

(4) The Lorentz force is operative and produces an 
observable “pinch” e&t. This seems plausible be- 
cause pinch forces vary with the square of current. 
The explanation fails in two ways: (i) Quantita- 
tively - the pinch forces at such low currents being 
too small by at least an order of magnitude. (ii) 
Qualitatively, in that observed forces are pondero- 
motive - that is, they act on the positive ions of the 
mercury to produce mass transport. The only pon- 
deromotive effects of the Lorentz (radial pinch) force 
are such as to press the ions closer to the central axis 
of current flow . . . and such compression is limited in 
its observability by the small compressibility of mer- 
cury (which we have elsewhere chosen to neglect). 
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There is of course no direct Lorentz force on the ions, 
because they are at least initially (on the average) at 
rest in the laboratory, u=O, so the Lorentz force on 
the, UXB, vanishes. (Even the small compressibility 
effect just mentioned is produced indirectly, through 
electromotive action on the electrons, which then act 
Coulombically on the ions. ) The observed meniscus 
excursions, of the order of microns, would require 
kilograms of force if effected by compressibility, not 
the fractions of a dyne available at these currents. 

( 5 ) The Lorentz force is operative and acts through 
the radial rather than longitudinal components of 
currentflow within the cell. Such an explanation can- 
not be entirely ruled out for the geometry of this ex- 
periment. It could be ruled out by cell redesign to 
reduce the sharpness of taper in the longitudinal di- 
rection. As it is, the sloping (convergence/diver- 
gence) of current flow lines implies that forces trans- 
verse to the current elements possess a small 
longitudinal component - so it is not true that the 
Lorentz force law implies zero longitudinal action. 
In general magnetic forces cause motion in the fluid, 
mathematically speaking curl (JXB) is not zero in 
general. Workers in fusion research have found it very 
difficult to attain the equilibrium case in 40 years of 
research. Unlike radial (pinch) forces, longitudinal 
forces do not have to work against the compressi- 
bility of mercury, but only against the force of grav- 
ity and surface tension at the free surfaces in the ver- 
tical tubes. However, the effect is at least an order of 
magnitude smaller than the Ampere force . . . so this 
avenue of escape looks unpromising. 

(6) Some unknown physical effect or attribute of 
current-carrying mercury causes it to mimic Amp&e 
force law behavior, thereby hiding the fact that the 
true law of action is Lorentz’s. This hypothesis is not 
disprovable but is scientifically acceptable only as a 
prelude to further investigation (to be conducted by 
the hypothesizer). 

8. Summary 

( I) In an ac version of the Wesley mercury ex- 
periment mass transport between tubes of the cell has 
been verified by observing 180” phase differences 
between the coherent LIA signals associated with the 
two tubes. When one meniscus moves up the other 

moves down. The presence of current-induced pon- 
deromotive forces is thus confirmed. 

(2) The variation of these forces with the square 
of current passing thorough the cell is indicated by 
the detection of coherent LIA signal at a tuned fre- 
quency twice that of the applied e.m.f. 

(3) This square-law variation is explicitly con- 
firmed by data such as those of fig. 4 showing sat- 
isfactory statistical fits to a square law for ac varying 
between 1 and 11.6 amps rms. 

(4) The existence of a resonance, fig. 5, confirms 
the implication of the foregoing that Ampere forces 
have been observed. This conclusion is reinforced by 
the difficulty noted in the preceding section of find- 
ing an alternative explanation based on known phys- 
ical fact. 

(5) The theory of Ampere is semi-quantitatively 
confirmed - insofar as the limited refinement of the 
experiment allows. Wesley’s calculation [ 5 ] assumes 
the validity of the Ampere force law, eq. ( 1 ), and 
leads to a force constant k2 = 0.00 15 11 (rms dynes/ 
(rms amps)‘). This order of magnitude is consistent 
with the observations. 

(6) It is concluded that there are sufficiently firm 
grounds for inference that the action of Ampere forces 
has been observed to motivate further investigation. 
Such forces, being of noncovariant form, violate 
spacetime symmetry. 
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