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As in the last few years there has been a renewed interest in the laws of Ampere 
for the force between current elements and of Weber for the force between 
charges, we analyze the limiting velocity which appears in Weber's law. Then 
we make the same analysis for Phipps' potential and for generalizations of  it. 
Comparing the results with the relativistic calculation, we obtain that these 
theories can yield c for the ultimate speed of the charges or for the ultimate 
relative speed between the charges but not for both simultaneously, as in the 
case in the special theory of relativity. 

The question of an ultimate speed in nature is an old and puzzling 
one. Usually one thinks of light as the f~istest body in the universe so that 
no material body could surpass its velocity. In the old days some thought 
the opposite. Consider this passage from Lucretius (circa 55 B.C.): 
"Obviously therefore they [free atoms in empty space] must far outstrip 
the sunlight in speed of movement and traverse an extent of space many 
times as great in the time it takes for the sun's rays to flash across the sky" 
(Lucretius, 1951, pp. 64-65). 

In modern times ideas of this sort coupled with the special theory of 
relativity gave rise to the theory of tachyons (Recami, 1987; Mignami and 
Recami, 1988). 

The goal of this paper is not to develop ideas related to tachyons, but 
to investigate the limiting velocity which appears naturally in W. Weber's 
theory and in some generalizations of it and then to compare these results 
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with the relativistic ones. The theory of relativity is very well verified 
experimentally and so any study of this kind must be compared with the 
relativistic results. In this paper we will restrict ourselves to radial motion. 

Weber's theory (Weber, 1846, 1848, 1893) states that the force on a 
charge q~ due to a charge qj is given by 

F = qiqj ~ / i "2 ri:\ 
4~reo ~ [1 -~c2+~-5} (1) 

where r-----ri-rj, r-=lr  I, ~=-r/r, f=-dr/dt,  i:=-d2r/dt 2, and c is the light 
velocity in vacuum. There has been a renewed interest in this law in recent 
years (Assis, 1989a, b; Wesley, 1987) because this is a powerful force law. 
Its main characteristics are: (a) it follows Newton's action and reaction law 
in the strongest form so that we have conservation of linear and angular 
momentum; (b) it can be derived from a velocity-dependent potential energy 
and follows the conservation of energy (Maxwell, 1954); (c) in a static 
situation (f  = i: = 0) we recover Coulomb's law; (d) Faraday's law of induc- 
tion for closed circuits can be derived from Weber's law (Maxwell, 1954); 
(e) as it only depends on r, f, and J:, it is completely relational in its nature 
and so it has the same value for any observer even if the observer is 
noninertial (Assis, 1989b; Barbour and Bertotti, 1977, 1982); (f) Amp~re's 
law for the force between two current elements (Ampere, 1825, 1958); can 
be derived from Weber's law (Maxwell, 1954). As a matter of fact, Weber 
devised equation (1) in order to get Amp~re's law, which is 

d F  = - ~ Ii12 -~ [2dll �9 all2 - 3(~. dll)(~, d12)] (2) 
t tq ' r  r 

To get equation (2) from equation (1) we only need to use the definition 
/~ dl i --  qi+(vi+-v~_) and to suppose that qi_= -q~+ (i.e., that we are dealing 
with neutral current elements). Maxwell showed in his Treatise how the 
famous Ampere circuital law can be derived from equation (2). In the 
Treatise Maxwell said that equation (2) "must  always remain the cardinal 
formula of  electrodynamics" (Maxwell, 1954, Article 528). 

One of the reasons why Weber's law is being revived is exactly the fact 
that equation (2) can be derived from it. Despite Maxwell's advice, the 
most widely used law of force between current elements is Grassmann's 
(1845) law sometimes known as Biot-Savart's law, which is 

= 4~r!~--s176 Ilri2 dll x (d12 x ~) dF 

_ / Z o  Ii12 
4~ r 2 [ (d l l "d l2)~- (d l l '~ )  d12] (3) 
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In recent years many experiments have been made in order to differentiate 
between equations (2) and (3) when dealing with a single current so that 
we can decide (if it is possible to distinguish them experimentally) which 
is the best one in these situations (Graneau, 1982a, b, 1983, 1984, 1985, 1986, 
1987a, b, 1989a, b; Graneau and Graneau, 1985, 1986; Pappas, 1983, 1985; 
Moyssides and Pappas, 1986; Nasilowski, 1984, 1985). These experiments 
are carded out with a single circuit because the two laws give the same 
value of  the force on I~ dll  when they are integrated over the entire circuit 
2 if 11 dl~ is not a part of  circuit 2 (Tricker, 1965, pp. 55-58). It should be 
emphasized here that although most of these experiments indicate that 
equation (2) is more correct than equation (3) when applied to a single 
circuit, this is still an open question and a growing and exciting scientific 
controversy surrounds the subject (Ternan, 1985a-c, 1986; Aspden, 1985a, b, 
1986, 1987; Christodoulides, 1987; Whitney, 1988; Peoglos, 1988; Wesley, 
1988; Comille, 1989). 

Before considering the limiting velocity which appears in Weber's law 
it is important to analyze the subject from the point of view of classical 
electromagnetism and see how it is modified by special relativity. We then 
consider two bodies of  charges q~ and q2 and of  masses m~ and m 2 attracting 
each other. Neglecting radiation effects and the gravitational force as com- 
pared with the electrical one we obtain for this conservative system: 

ot MvZcM tzv 2 
U + T = E = const or - +  + = E (4) 

r 2 2 

where 

qlq2 
or-- 

47reo 

M = ml + m2 is the total mass, I~ = m~m2/M is the reduced mass, U is the 
electrical potential energy, T is the kinetic energy, E is the total energy for 
this system of  two charges, r = [r~ -r21, vcM = (mlv~ + m2vE)/M is the velocity 
of the center of mass, and v = v~ - v2 is the relative velocity between the two 
charges. The total linear momentum of this system is also conserved in this 
case. In a reference frame in which the center of  mass is at rest (vcM = 0) 
we get 

(5) 
r 2 
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This equation expresses the fact that the motion of  charge 1 as viewed from 
charge 2 is the same as if charge 2 were fixed and charge 1 had a mass/~. 
Equation (5) shows that when r tends to zero, v tends to infinity. So classical 
electromagnetism without the relativistic corrections leads to the wrong 
result of  a limitless boundary for the charge velocities. 

In order to analyze this problem correctly, we need to include relativistic 
corrections. The main point here is that the mass of a moving particle is 
no longer a constant but should vary according to m = too / (1 -  ~)2/c2)1/2, 
where mo is the rest mass of  this particle. This is also reflected in the kinetic 
energy of  this particle, which in relativity theory turns out to be 

mo c2 
T -  (1 --l)2/C2) 1/2 m~ (6) 

Writing an equation similar to (4) yields 

_ v21c2),12 _ V21C2)112 = E 
(7) 

The solution of  this equation (and the one for the conservation of  the total 
linear momentum) gives Vl = c and v2 = c when r ~ 0. The modified addition 
law of  velocities valid in special relativity theory gives in this case vl - v2 = c. 
From this simple example it is seen that the ultimate velocity implied by 
relativity theory is in fact c, the light velocity. This is confirmed by all 
experiments with linear and circular accelerators, which are unable to 
accelerate any charged particle to a velocity greater than c. Expression (6) 
for the relativistic kinetic energy of  a particle is a known experimental 
result. As an example, we cite the beautiful experiment Of Bertozzi (1964), 
which was the basis for the teaching film, "The Ultimate Speed" (Angotti 
et al., 1978). 

Due to the renewed interest in Weber's law, we decided to study this 
problem from the point of  view of Weber's theory. Weber showed that his 
force law, equation (1), could be derived from a generalized potential energy 
given by 

U qlq2(l_ r2~ 
4~reo kr 2rc 2] (8) 

He also showed the conservation of  energy with this potential. Making a 
similar analysis as the one given in equations (4) and (5) yields 

r\1-~c2] ~=E (9) 
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Fig. 1. Coulomb'slaw. (A) ~<0,  and E>-0; (B) a < 0 a n d  E<0;  (C) ot>0, E>0.  

From this equation it follows immediately that i-~ - ( 2 c )  1/2 when r ~ 0 (the 
minus sign appears due to the fact that we are considering an attraction 
between charges). In the center-of-mass coordinate frame we get 

v l = - m2 ~ 1  M 

v2 = + m ~ i ' ? / M  
(lO) 

Supposing ml = m z  = m (as when an electron is attracting a positron and 
vice versa), we obtain that although It:J> c, Iv1[ and Jr2[ are smaller than c. 
The most important  result of  this section is to show how can we get an 
ultimate velocity near c in a classical theory like Weber's. 

We present a graphical study of  equations (5) and (9) in Figures 1 
and 2. Using the definitions 

Fo-= ~:(t = 0 ) ,  r o = - r ( t = O )  

m l m 2  q~qz 
- - ,  ~ ~ (11) 

tz == rn~ + rnz 4*reo 

A = �9 ' rl - -  E '  r2 ~ -  ~r  
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Fig. 2. Weber's law. (A) a < 0  and E:>/J.c 2, (B) a d O  and 0-<E</~c2; (C) a < 0 ,  E < 0 ,  
ro<-r I and t~>0, E>/~c 2, r2>q>-ro; (D) u > 0 ,  E > t z c  2 and ro>r2>rl; (E) (~ :>0, 0 < : E <  
p.c 2, and r2<rl<ro; (F) a > 0 ,  0<: E <~/~c 2, ro<Zr2<rl and ( ,>0,  E<-O, roar  2. 

we have for the C o u l o m b  law 

t~ 
/ := if  r # r 1 /~r 2 

(12) 
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For Weber's law we have 

~ ~/2 
A r - r l  

\ r - r2 /  

a 1 - E / i x c  2 ~'_ 
( r -  r2) 2 

(13) 

In Figures 1 and 2 the arrows indicate the direction of  motion. In the 
Coulomb case there is no real solution when a > 0 and E - 0. From equation 
(13) we can see that there is no real solution also when a <0 ,  E <0 ,  and 
ro > rl ; a > 0, E >/~c 2, and r2 > r0 > rl ; a > 0, 0 < E < ~c 2, and r2 < r0 < rl ; 
and ot > 0, E -< 0, and ro > r2. 

From these two figures we can see that the reflection point, r = r~, is 
the same in both theories. The main differences are as follows: In Weber's 
theory one charge will not "feel"  the other if they are moving relative to 
one another  with a relative velocity +vC2c, as this velocity will be constant 
in time. We do not have any equivalent in Coulomb's  theory for the case 
when if[ > v~c in Weber's model. In this case, as can be seen from Figures 
2a, 2d, and 2f, the relative velocity between the charges will always remain 
greater than v~c. Although we could compare these situations with the 
tachyonic case of  relativity theory (which happens when v > c instead of  
f > v~c),  we will not develop these analogies here, as the main goal of  this 
paper is to analyze the ultimate speed of  particles which move at a velocity 
less than or equal to v/-2c. We only point out here that the relative velocity 
for these superluminal particles (f  > ~/2c) would diverge if they came close 
enough to one another (r = r2 = 2 x classical radius of  the electron if m~ = 
m2 = me or ml = me and m2 >> me, and ql = q 2  = e ) ,  according to Weber's 
law. 

The equivalents to Figures l a - l c  are Figures 2b, 2c, and 2e, respectively. 
Cases lc  and 2e are essentially the same. The main differences between 
Coulomb's law and Weber's law appear for slow charges (i.e., f<vr2c)  
when they approach each other. In this case If[--> oo according to Coulomb 
(Figures la  and lb),  while Ifl-, c according to Weber (Figures 2b 
and 2c). 

We now analyze the same problem with the Phipps potential. This is 
a potential energy proposed by T. E. Phipps, Jr. (1990) in order to overcome 
Helmholtz '  objection to Weber's law (von Helmholtz, 1870, 1872, 1873, 
1874, 1875; Miller, 1981, pp. 92-93), as it is free of  the "negative mass 
behavior" (Whittaker, 1973, pp. 198-205, 233-235) for all velocities smaller 
than c. As a matter of  fact, we should mention here that Helmholtz was the 
first to study the ultimate speed implied by Weber's law. The Phipps potential 
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is free of  the instabilities which could occur in Weber's theory. It is given by 

U =  qlq2 1 [ ~2\1/2 
47reo r ~ 1 -~--/) (14) 

It reduces to Weber's potential in second order of  ~/c. It seems to indicate 
a limit of  validity for Weber's theory: Weber's law can only be applied for 
situations which involve velocities only up to second order, inclusive, in 
~/c. Assis (1988a) had already noted this limitation of  Weber's law in a 
different context. Another limitation of  Weber's law has long been known; 
namely, the fact that it is an action-at-a-distance theory. To overcome this 
obstacle and to get radiation effects in a theory derived from Weber's, 
workers have tried to introduce retarded action in Weber's law (Wesley, 
1987; Moon and Spencer, 1954). In this paper we will not discuss these 
developments. 

Returning to equation (14) and making a similar analysis which led to 
equation (9) leads us to 

) 1/2 . a~_2 f2 
1-7  + 

or (15) 
�9 4 4a  2 [ 1 I "tEr2"~ 2 4a2 [E2r2 

From equation (15) we obtain that !:-->-c when r ~ 0 .  This is exactly 
what should be expected according to relativity theory. If  we analyze an 
interaction between two charges of  the same mass, we get I=11 = 1.21 = c/2. 

The main properties of  equation (15) can be summarized as follows: 

lim !: = - c  r~0 

2E) /2 
!im i =  \ - - ~ /  (16) 

~ = 0  for r= r I 

~ c  2 
= •  for a n y r  if E =  

2 

there is no real r for which I: diverges. So we can see that with the Phipps 
potential the ultimate relative speed is c for all charges. From equation (14) 
we can see immediately that there is no meaning for lel > c. 
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We could try also a more generalized potential, namely 
~2 i4 p:2. 

�9 + o~, ~-fi-g+ �9 . )  (17) U = ~ ( l + o q  c-'5+azc--~+" 

In order to discuss more closely the Phipps proposal, we study the potential 
energy given by 

r \ 2/3 c2,1 (18) 

where for any/3 • 0 we have the coefficient of  ~2/c2 as - 1/2, as in Weber's 
theory (/3 = 1 for Weber and/3 = 1/2 for Phipps). Making an analysis similar 
to the preceding ones, we can show that the ultimate relative velocity when 
r ~ 0 is given by, supposing/3 > 0, i = -(2/3)1/2c. If  ml = m2, then ]vii = Iv=l = 
(2/3)1/2c/2, so that i f /3  = 2 ,  we get ]vii  = Iv=l = c ,  as happens according to 
relativity theory. 

Comparing these results with the relativistic one shows that we can get 
= c o r  1.11 = Iv=i-- c in theories which are extensions of  Weber's, but that 

we cannot obtain both at the same time (that is, t: = c and IVll = I*=1 = c) ,  as 
happens in the special theory of  relativity. 

Moreover, one must emphasize the physical differences in these results. 
In the special theory of  relativity the reason for an ultimate speed is that 
the mass of  the body is a function of  its velocity relative to an inertial 
observer, which is also reflected in the kinetic energy of  the body [see 
equation (6)]. As v ~  c, we get that T~oo ,  and not to mc2/2, as would be 
expected in classical theory without the relativistic corrections. The electric 
force given by Coulomb's law is always acting between the charges, even 
when r -  0. As m ~ oo, when v -* c we get that the acceleration of  the body 
tends to zero and this gives an ultimate speed. 

On the other hand, in the theory of  Weber and in extensions of  it, the 
reason for an ultimate speed is not a change in the kinetic energy, but a 
change in the potential energy [see equations (8), (11), and (14)]. In the 
case of  Weber, for instance, what happens is that when ~ ~ -x/2c, the force 
tends to zero, as can be seen from (1) with r-~ 0. In this case the reason 
for an ultimate speed is a decrease in the electrical force and not a change 
in the inertial mass. 

In conclusion, one can say that although we get similar results in all 
these theories, there are mathematical and physical differences between 
them. So they are not equivalent to one another. 
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