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The detected direction of the force onto a permanent magnet, caused by the
displacement current in a wire gap, supports Weber electrodynamics

Steffen Kühn

E-mail: steffen.kuehn@quantino-theory.de

Abstract

This article compares Maxwell’s electrodynamics with the
almost forgotten Weber electrodynamics as test theory by
means of an easily reproducible and simple experiment. For
this purpose, it is first theoretically inferred in two differ-
ent ways that when charging a specially designed capacitor
with a current source because of the displacement current
a force should occur onto a permanent magnet between the
plates, which is diametrically different in its direction in
both theories. Subsequently, the experimental setup is de-
scribed and, based on the results, it is determined that nature
seems to follow Weber’s law of force in this case. The re-
sult shows furthermore that Maxwell’s magnetostatics can
lead to false predictions under specific everyday conditions.

1. Introduction
Maxwell’s equations have been very successful in describ-
ing electromagnetic waves for more than one hundred
years. Their rise to the sole theory of electromagnetism
begins with an article by James Clerk Maxwell in 1865
[1]. In this article he shows that from the complete set of
Maxwell’s equations, including the displacement current, a
wave equation can be derived in which electromagnetic dis-
turbances of the field propagate at the speed of light. His as-
sumption was that light would be an electrical phenomenon.
In 1886 Heinrich Hertz succeeded in experimentally gener-
ating and detecting electromagnetic waves for the first time
[2]. Due to the success of Maxwell’s equations, the elec-
trodynamics of Wilhelm Weber and Carl Friedrich Gauss,
which was widespread at this time, was increasingly for-
gotten because it was not compatible with the invariance
of electric charge. Today it is largely unknown, although
there have always been a few scientists who have studied it
intensively [3] [4] [5].

The majority of scientists do not know Weber’s electro-
dynamics and is probably firmly convinced that Maxwell’s
equations describe everyday physics perfectly due to their
age. But old theories should be revised anew from time
to time. To do that, a test theory is needed. Weber elec-
trodynamics represents such a test theory, even though var-
ious experiments have apparently shown that the electric
charge does not depend on the relative velocity, as the We-
ber force formula (4) would suggest (e.g. [6]). On the other
hand, there are also a number of experiments that support

the force law (21) between current elements which can only
be derived from Weber electrodynamics (e.g. [7]).

This article belongs to the second type and examines
the differences between the laws of force for current ele-
ments resulting from Maxwell’s electrodynamics and We-
ber’s electrodynamics. In particular, the question is investi-
gated whether the magnetic force effect within a capacitor
onto a permanent magnet differs in both theories and, if so,
how this difference can be captured experimentally.

It has to be pointed out that a quantitative analysis of the
magnetic field inside a capacitor is difficult and still subject
of current research [8]. However, it is much easier not to
measure the field strength electronically but only to detect
the force effect and in particular its direction. The theory
behind such an experiment, as well as the experiment itself,
are described in this article. As far as the author knows,
such an experiment has never been carried out before, prob-
ably because no one had previously assumed that there is a
pendant for the displacement current in Weber electrody-
namics as well.

2. Basics
2.1. The force between two uniformly moving point
charges according to Maxwell and Weber

The following is about the electromagnetic force that a uni-
formly moving point charge qs exerts onto another uni-
formly moving point charge qd. The configuration is shown
in figure 1. An approximation that neglects the magnetic
component is the Coulomb law.

2.1.1. Weber force

An extension of Coulomb’s law, which also contains the
magnetic part, is from Wilhelm Weber in 1846 [9]:

FW =

(
1 −

ṙ2

2 c2 +
r r̈
c2

)
qs qd

4 π ε0

r
r3 . (1)

In this, ṙ is the radial velocity and r̈ the radial acceleration.
Because of u := ṙ = ud − us and r̈ = u̇d − u̇s = 0, and by

using the relations

ṙ =
d
dt
√

r · r =
r · ṙ

r
=

r · u
r

(2)
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Figure 1: Configuration

and

r̈ =
d2

dt2

√
r · r =

r · r̈
r
−

(r · ṙ)2

r3 +
ṙ · ṙ

r
= −

(r · u)2

r3 +
v2

r
(3)

the formula

FW (r, u) =

(
1 +

v2

c2 −
3
2

( r
r
u

c

)2
)

qs qd

4 π ε0

r
r3 (4)

follows. Equation (4) is referred to in the following as We-
ber force.

2.1.2. Maxwell force

Also from Maxwell’s equations a formula can be derived
which gives the electromagnetic force between two uni-
formly moving point charges. To get to this, it is neces-
sary to solve Maxwell’s equations. For point charges, the
special solution is called Liénard-Wiechert potentials [10,
page 618].

If the point charge qs is at the coordinate origin at the
time t = 0 and moves uniformly away from there with the
velocity us the scalar potential is

ϕ =
c qs

4 π ε0

√(
c2 t − us r

)2
+

(
c2 − v2

s
) (

r2 − c2 t2) , (5)

while the vector potential A is

A =
us

c2 ϕ. (6)

By using the equations [10, page 451]

E = −∇ϕ −
∂A
∂t

(7)

and
B = ∇ × A (8)

it is possible to obtain the electric field strength

E =
c qs

(
c2 − v2

s

)
(r − us t)

4 π ε0

((
r2 − c2 t2) (

c2 − v2
s
)

+
(
c2 t − r us

)2
) 3

2

(9)

and the magnetic flux density

B =
us

c2 × E. (10)

Replacing r with the linear equation r(t) = r0 + us t in
equation (9) shows that by doing so the time dependency
disappears. This means that the electric field allways re-
tains its shape regardless of the point in time. Because we
are not interested in the temporal shift of the actually time-
independent field of the source charge, we can set t to zero
without loss of generality. It follows

E =
c qs

(
c2 − v2

s

)
r

4 π ε0

(
r2 (

c2 − v2
s
)

+ (r us)2
) 3

2

. (11)

The formula (10) remains unaffected by this.
However, the fields E and B themselves are not actually

measurable, but only their force effects on test charges. In
order to calculate the force F onto another point charge qd,
additionally its velocity ud and the formula of the Lorentz
force F = qd E + qd ud × B is needed. By inserting the
equations (11) and (8) follows the relation

FM(r, us, ud) =

c
(
c2 − v2

s

) (
r + 1

c2 r × us × ud

)
((

c2 − v2
s
)

+
(

r
r us

)2
) 3

2

qs qd

4 π ε0 r3
(12)

for the force of a uniformly moving ideal point charge qs

onto another uniformly moving ideal point charge qd. The
equation (12) is referred to in the following as Maxwell
force.

It should be noted that the 2-th order approximation of
the Maxwell force with respect to the velocities us and ud

has the form

FM(r, us, ud) ≈ FW (r, us) +

1
c2

(
r × us × ud −

v2
s r
2

)
qs qd

4 π ε0 r3 ,
(13)

which corresponds to the Liénard-Schwarzschild force for
small, negligible accelerations ([4, page 146], [3]).

It is obvious that the Maxwell force is not opposite
equal, when source point charge and target point charge are
permutated, because

FM(rd − rs, us, ud) , −FM(rs − rd, ud, us). (14)

Therefore the third of Newton’ s laws is violated for the
Maxwell force. In Maxwell electrodynamics the energy
conservation, the conservation of momentum and the con-
servation of angular momentum are only fulfilled if the
emitted electromagnetic waves are included. The logical
problem, however, is that this should also apply to the mag-
netostatic case, as will be explained later. For the Weber
force (4) at the other hand

FW (rd − rs, ud − us) = −FW (rs − rd, us − ud) (15)
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applies.
Both formulas – the Weber force (4) and the Maxwell

force (12) – therefore differ fundamentally, even in the first
order. Therefore, both cannot be correct at the same time.

2.2. Forces between current elements

Measuring the electromagnetic force directly between two
moving point charges is practically impossible. Much eas-
ier is to measure the force between currents. For this rea-
son, this section analyzes two oppositely equal charges qs

and −qs, which are at the coordinate origin at the time t = 0
and are moving at the speed us/2 and −us/2.

It is obvious that the both oppositely moving charges
will no longer be in the same place after only a short time.
However, if one imagines many such current elements ar-
ranged in a line, it becomes clear that there are always two
oppositely equally sized charges at a location at any given
time, since the neighbors repeatedly replace the outflow-
ing charge carriers. Such a line represents a direct current,
because electric current is defined as the number of charge
carriers passing through a surface transverse to the direction
of movement per unit of time.

The force FWC of such a current element on a charge
qd with the velocity ud at the location r is, when using the
Weber force (4),

FWC = FW (r, ud − us/2) − FW (r, ud + us/2) (16)

=

(
3

( r
r
us

) ( r
r
ud

)
− 2 us ud

) qs qd

4 π ε0 c2

r
r3 . (17)

From the second order approximation (13) of the Maxwell
force follows

FMC = FM(r,−us/2, ud) − FM(r,+us/2, ud) (18)

=
qs qd

4 π ε0 c2 r3 r × us × ud. (19)

2.3. Magnetic forces in a wire gap

The force of a current element on another current element
is the sum of the force of the current element on a posi-
tive point charge qd at the location r with the velocity ud/2
and the force on an opposite equal point charge at the same
location with the opposite velocity. In Maxwell’s electro-
dynamics, the force of a current element on a point charge
is given by the equation (19). The force of a current ele-
ment onto another current element is therefore because of
qd ud/2 + (−qd) (−ud/2) = qd ud and 1/µ0 = c2 ε0,

FM(r) =
µ0 qs qd

4 π r3 r × us × ud. (20)

In Weber electrodynamics this force is given by the equa-
tion (17) and it applies

FW (r) =
µ0 qs qd

4 π
r
r3

(
3

( r
r
us

) ( r
r
ud

)
− 2 us ud

)
. (21)

Both formulas (20) and (21) are regarded in the scien-
tific literature as variants of Ampère’s law, whereby it is

still discussed whether both laws are equivalent [11] [12]
[13]. Note that formula (20) is sometimes referred to as
Biot-Savart or Grassmann force [4].

It is undisputed, however, that both equations lead to the
same magnetic field for closed conductor loops and homo-
geneous current densities. For non-closed conductor loops,
however, both equations are by no means equivalent. By
using a current source, for example, it is possible to let a
direct current flow into an electrical conductor with a gap
for a comparatively long time. This will now be discussed.

To get the force that an entire wire exerts onto a current
element, the line integral along the wire has to be calcu-
lated. Now two forces shall be calculated, namely

• the force of a wire which is located on the x-axis,
begins at −∞ and ends at the coordinate origin and

• the force of a wire which is located on the x-axis,
begins at the coordinate origin and ends at +∞.

Of course, no permanent current flow is possible in such
wire segments, since the current flow changes the net
charge over time. On short time scales, however, the cur-
rent is sufficiently uniform so that the configuration can be
considered quasi-stationary, especially if a current source is
used instead of a voltage source.

With qs → λs and Is = λs vs ex for the Maxwell electro-
dynamics follows

F(±)
IM(r, ud) =

∞∫
0

FM(r ± s ex) ds (22)

=
µ0 Is qd r × ex × ud

4 π r (r ± x)
. (23)

For Weber electrodynamics, on the other hand, the result is

F(±)
IW (r, ud) =

∞∫
0

FW (r ± s ex) ds (24)

= F(±)
IM(r, ud) ±

µ0 Is qd (r · ud) r
4 π r3 , (25)

which is the same result as in Maxwell’s electrodynamics
plus an additional term. The plus sign is valid for the wire
to the left of the y-z plane and the minus sign for the wire
to the right.

Figure 2 shows in (A) the fields of this force onto right
hand directed current elements for a wire stub that is just
positively charging. At the top the field is shown which
follows from Maxwell electrodynamics. Below, the corre-
sponding field is shown, which is predicted by Weber elec-
trodynamics. It can be noticed, that – as was to be ex-
pected – currents which flow in the same direction attract
each other.

In figure 2 (B) the fields for current elements with flow
direction upwards are shown. It is obvious that the fields in
(A) as well in (B) become more and more similar to each

3



Figure 2: The fields of the magnetic force (not flux densities) for Weber (bottom) and Maxwell (top) onto current elements
with flow direction to the right (A) and flow direction upwards (B).

other on the left. This is also the reason why it is so difficult
to distinguish between Maxwell and Weber electrodynam-
ics simply by measuring the forces around direct currents.
Only where the wire ends the fields differ. It is obvious that
exactly this should be exploited in order to decide experi-
mentally between the two force laws.

It should be noted that for Maxwell’s electrodynamics,
the field of a wire stub cannot only be determined by inte-
gration, but also by solving the Maxwell equations directly.
In the next section this calculation is performed and it is
shown that it is actually not necessary to use the Liénard-
Wiechert potentials.

But back to the experiment: The formulas (23) and (25)
represent the force which the wire stub asserts onto current
elements. For experiments, however, it is much more in-
teresting to know which force and which torque acts on a
small permanent magnet, since such a magnet is not influ-
enced by an electric field. Both will be calculated in the
following. For this purpose it is assumed that at r a very
small conductor loop with the magnetic dipole moment µ
is located (equivalent to a small permanent magnet). The
figure 3 shows the configuration in form of a sketch.

Let ea and eb be two mutually perpendicular unit vectors
for which the equation

ea × eb = µ/µ (26)

applies. For the net force FL on a conductor loop with the
radius R, as one can see from the sketch 3, follows the equa-
tion

FL = R

2 π∫
0

FI

(
r + R eφ (φ) ,

Id

λd
eφ (φ + π/2)

)
dφ (27)

Is

~µ

~r

Id

~ea

~eb

N

S

Figure 3: Small conductor loop as model of a permanent
magnet in the vicinity of the wire stub

with qd → λd,

eφ(φ) := ea cos(φ) + eb sin(φ) (28)

and
µ = Id πR2. (29)

For the torque ML follows quite equivalent according to the
sketch the curve integral

ML = R2

2 π∫
0

eφ (φ)×

FI

(
r + R eφ (φ) ,

Id

λd
eφ (φ + π/2)

)
dφ.

(30)

In order to solve the complicated integrals for the forces
(23) and (25) it is useful to take advantage of the fact that
the radius R of the conductor loop is very small, which al-
lows a Taylor approximation of first order of FI at zero.
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The resulting approximation can then be used to obtain the
force

F(±)
LM(r) =

µ0 Is

4 π r3

(
r2

r ± x
µ × ex+

(2 r ± x) r ± r2 ex

(r ± x)2 (µ × r) · ex

) (31)

for Maxwell electrodynamics by using the equations (26)
and (29). Weber electrodynamics, on the other hand, gives
the force

F(±)
LW (r) = F(±)

LM(r) ±
µ0 Is r × µ

4 π r3 . (32)

For the torque, Maxwell electrodynamics provides after cal-
culation of the integral (30) and simplification of the terms
the solution

M(±)
LM(r) =

µ0 Is r × ex × µ

4 π r (r ± x)
. (33)

For electrodynamics according to Weber follows

M(±)
LW (r) = M(±)

LM(r) ±
µ0 Is r × µ × r

4 π r3 . (34)

The figures 4 and 5 show the field of the two — slightly
separated – wires on a permanent magnet with the north
pole aligned into the drawing plane. Both wires together
form a capacitor of low capacitance.

Let d be the width of the air gap. The net force is then
given by the equation

FT (r) = F(+)
L (r − d/2 ex) + F(−)

L (r + d/2 ex). (35)

It is obvious that in the middle of the wire gap forces occur
that differ in sign. For Maxwell electrodynamics, µ = µ ey
(north pole points into the drawing plane) applies

FT M(0) = −
µ0 Is µ

π d2 ez, (36)

while Weber electrodynamics predicts force

FTW (0) = +
µ0 Is µ

π d2 ez. (37)

Both theories lead here to opposite statements, which
makes a detection of this force direction almost predestined
for an experiment.

By the way, there is also something about torque that is
worth mentioning. From equation (33) it is easy to deduce
that M(±)

LM(r) · µ = 0 applies, i.e. in Maxwell’s electrody-
namics is nowhere a torque which is aligned parallel to the
magnetic moment µ. This is not the case in Weber elec-
trodynamics! For example, when the magnet is positioned
directly at the end of the wire stub. This is quite remark-
able as it goes beyond the frame given by the magnetic field
line concept. On the other hand, such a torque is necessary
to ensure the conservation of the total angular momentum,
since the magnet generates an angular momentum on the
wire as well. A similar statement applies to the magnetic
force in the air gap, since only in Weber electrodynamics
the conservation of momentum is fulfilled.

2.4. Solution of Maxwell’s equations for a wire stub

In this section, the field which was calculated in the
previous section is determined again directly based on
Maxwell’s equations. This serves above all to show that
the statement of Maxwell’s electrodynamics regarding the
previously calculated force effects does not depend on the
solution path.

In this section the full set of Maxwell equations in vac-
uum is used:

∇ · E =
ρ

ε0
(38)

∇ · B = 0 (39)

∇ × E = −
∂B
∂t

(40)

∇ × B = µ0 j + µ0 ε0
∂E
∂t
. (41)

In the following, the electromagnetic field of a direct
current-carrying wire is calculated, which lies exactly on
the x-axis, begins somewhere far to the left and ends ex-
actly at the coordinate origin. It is obvious that due to the
current flow and the discontinuity, the wire cannot remain
electrically neutral, but must charge or discharge over time.
This results in a time-varying electric field, which in turn
must be taken into account in Ampère’s circuital law (41).

It is again noted that even in a non-closed conductor
loop a direct current can be maintained for a certain time,
i.e. when the wire segment is charged via a current source.
The current can flow hereby until the amount of charge in
the wire segment has become so large that the technical lim-
its of the current source are exceeded. As model for the
current density, therefore the time independent ansatz

j =
Is

2

(
1 − erf

(
x
√

2 ν

))
g(y, ν) g(z, ν) ex (42)

can be used. Is represents the current and g the Gaussian
function:

g(u, ν) :=
1
√

2 π ν
exp

(
−

u2

2 ν

)
. (43)

The variance ν can be very small for a real wire. For
ν → 0, equation (42) turns into the distribution (52) and it
becomes obvious that the current density ansatz (42) is in-
deed a smoothed modell for the already discussed current-
carrying wire which lies exactly on the x-axis, begins some-
where far to the left and ends exactly at the coordinate
origin. The reason for the smoothing is that it eliminates
singularities and makes the function continuously differen-
tiable, which is a requirement for using Maxwell’s equa-
tions.

Inserting of equation (42) into the continuity equation

∂ρ

∂t
+ ∇ · j = 0 (44)
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Figure 4: The force effect of a direct current according to Maxwell onto a permanent magnet with north pole pointing into the
drawing plane. The current can be driven by a current source.

yields the charge density

ρ = −

∫
∇ · j dt =

Is t

(2 π ν)
3
2

e−
r2
2 ν (45)

with r2 = x2 + y2 + z2, assuming that the wire is electrically
neutral at t = 0. The calculated charge density shows that
the wire becomes electrically charged where it ends, since
the current cannot flow on here.

To determine the electric field of this charge, the first
Maxwell equation in integral form

ε0

	
∂V

E · dA =

$
V
ρ dV (46)

is used. The integral on the right corresponds to the charge
Q enclosed in the volume. If a sphere with radius R is se-
lected as volume than

Q =

2 π∫
0

π∫
0

R∫
0

ρ r2 sin(θ) dr dθ dφ, (47)

i.e.

Q = Is t

erf
(

R
√

2 ν

)
−

√
2
π ν

R e−
R2
2 ν

 . (48)

Because of the spherical symmetry of the charge distribu-
tion ρ, it can be concluded that the electric field E is also
radially symmetric and that the field lines are always per-
pendicular to the surface of the sphere. The integral on the
right side of the equation (46) can therefore be solved im-
mediately and the result is

ε0

	
∂V

E · dA = ε0 E 4 πR2. (49)

From the results (48) and (49) and the symmetry follows
then

E =
Is t r

4 π ε0 r3

erf
(

r
√

2 ν

)
−

√
2
π ν

r e−
r2
2 ν

 . (50)

Next, the magnetic flux density B can be determined
by using the fourth of Maxwell’s equations (41). For this
purpose the current density (42) and the electric field (50)
are used. Afterwards, Poincarés-Lemma can be applied and
one gets to

B =

Is µ0

(
1 − x

r erf
(

r
√

2 ν

)
− e−

r2−x2
2 ν

(
1 − erf

(
x
√

2 ν

)))
ex × r

4 π (r2 − x2)
.

(51)
Inserting the equations (42), (50) and (51) in the four

Maxwell equations (38) to (41) shows that all conditions are
fulfilled. The equations (50) and (51) therefore describe the
fields which, according to Maxwell’s electrodynamics, re-
sult from the charging process of the wire stub. It should be
noted that the magnetic flux density B is time-independent.
This means that this is a special case of magnetostatics.

Finally, the results can be simplified by calculating the
limit ν→ 0. For the current density follows

j = Is (1 − Θ (x)) δ(y) δ(z) ex, (52)

with Θ being the Heaviside step function and δ the Dirac
delta function. The electric field strength becomes

E =
Is t r

4 π ε0 r3 , (53)

and the magnetic flux density

B =
Is µ0

4 π (r2 − x2)

(
1 −

x
r

)
ex × r =

Is µ0 ex × r
4 π r (r + x)

. (54)
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Figure 5: The force effect of a direct current according to Weber onto a permanent magnet with north pole pointing into the
drawing plane. The current can be driven by a current source.

Because of

lim
x→−∞

r(r + x) =
1
2

(y2 + z2) (55)

and
lim

x→−∞
ex × r = ex × r (56)

this magnetic field to the left of the y-z plane changes into
the usual field of a line current. On the right, however, the
strength of the field decreases with the square of the dis-
tance to the y-z plane, but otherwise retains its shape and
orientation unchanged, just as if the current were still flow-
ing slightly beyond the y-z plane.

With the help of the Lorentz force

F = qd E + qd ud × B, (57)

and by inserting the equations (53) and (54) one gets finally
the force

F =
qd Is t r
4 π ε0 r3 +

qd Is µ0 r × ex × ud

4 π r (r + x)
, (58)

which the wire stub exerts on a point charge qd with the
velocity ud according to Maxwell’s equations. A compari-
son shows that the magnetic part of the force corresponds
exactly to formula (23).

3. Experiment
3.1. Experimental setup

In section 2.3 a way was identified to experimentally de-
termine whether magnetostatics is correctly described by
Maxwell’s electrodynamics or by Webers approach. It was
found that the simplest way is to measure the magnetic
force on a permanent magnet within a wire gap. Both force

laws predict the same magnitude for the force, but the pre-
diction differs diametrically in terms of direction. This pre-
destines this effect for an experiment, since the direction of
a force can be detected much more easily than to measure
its magnitude.

In figure 6 the basic experimental setup is shown. It
consists of an upside-down U-shaped capacitor with an air
gap. Exactly inside the gap is a rod-shaped permanent mag-
net hanging from a shielded piezoelectric cantilever force
sensor [14] (sensor: EKULIT EPZ-27MS44W). By closing
a relay, the capacitor can be charged from 0 to 7kV via a
series resistor. During this, a charging current flows for a
short time in the plates and a displacement current within
the wire gap. The permanent magnet, which is aligned with
the north pole towards the observer, experiences during this
charging event a magnetic force, which z-component can
be detected as a voltage change of the piezoelectric sen-
sor. The permanent magnet itself consists of 28 neodymium
magnets with a diameter of 8mm and a total length of
86mm. To avoid dielectric breakdowns, the magnet was
coated with an insulating coating.

As it becomes clear, the experiment is simple and direct.
The only challenge is to reliably detect the small force that
only acts for a short time. Furthermore, an electromagnetic
pulse is generated during the charging event, which influ-
ences the experiment. Therefore, great importance must be
attached to shielding. For this reason, the cantilever force
sensor, on which the permanent magnet is suspended, was
wrapped with electrically insulating foil and then with alu-
minium foil. The aluminium foil was then connected to the
shield of a stereo audio cable in order to completely pro-
tect the two differential lines of the piezo up to the likewise
shielded instrumentation amplifier.

The schematic of the charging circuit is shown in fig-
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Figure 6: Experimental setup: capacitor and permanent magnet (north pole directed towards the observer)

ure 7. Here CM is the measuring capacitor shown in figure
6. A measurement gave a capacity of about 8pF, of which
only about one percent is due to the air gap. Since the high
voltage source has a very large internal resistance Ri, there
is a charging capacitor CS parallel to the measuring capaci-
tor, which ensures that the voltage of 7kV does not collapse
when the relay S 1 is closed and that there is enough charge
available to charge the measuring capacitor.

Figure 7: charging circuit

As can be seen from the circuit, the measuring capaci-
tor needs about 2.4µs to be charged to 95 percent after clos-
ing the relay S 1, because the time constant τ has the value
RC CM = 0.8µs. This time constant specifies the pattern
that can be expected from the piezo. The relay S 2 and the
resistor RD are used to discharge the measuring capacitor
and to establish a defined initial state.

Figure 8 shows the schematic of the amplifier. The
INA111 is an integrated instrumentation amplifier, i.e. a
differential amplifier with very high common mode rejec-
tion. Like the measuring cable to the sensor, the amplifier
was completely shielded by installation in a metal housing.

Figure 8: measuring amplifier

3.2. Results and evaluation

The forces generated at the piezoelectric cantilever force
sensor are comparatively small. The magnetic moment
µ of the used neodymium magnet can be roughly esti-
mated to the value 3.8Am2 with the help of the formula
µ ≈ volume · 875000A/m. With a gap width of 12mm and
an initial charge current of 70mA, the formula (36) respec-
tively (37) gives a force of at most ±738µN, which corre-
sponds to the weight force acting on an object with a mass
of 75mg. In reality, this force will be much smaller, since
only a fraction of the current flowing into the measuring
capacitor is effective as displacement current in the air gap.

Fortunately, in this experiment it is not necessary to
measure the magnitude of the force, since only its direc-
tion is of interest. For this reason, it is sufficient to clearly
identify the force effect and to distinguish it from existing
interference influences. Figure 9 shows in (A) the mea-
sured voltages of six different individual measurements on
the piezoelectric cantilever force sensor immediately after
switching on the relay S 1, exactly for the case shown in
Figure 6. The current flows here from left to right and the
north pole points in the direction of the beholder. (B) shows
the voltages measured when the current flows from right to
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Figure 9: Results: In (A) is Plus on the left and Minus on the right. For (B) the capacitor is rotated, but the north pole is still
pointing towards the beholder.

left.
What is noticeable at first when looking at the figure 9

are the seemingly random peaks, where the first peak al-
ways occurs at about t = 14µs. The reason for this delay
is that the relay needs some time between triggering and
closing. The peak itself is an effect of the electromagnetic
pulse in the oscilloscope itself and occurs even when the
magnet is disconnected from the force sensor or the ampli-
fier is turned off. The peaks can therefore be regarded as
disturbances. The voltage curves following a peak, how-
ever, are important for the experiment.

As can be seen, the voltage in figure 9 (A) approaches
the x-axis after the first peak coming from below, while the
opposite is true for (B). The shape of the voltage curve is
thereby exponential, where the time constant is about 2µs.
This is in good agreement with the time constant previously
derived from the circuit in Figure 7. It is therefore possible
to conclude that the voltage curves observed are each due
to the magnetic force, which is proportional to the charging
current in the capacitor.

The randomly distributed peaks following the first peak
show the significant pattern as well. The randomness of the
occurrence can be explained by the bouncing of the relay,
which opens and closes several times for a short time after
triggering.

The bottom line is that if the current flows from left to
right, the cantilever force sensor outputs a voltage change
downwards, while if the current flows from right to left, the

voltage rises. By tapping the force sensor very lightly, it
could be determined that a voltage drop corresponds to a
downward pulling force. A voltage rise, on the other hand,
corresponds to a force that pushes from bottom to top.

This finally makes it evident that a charging current
flowing from right to left results in a downward force, pro-
vided that the north pole of the magnet points in the direc-
tion of the beholder. However, a current flowing from right
to left pushes the magnet upwards. This corresponds to the
predictions of Weber electrodynamics, as can be seen in the
figures 4, 5 and 6, and shows at the same time that Maxwell
electrodynamics is in contradiction with the experiment.

4. Summary and conclusion

This article showed that Weber and Maxwell electrodynam-
ics can be experimentally distinguished by detecting the
magnetic force directions within capacitors that are being
charged or discharged. Subsequently, such an experiment
was carried out and it was determined on the basis of the
results that the detected force direction does not correspond
to the predictions of Maxwell’s electrodynamics in combi-
nation with the Lorentz force and that nature seems here to
follow Weber’s law of force.

The consequences of this statement are far-reaching, be-
cause this indicates that Maxwell electrodynamics seems
to provide false predictions under specific everyday condi-
tions. Should this be the case, it would be a veritable prob-
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lem for modern physics, since practically everything that
was added to physics in the twentieth century is based on
Maxwell’s equations and is thus indirectly affected. Fur-
thermore, it is a disadvantage for engineering if the pre-
dicted forces in simulations and calculations for displace-
ment currents are incorrect. This probably means that some
technical applications have not yet been developed.

For this reason, the author feels compelled to urge the
scientific community to repeat and analyze theory and ex-
periment of this article as soon and carefully as possible.
Furthermore, a way must be found to improve the existing
theory of electrodynamics so that the magnetic forces can
be predicted correctly in the case of spatially inhomoge-
neous current densities.
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