Studies on A. Einstein. B. Podolsky and N. Rosen argument that “quantum mechanics is not a complete theory,” III: Illustrative examples and applications
Abstract
In the preceding Papers I and II of this series, we have presented a review and upgrade of basic mathematical, physical and chemical methods, and provided a confirmation of the apparent proof of the EPR argument [1] that extended particles within physical media (interior dynamical problems) admit classical counterparts [9], while Einstein’s determinism appears to be progressively verified with the increase of the density of the medium [10]. In this third and final paper of the series, we shown that the EPT argument in general, and Einstein’s determinism in particular, appear to be progressively verified in the structure of mesons, baryon, nuclei, and molecular bonds while being fully verified at the limit of gravitational collapse. We additionally show, apparently for the first time, the validity of the EPR final statement to the effect that the wavefunction [of quantum mechanics] does not provide a complete description of the physical reality” since the covering isowavefunctions of hadronic mechanics provide an otherwise impossible representation of all characteristics of various physical and chemical interior systems existing in nature.
Keywords
Full Text:
PDFReferences
A. Einstein, B. Podolsky , and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev., vol. 47, p. 777 (1935), www.eprdebates.org/docs/epr-argument.pdf
N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. Vol. 48, p. 696 (1935) www.informationphilosopher.com/solutions/scientists/bohr/EPRBohr.pdf
J.S. Bell: “On the Einstein Podolsky Rosen paradox” Physics Vol. 1, 195 (1964).www.eprdebates.org/docs/j.s.bell.pdf
J. Bell: ”On the problem of hidden variables in quantum mechanics” Reviews of Modern Physics Vol. 38 No. 3, 447 (July 1966).
J. von Neumann, Mathematische Grundlagen der Quantenmechanik,Springer, Berlin (1951).
Stanford Encyclopedia of Philosophy, “bell’s Theorem” (first published 2005, revised 2019) plato.stanford.edu/entries/bell-theorem/
D. Bohm, Quantum Theory, Dover, New Haven, CT (1989).
D. Bohm, J. Bub: ”A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory” Reviews of Modern Physics 38 Vol. 3, 453 (1966).
R. M. Santilli, “Isorepresentation of the Lie-isotopic SU(2) Algebra with Application to Nuclear Physics and Local Realism,” Acta Applicandae Mathematicae Vol. 50, 177 (1998),http://www.santilli-foundation.org/docs/Santilli-27.pdf
R. M. Santilli, “Studies on the classical determinism predicted by A. Einstein, B. Podolsky and N. Rosen,” Ratio Mathematica Volume 37, pages 5-23 (2019), www.eprdebates.org/docs/epr-paper-ii.pdf
R. M. Santilli, “Studies on A. Einstein, B. Podolsky, and N. Rosen argument that “quantum mechanics is not a complete theory, ” I: Basic methods,” submitted for publication,” submitted for publication.
R. M. Santilli, “Studies on A. Einstein, B. Podolsky, and N. Rosen argument that “quantum mechanics is not a complete theory, II: Appar ent confirmation of the EPR argument,” Submitted for publication
E. Fermi Nuclear Physics, University of Chicago Press (1949).
J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, Wiley and Sons (1952).
K. R. Popper, Quantum Theory and the Schism in Physics, Unwin Hyman Ltd (1982).
J. Dunning-Davies, Exploding a Myth: Conventional Wisdom or Scientific Truth?, Horwood Publishing (2007).
J. Horgan, The End of Science, Basic Books (2015).
R. M. Santilli, “On a possible Lie-admissible covering of Galilei’s relativity in Newtonian mechanics for nonconservative and Galilei form- non-invariant systems,” Hadronic J. Vol. 1, 223-423 (1978), available in free pdf download from www.santilli-foundation.org/docs/Santilli-58.pdf
R. M. Santilli, “Need of subjecting to an experimental verification the validity within a hadron of Einstein special relativity and Pauli exclu sion principle,” Hadronic J. Vol. 1, pages 574-901 (1978), http://www.santilli-foundation.org/docs/santilli-73.pdf
R. M. Santilli, ”An intriguing legacy of Einstein, Fermi, Jordan and others: The possible invalidation of quark conjectures,” Found. Phys. Vol. 11, 384-472 (1981),www.santilli-foundation.org/docs/Santilli-36.pdf
R. M. Santilli, “Relativistic hadronic mechanics: non-unitary axiom- preserving completion of quantum mechanics” Foundations of Physics Vol. 27, p.625-739 (1997) www.santilli-foundation.org/docs/Santilli-15.pdf
R. M. Santilli, Foundation of Theoretical Mechanics, Springer-Verlag, Heidelberg, Germany, Volume I (1978) The Inverse Problem in Newtonian Mechanics, www.santilli-foundation.org/docs/Santilli-209.pdf
R. M. Santilli, Foundation of Theoretical Mechanics, Springer-Verlag, Heidelberg, Germany, Vol. II (1982) Birkhoffian Generalization of Hamiltonian Mechanics, www.santilli-foundation.org/docs/santilli-69.pdf
D. S. Sourlas and G. T. Tsagas, Mathematical Foundation of the Lie- Santilli Theory, Ukraine Academy of Sciences 91993), www.santilli-foundation.org/docs/santilli-70.pdf
R. M. Santilli, The Physics of New Clean Energies and Fuels According to Hadronic Mechanics, Special issue of the Journal of New Energy, 318 pages (1998) www.santilli-foundation.org/docs/Santilli-114.pdf
R. M. Santilli, “Isonumbers and Genonumbers of Dimensions 1, 2, 4, 8, their Isoduals and Pseudoduals, and ”Hidden Numbers,” of Dimension 3, 5, 6, 7,” Algebras, Groups and Geometries Vol. 10, p. 273-295 (1993). www.santilli-foundation.org/docs/Santilli-34.pdf
Chun-Xuan Jiang, t Foundations of Santilli Isonumber Theory, International Academic Press (2001), www.i-b-r.org/docs/jiang.pdf
R. M. Santilli, “Nonlocal-Integral Isotopies of Differential Calculus, Mechanics and Geometries,” in Isotopies of Contemporary Mathematical Structures,” Rendiconti Circolo Matematico Palermo, Suppl. Vol. 42, p. 7-82 (1996),www.santilli-foundation.org/docs/Santilli-37.pdf
S. Georgiev, Foundation of the IsoDifferential Calculus, Volume I, to VI, r (2014 on). Nova Academic Publishers
R. M. Santilli, Foundations of Hadronic Chemistry, with Applications to New Clean Energies and Fuels, Kluwer Academic Publishers (2001), www.santilli-foundation.org/docs/Santilli-113.pdf Russian translation by A. K. Aringazin. http://i-b-r.org/docs/Santilli-Hadronic-Chemistry.pdf
I. Gandzha and J. Kadeisvili, New Sciences for a New Era: Mathematical, Physical and Chemical Discoveries of Ruggero Maria Santilli, Sankata Printing Press, Nepal (2011), www.santilli-foundation.org/docs/RMS.pdf
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume I (1995), Mathematical Foundations, href=”http://www.santilli-foundation.org/docs/Santilli-300.pdf
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume II (1994), Theoretical Foundations, www.santilli-foundation.org/docs/Santilli-301.pdf
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume III (2016), Experimental verifications, www.santilli-foundation.org/docs/elements-hadronic-mechanics- iii.compressed.pdf
R. M. Santilli, ”Isotopies of the spinorial covering of the Poincare´ symmetry,” Communication of the Joint Institute for Nuclear Research, Dubna, Russia, No. E4-93-252 (1993).
R. M. Santilli, ”Recent theoretical and experimental evidence on the synthesis of the neutron,” Communication of the JINR, Dubna, Russia, No. E4-93-252 (1993), published in the Chinese J. System Eng. and Electr. Vol. 6, 177 (1995), www.santilli-foundation.org/docs/Santilli-18.pdf
Bijan Davvaz and Thomas Vougiouklis, A Walk Through Weak Hyper- structures, Hv-Structures, World Scientific (2018)
R. M. Santilli, Isodual Theory of Antimatter with Applications to Antigravity, Grand Unifications and Cosmology, Springer (2006). www.santilli-foundation.org/docs/santilli-79.pdf
Hadronic Technologies Corporation, Directional Neutron Source, http://hadronictechnologies.com/docs/TEC-DNS-3Za.pdf
H. Rutherford, Proc. Roy. Soc. A,Vol. 97, 374 (1920).
C. S. Burande, “Santilli Synthesis of the Neutron According to Hadronic Mechanics,” American Journal of Modern Physics 5(2-1): 17- 36 (2016) www.santilli-foundation.org/docs/pdf3.pdf
R. M. Santilli, ”The etherino and/or the Neutrino Hypothesis?” Found. Phys. Vol. 37, p. 670 (2007) www.santilli-foundation.org/docs/EtherinoFoundPhys.pdf
R. M. Santilli, ”Apparent consistency of Rutherford’s hypothesis on the neutron as a compressed hydrogen atom, Hadronic J.Vol. 13, 513 (1990). www.santilli-foundation.org/docs/Santilli-21.pdf
R. M. Santilli, “A structure model of the elementary charge, Hadronic J. Vol. 4, pages 770-784 (1981)www.santilli-foundation.org/docs/Santilli-03.pdf
E. A. Nersesov, Fundamentals of atomic and nuclear physics. Mir Publishers, Moscow (1990).
R. M. Santilli, “Nonlocal formulation of the Bose-Einstein correlation within the context of hadronic mechanics,” Hadronic J. Vol. 15, pages 1-50 and 81-133 (1992), www.santilli-foundation.org/docs/Santilli-116.pdf
F. Cardone and R. Mignani, “Nonlocal approach to the Bose-Einstein correlation, Europ. Phys. J. C 4, 705 (1998). See also “Metric description of hadronic interactions from the Bose-Einstein correlation,” JETP Vol. 83, p.435 (1996). www.santilli-foundation.org/docs/Santilli-130.pdf
R. M. Santilli, ”Apparent Experimental Confirmation of Pseudo- protons and their Application to New Clean Nuclear Energies,” International Journal of Applied Physics and Mathematics Volume 9, Number 2 (2019), www.santilli-foundation.org/docs/pseudoproton-verification- 2018.pdf
S. S. Dhondge, ”Studies on Santilli Three-Body Model of the Deuteron According to Hadronic Mechanics,” American Journal of Modern Physics,Vol. 5, No. 2-1, pp. 46-55 (2016), www.santilli-foundation.org/docs/deuteron-2018.pdf
R. M. Santilli, “A quantitative isotopic representation of the deuteron magnetic moment,” in Proceedings of the International Symposium ’Dubna Deuteron-93, Joint Institute for Nuclear Research, Dubna, Russia (1994), www.santilli-foundation.org/docs/Santilli-134.pdf
R. M. Santilli, ”Use of relativistic hadronic mechanics for the exact representation of nuclear magnetic moments and the prediction of new recycling of nuclear waste” arXiv:physics/970401 (1996), www.santilli-foundation.org/docs/9704015.pdf
R. M. Santilli and D. D. Shillady,, “A new isochemical model of the hydrogen molecule,” Intern. J. Hydrogen Energy Vol. 24, pages 943- 956 (1999) www.santilli-foundation.org/docs/Santilli-135.pdf
R. M. Santilli and D. D. Shillady, “A new isochemical model of the water molecule,” Intern. J. Hydrogen Energy Vol. 25, 173-183 (2000) www.santilli-foundation.org/docs/Santilli-39.pdf
A. A. Bhalekar and R. M. Santilli, ”Studies in the reduction of s table matter to isoprotons and isoelectrons,” to appear.
J. N. Murrell, S. F. A . Kettle ands J. M. Tedder, The Chemical Bond, John Wiley and Sons (1985).
R. Briown, Photoionization of thye hydrogen and helium molecules,” The Astrophysics Journal, Vol. 164, pages 387-398 (1971).
R. M. Santilli, ”Method and Apparatus for the industrial production of new hydrogen-rich fuels, ” United States Patent Number 9,700,870,
B2, July 1, 2017 http://www.santilli-foundation.org/docs/Magnecule-patent.pdf
Y. Yang, J. V. Kadeisvili, and S. Marton, ”Experimental Confirmations of the New Chemical Species of Santilli Magnecules,” The Open Physical Chemistry Journal Vol. 5, pages 1-16 (2013), www.santilli-foundation.org/docs/Magnecules-2012.pdf
R. M. Santilli, ”The Novel Hyper Combustion for the Complete Combustion of Fossil Fuels”, Intern. Journal of Chemical Engineering and Applications, Vol. 10, No. 1, February (2019), www.santilli-foundation.org/docs/hypercombustion-2019.pdf
R. M. Santilli, ”Additional Confirmation of the ”Intermediate Controlled Nuclear Fusions” without harmful radiation or waste,” in Proceedings of the Third International Conference on the Lie-Admissible Treatment of Irreversible Processes, Kathmandu University pages 163-177 (2011), www.santilli-foundation.org/docs/ICNF-3.pdf
J. V. C. Lynch and Y. Yang, ”Confirmations of Santilli Intermediate Nuclear Fusions of Deuteron and Carbon into Nitrogen without Radiations.” The Open Physical Chemistry Journal Vol. 5, pages 17 (2013) www.santilli-foundation.org/docs/ICNF-Conf-2013.pdf
R. M. Santilli, ”The novel magnecular species of hydrogen and oxygen with increased specific weight and energy content,” Intern. J. Hydrogen Energy Vol. 28, 177-196 (2003), www.santilli-foundation.org/docs/Santilli-38.pdf
Day D. TCD analysis and density measurements of Santilli Magne- hydrogen. Eprida Laboratory report dated 11/10/11,www.santilli-foundation.org/docs/Eprida-MH-Certification-10- 11.pdf
S. P. Zodape, ”The MagneHydrogen in Hadronic Chemistry,” AIP Proceedings 1558, 648 (2013); doi: 10.1063/1.4825575, www.santilli-foundation.org/docs/sangesh-Greece.pdf
Y. Yang, J. V. Kadeisvili, and S. Marton, ”Experimental Confirmations of the New Chemical Species of Santilli MagneHydrogen,” International Journal Hydrogen Energy Vol. 38, page 5002 (2013), www.santilli-foundation.org/docs/MagneHydrogen-2012.pdf
R. M. Santilli, ”Isotopic quantization of gravity and its universal isopoincare’ symmetry” in the Proceedings of ”The Seventh Marcel Gross- mann Meeting in Gravitation, SLAC 1992, R. T. Jantzen, G. M. Keiser and R. Ruffini, Editors, World Scientific Publishers pages 500-505(1994), www.santilli-foundation.org/docs/Santilli-120.pdf
R. M. Santilli, ”Unification of gravitation and electroweak interactions” in the proceedings of the Eight Marcel Grossmann Meeting in Gravitation, Israel 1997, T. Piran and R. Ruffini, Editors, World Scientific, pages 473-475 (1999), www.santilli-foundation.org/docs/Santilli-137.pdf
A. K. Aringazin, “Toroidal configuration of the orbit of the electron of the hydrogen atom under strong external magnetic fields,” Hadronic J. 24, 134 (2001), www.santilli-foundation.org/docs/landau.pdf
R. M. Santilli, ”Additional Confirmation of the ”Intermediate Controlled Nuclear Fusions” without harmful radiation or waste,” in Proceedings of the Third International Conference on the Lie-Admissible Treatment of Irreversible Processes, Kathmandu University pages 163-177 (2011), www.santilli-foundation.org/docs/ICNF-3.pdf
J. V. C. Lynch and Y. Yang, ”Confirmations of Santilli Intermediate Nuclear Fusions of Deuteron and Carbon into Nitrogen without Radiations.” The Open Physical Chemistry Journal Vol. 5, pages 17 (2013) www.santilli-foundation.org/docs/ICNF-Conf-2013.pdf
R. M. Santilli, “Rudiments of isogravitation for matter and its isodual for antimatter,” American Journal of Modern Physics Vol. 4(5), pages 59-75 (2015) www.santilli-foundation.org/docs/isogravitation.pdf
Schwartzchild K., ” Uber das Gravitationsfeld eines Massenpunktes- nack der Einsteinshen Theorie, ” Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech., 189-196 (1916).
Schwartzchild K., ”Uber das Gravitationsfeld einer Kugel aus inkom- pressibler Flussigkeit nach Einsteinshen Theorie, ” Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech.,424-434 (1915).
R. M. Santilli, Invited Plenary Lecture ”The Novel Sustainable Hyper- Combustion And Hyper-Furnaces of Thunder Energies Corporation, International Summit on Sustainable Clean Energies, Hainan Island, China, November 6 to 10, (2016), www.santilli-foundation.org/news.html
M. Gell-Mann, Physics Letters Vol. 8, 215-215 (1964).
C. Borghi, C. Giori C. and A. Dall’Olio, Communications of CEN- UFPE, Number 8 (1969) and 25 (1971), reprinted in the (Russian) Phys. Atomic Nuclei, Vol. 56, p. 205 (1993).
R. M. Santilli, “Lie-isotopic Lifting of the Minkowski space for Extended Deformable Particles,” Lettere Nuovo Cimento Vol. 37, p. 545- 551 (1983), www.santilli-foundation.org/docs/Santilli-50.pdf
R. M. Santilli, ”Isominkowskian Geometry for the Gravitational Treatment of Matter and its Isodual for Antimatter,” Intern. J. Mod- ern Phys. D Vol. 7, 351 (1998), www.santilli-foundation.org/docs/Santilli-35.pdf
R. M. Santilli, Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vols. I Mathematical Foundations, http://www.santilli-foundation.org/docs/Santilli-01.pdf
R. M. Santilli, Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vol. II: Classical Formulations, www.santilli-foundation.org/docs/Santilli-61.pdf
R. M. Santilli, Isorelativities, International Academic Press, (1995)
R. M. Santilli, Hadronic Mathematics, Mechanics and Chemistry,, Volumes I to V, International Academic Press, (2008), www.i-b-r.org/Hadronic-Mechanics.htm
R. M. Santilli, “Rudiments of isogravitation for matter and its isodual for antimatter,” American Journal of Modern Physics Vol. 4(5), pages 59-75 (2015) www.santilli-foundation.org/docs/isogravitation.pdf
R. M. Santilli, ”Lie-isotopic Lifting of Special Relativity for Extended Deformable Particles,” Lettere Nuovo CimentoVol. 37, 545 (1983), www.santilli-foundation.org/docs/Santilli-50.pdf
R. M. Santilli, ”Lie-isotopic Lifting of Unitary Symmetries and of Wigner’s Theorem for Extended and Deformable Particles,” Lettere Nuovo Cimento Vol. 38, 509 (1983), www.santilli-foundation.org/docs/Santilli-51.pdf
R. M. Santilli, ”Isotopies of Lie Symmetries,” I: Cbasic theory,” , Hadronic J. Vol. 8, 36 and 85 1(985), www.santilli-foundation.org/docs/santilli-65.pdf
R. M. Santilli, ”Isotopies of Lie Symmetries,” II:I isotopies of the rotational symmetry,” Hadronic J. Vol. 8, 36 and 85 (1985),
www.santilli-foundation.org/docs/santilli-65.pdf
R. M. Santilli, ”Rotational isotopic symmetries,” ICTP communication No. IC/91/261 (1991), www.santilli-foundation.org/docs/Santilli-148.pdf
R. M. Santilli, ”Isotopic Lifting of the SU(2) Symmetry with Applications to Nuclear Physics,” JINR rapid Comm. Vol. 6. 24-38 (1993), www.santilli-foundation.org/docs/Santilli-19.pdf
R. M. Santilli, ”Lie-isotopic generalization of the Poincare’ symmetry, classical formulation,” ICTP communication No. IC/91/45 (1991), www.santilli-foundation.org/docs/Santilli-140.pdf
R. M. Santilli, ”Nonlinear, Nonlocal and Noncanonical Isotopies of the Poincare’ Symmetry,” Moscow Phys. Soc. Vol. 3, 255 (1993), www.santilli-foundation.org/docs/Santilli-40.pdf
R. M. Santilli, “An introduction to the new sciences for a new era,” Invited paper, SIPS 2016, Hainan Island, China, Clifford Analysis, Clif- ford Algebras and their Applications ol. 6, No. 1, pp. 1-119, (2017) www.santilli-foundation.org/docs/new-sciences-new-era.pdf
R. M. Santilli, ”Theory of mutation of elementary particles and its application to Rauch’s experiment on the spinorial symmetry,” ICTP release IC/91/46 (1991) www.santilli-foundation.org/-docs/Santilli-141.pdf
R. M. Santilli, ” The notion of non-relativistic isoparticle,” ICTP re- lease IC/91/265 (1991) www.santilli-foundation.org/docs/Santilli-145.pdf
A. O. E. Animalu and R. M. Santilli, “Nonlocal isotopic representation of the Cooper pair in superconductivity,” Intern. J. Quantum Chem- istry Vol. 29, 185 (1995) www.santilli-foundation.org/docs/Santilli-26.pdf
V. M. Tangde, ”Advances in hadronic chemistry and its applications,” Foundation of Chemistry, DOI 10.1007/s10698-015-9218-z (March 24, 2015),
www.santilli-foundation.org/docs/hadronic-chemistry-FC.pdf
E. Trell, ”Review of Santilli Hadronic Chemistry,” International Journal Hydrogen Energy Vol. 28, p. 251 (2003), www.scientificethics.org/Hadronic Chemistry.pdf
R. M. Santilli ”A Tentative Magnecular Model of Liquid Water with an Explicit Attractive Force Between Water Molecules,” American Journal of Modern Physics Vol. 6(4-1): 46-52 (2017), www.santilli-foundation.org/docs/santilli-liquid-water.pdf
A. K. Aringazin, “Toroidal configuration of the orbit of the electron of the hydrogen atom under strong external magnetic fields,” Hadronic J. 24, 134 (2001), www.santilli-foundation.org/docs/landau.pdf
R. M. Santilli, ”Nonlinear, Nonlocal and Noncanonical Isotopies of the Poincare’ Symmetry,” Moscow Phys. Soc. Vol. 3, 255 (1993), www.santilli-foundation.org/docs/Santilli-40.pdf
DOI: http://dx.doi.org/10.23755/rm.v38i0.518
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Ruggero Maria Santilli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.