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DPLL-based SAT solvers

A tool to solve a problem given in clauses (’and’ of ’or’-s)

Performs unit propagation

Picks a variable to branch on, works on the two sub-problems

Optimisations:

learning
non-chronological backjumping
restarting
variable choice
implementation details

We used MiniSat2
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Stream ciphers

Uses a set of shift registers

Shift registers’ feedback function is either linear or non-linear

Uses a filter function to generate 1 secret bit from the state

Working: clock-filter-clock-filter. . . = feedback-filter-feedback-filter. . .
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Problem with XOR-s

The truth
a⊕ b⊕ c

must be put into the solver as

a ∨ b ∨ c (1) a ∨ b ∨ c (2)
a ∨ b ∨ c (3) a ∨ b ∨ c (4)

So, it takes 2n−1 clauses to model an n-long XOR
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Problem with XOR-s

To model the truth

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

the following truths are put into the SAT solver (cutting)

y1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

y2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8 y1 ⊕ y2

Problems: still too long, extra vars
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Solution to XOR-s

Xor-clauses [Massacci00Taming]:

a⊕ b⊕ c

represents all the regular clauses

a ∨ b ∨ c (1) a ∨ b ∨ c (2)
a ∨ b ∨ c (3) a ∨ b ∨ c (4)

and changes appearance to match the regular clause that is the most
pertinent to the situation. Gives this changed appearance to the
analyze() method

Uses a watched variable scheme instead of a watched literal scheme

Gain:

2.2x in speed

order of magnitude in memory
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Gaussian elimination

Gaussian elimination is an efficient algorithm for solving systems of
linear equations

XOR-clause is a linear equation → use Gauss elim. to solve the
system of XORs-clauses

xor-clauses
with v8 assigned to true

v10 v8 v9 v12 const
1 − 1 1 1
0 − 1 1 1
0 − 0 1 0
0 − 0 0 0



actual xor-clauses

v10 v8 v9 v12 const
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1


make temp. XOR-clause out of the interesting clauses found

given prop. row 3, save temp. XOR-clause for a short while

given a conflict, give it to analyze() and delete it
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Gaussian elimination results
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Search space reduced by up to 87%
However, takes more time to run the algo than the benefits it brings
Possible to improve the implementation
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Visual representation

It’s hard to follow how a solver operates. So we implemented dynamic
behaviour analysis

Figure: Graphviz visualisation of an example search for the Crypto-1 cipher’s
states. The tree is read from left to right, top to bottom: the left- and
bottommost pentagon is the first conflict clause, the right- and bottommost circle
is the satisfying assignment.
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Detailed statistics

Statistics generated:

No. times variable branched upon

Number of conflicts made by clause groups

Propagation depth order of clause groups

Avg. conflict depth order of clause groups
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Logical circuit representation

Best to look at the cipher as a logical circuit inside the solver. The logical
circuit has variables (boxes), functions (hexagons) and the known
keystream.
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Measures of the logical circuit representation

Measures of this logical circuit representation:

Depth of each keystream bit is the number of functions traversed
from the reference state

Reference state dependency numbers: no. bits each keystream bit
depends on. A large part of these must be guessed before evaluation
can take place

Function difficulty. When traversed, these must be calculated

Goal: minimise all of these
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Generate logical circuit from CNF

We wrote an extension to MiniSat to visualise the logical circuit. Example
HiTag2 logical circuit:
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Optimising representation of non-linear functions

Simple GF(2) polynomial

x1 + x1x2 + x2x3 + x1x3

It is usually represented with each non-single monomial expressed as a set
of clauses, setting additional variables i1 . . . i3. The polynomial then
becomes

x1 + i1 + i2 + i3

With this representation, no. of clauses is 3× 3 regular + 1 xor-clause,
avg. clause length 4.14. Three extra variables also needed

However, representation using a Karnaugh table is

x̄1 ∨ x̄3 x̄2 ∨ x3 x̄1 ∨ x̄2
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Crypto-1&HiTag2

Crypto-1

Best attack with SAT-solvers[Courtois08Algebraic]: 200 seconds, but
this uses mathematical means to bring down the complexity (simple,
as Crypto-1 uses only an LFSR)

We break it in 40 seconds.

HiTag2

Without our optimisation: 221 s to break

Takes 214.5 s to break with our technique
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Bivium

Bivium is a simplified version of Trivium. Best attack against it takes 243 s.
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We break it in 236.5 s.
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Thank you for your time

Thank you for your time!
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