
Extending SAT Solvers to Cryptographic Problems

Mate Soos, Karsten Nohl, Claude Castelluccia

INRIA Rhône-Alpes, University of Virginia

July 1, 2009

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 1 / 22



Table of Contents

1 Background
DPLL-based SAT solvers
Stream ciphers

2 Adapting the SAT solver
XOR-support
Gaussian elimination
Dynamic behaviour analysis

3 Adapting the cipher representation
Logical circuit representation
Representation of non-linear functions

4 Implemented attacks
Crypto-1 and HiTag2
Bivium

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 2 / 22



Outline

1 Background
DPLL-based SAT solvers
Stream ciphers

2 Adapting the SAT solver
XOR-support
Gaussian elimination
Dynamic behaviour analysis

3 Adapting the cipher representation
Logical circuit representation
Representation of non-linear functions

4 Implemented attacks
Crypto-1 and HiTag2
Bivium

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 3 / 22



DPLL-based SAT solvers

A tool to solve a problem given in clauses (’and’ of ’or’-s)

Performs unit propagation

Picks a variable to branch on, works on the two sub-problems

Optimisations:

learning
non-chronological backjumping
restarting
variable choice
implementation details

We used MiniSat2

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 4 / 22



Stream ciphers

Uses a set of shift registers

Shift registers’ feedback function is either linear or non-linear

Uses a filter function to generate 1 secret bit from the state

Working: clock-filter-clock-filter. . . = feedback-filter-feedback-filter. . .

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 5 / 22



Outline

1 Background
DPLL-based SAT solvers
Stream ciphers

2 Adapting the SAT solver
XOR-support
Gaussian elimination
Dynamic behaviour analysis

3 Adapting the cipher representation
Logical circuit representation
Representation of non-linear functions

4 Implemented attacks
Crypto-1 and HiTag2
Bivium

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 6 / 22



Problem with XOR-s

The truth
a⊕ b⊕ c

must be put into the solver as

a ∨ b ∨ c (1) a ∨ b ∨ c (2)
a ∨ b ∨ c (3) a ∨ b ∨ c (4)

So, it takes 2n−1 clauses to model an n-long XOR

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 7 / 22



Problem with XOR-s

To model the truth

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

the following truths are put into the SAT solver (cutting)

y1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

y2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8 y1 ⊕ y2

Problems: still too long, extra vars

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 8 / 22



Solution to XOR-s

Xor-clauses [Massacci00Taming]:

a⊕ b⊕ c

represents all the regular clauses

a ∨ b ∨ c (1) a ∨ b ∨ c (2)
a ∨ b ∨ c (3) a ∨ b ∨ c (4)

and changes appearance to match the regular clause that is the most
pertinent to the situation. Gives this changed appearance to the
analyze() method

Uses a watched variable scheme instead of a watched literal scheme

Gain:

2.2x in speed

order of magnitude in memory

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 9 / 22



Gaussian elimination

Gaussian elimination is an efficient algorithm for solving systems of
linear equations

XOR-clause is a linear equation → use Gauss elim. to solve the
system of XORs-clauses

xor-clauses
with v8 assigned to true

v10 v8 v9 v12 const
1 − 1 1 1
0 − 1 1 1
0 − 0 1 0
0 − 0 0 0



actual xor-clauses

v10 v8 v9 v12 const
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1


make temp. XOR-clause out of the interesting clauses found

given prop. row 3, save temp. XOR-clause for a short while

given a conflict, give it to analyze() and delete it

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 10 / 22



Gaussian elimination results

300
600
900

1200
1500

0 3 6 9 12 15 18

T
im

e(
s)

Gaussian elimination until depth

0
4e+08
8e+08

1.2e+09
1.6e+09

0 3 6 9 12 15 18

N
o.

of
pr

op
ag

at
io

n
s

(∼
se

ar
ch

sp
ac

e)

Gaussian elimination until depth

Search space reduced by up to 87%
However, takes more time to run the algo than the benefits it brings
Possible to improve the implementation

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 11 / 22



Visual representation

It’s hard to follow how a solver operates. So we implemented dynamic
behaviour analysis

Figure: Graphviz visualisation of an example search for the Crypto-1 cipher’s
states. The tree is read from left to right, top to bottom: the left- and
bottommost pentagon is the first conflict clause, the right- and bottommost circle
is the satisfying assignment.

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 12 / 22



Detailed statistics

Statistics generated:

No. times variable branched upon

Number of conflicts made by clause groups

Propagation depth order of clause groups

Avg. conflict depth order of clause groups

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 13 / 22



Outline

1 Background
DPLL-based SAT solvers
Stream ciphers

2 Adapting the SAT solver
XOR-support
Gaussian elimination
Dynamic behaviour analysis

3 Adapting the cipher representation
Logical circuit representation
Representation of non-linear functions

4 Implemented attacks
Crypto-1 and HiTag2
Bivium

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 14 / 22



Logical circuit representation

Best to look at the cipher as a logical circuit inside the solver. The logical
circuit has variables (boxes), functions (hexagons) and the known
keystream.

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 15 / 22



Measures of the logical circuit representation

Measures of this logical circuit representation:

Depth of each keystream bit is the number of functions traversed
from the reference state

Reference state dependency numbers: no. bits each keystream bit
depends on. A large part of these must be guessed before evaluation
can take place

Function difficulty. When traversed, these must be calculated

Goal: minimise all of these

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 16 / 22



Generate logical circuit from CNF

We wrote an extension to MiniSat to visualise the logical circuit. Example
HiTag2 logical circuit:

fe
ed

ba
ck

fu
nc

. 4
8

st
at

e 
48

fa
 [3

6,
45

,4
6,

48
] 

st
at

e 
47

fe
ed

ba
ck

fu
nc

. 5
0

fe
ed

ba
ck

fu
nc

. 5
1

fe
ed

ba
ck

fu
nc

. 5
2

fa
 [3

5,
44

,4
5,

47
] 

fa
 [3

7,
46

,4
7,

49
] 

st
at

e 
46

fe
ed

ba
ck

fu
nc

. 4
9

fa
 [3

4,
43

,4
4,

46
] 

st
at

e 
43

fa
 [3

3,
42

,4
3,

45
] 

st
at

e 
42

st
at

e 
41

st
at

e 
30

fb
 [2

7,
28

,3
0,

32
] 

fb
 [2

9,
30

,3
2,

34
] 

fb
 [3

0,
31

,3
3,

35
] 

st
at

e 
26

fb
 [1

7,
21

,2
3,

26
] 

fb
 [2

0,
24

,2
6,

29
] 

st
at

e 
23

fb
 [1

9,
23

,2
5,

28
] 

st
at

e 
22

fb
 [1

6,
20

,2
2,

25
] 

fb
 [1

8,
22

,2
4,

27
] 

st
at

e 
16

fb
 [9

,1
3,

15
,1

6]
 

fb
 [1

0,
14

,1
6,

17
] 

st
at

e 
8

fb
 [8

,1
2,

14
,1

5]
 

fa
 [4

,5
,7

,8
] 

fa
 [5

,6
,8

,9
] 

st
at

e 
7

fb
 [7

,1
1,

13
,1

4]
 

fa
 [3

,4
,6

,7
] 

st
at

e 
6

fa
 [2

,3
,5

,6
] 

st
at

e 
3

st
at

e 
2

fa
 [1

,2
,4

,5
] 

st
at

e 
0

st
at

e 
49

st
at

e 
44

st
at

e 
31

fb
 [2

8,
29

,3
1,

33
] 

fb
 [3

1,
32

,3
4,

36
] 

st
at

e 
27

st
at

e 
24

st
at

e 
17

fb
 [1

1,
15

,1
7,

18
] 

st
at

e 
9

st
at

e 
4

st
at

e 
1

st
at

e 
50

st
at

e 
45

st
at

e 
32

st
at

e 
28

st
at

e 
25

st
at

e 
18

st
at

e 
10

st
at

e 
5

st
at

e 
51

st
at

e 
33

st
at

e 
29

st
at

e 
19

st
at

e 
11

st
at

e 
52

st
at

e 
34

st
at

e 
20

st
at

e 
12

st
at

e 
13

st
at

e 
14

st
at

e 
15

st
at

e 
21

st
at

e 
35

st
at

e 
36

st
at

e 
37

fa
 [1

,2
,4

,5
] 

in
te

rn
al

 v
ar

fc
ou

tp
ut

 0

fb
 [7

,1
1,

13
,1

4]
 

in
te

rn
al

 v
ar

fb
 [1

6,
20

,2
2,

25
] 

in
te

rn
al

 v
ar

fb
 [2

7,
28

,3
0,

32
] 

in
te

rn
al

 v
ar

fa
 [3

3,
42

,4
3,

45
] 

in
te

rn
al

 v
ar

fa
 [2

,3
,5

,6
] 

in
te

rn
al

 v
ar

fc
ou

tp
ut

 1

fb
 [8

,1
2,

14
,1

5]
 

in
te

rn
al

 v
ar

fb
 [1

7,
21

,2
3,

26
] 

in
te

rn
al

 v
ar

fb
 [2

8,
29

,3
1,

33
] 

in
te

rn
al

 v
ar

fa
 [3

4,
43

,4
4,

46
] 

in
te

rn
al

 v
ar

fa
 [3

,4
,6

,7
] 

in
te

rn
al

 v
ar

fc
ou

tp
ut

 2

fb
 [9

,1
3,

15
,1

6]
 

in
te

rn
al

 v
ar

fb
 [1

8,
22

,2
4,

27
] 

in
te

rn
al

 v
ar

fb
 [2

9,
30

,3
2,

34
] 

in
te

rn
al

 v
ar

fa
 [3

5,
44

,4
5,

47
] 

in
te

rn
al

 v
ar

fa
 [4

,5
,7

,8
] 

in
te

rn
al

 v
ar

fc
ou

tp
ut

 3

fb
 [1

0,
14

,1
6,

17
] 

in
te

rn
al

 v
ar

fb
 [1

9,
23

,2
5,

28
] 

in
te

rn
al

 v
ar

fb
 [3

0,
31

,3
3,

35
] 

in
te

rn
al

 v
ar

fa
 [3

6,
45

,4
6,

48
] 

in
te

rn
al

 v
ar

fa
 [5

,6
,8

,9
] 

in
te

rn
al

 v
ar

fc
ou

tp
ut

 4

fb
 [1

1,
15

,1
7,

18
] 

in
te

rn
al

 v
ar

fb
 [2

0,
24

,2
6,

29
] 

in
te

rn
al

 v
ar

fb
 [3

1,
32

,3
4,

36
] 

in
te

rn
al

 v
ar

fa
 [3

7,
46

,4
7,

49
] 

in
te

rn
al

 v
ar

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 17 / 22



Optimising representation of non-linear functions

Simple GF(2) polynomial

x1 + x1x2 + x2x3 + x1x3

It is usually represented with each non-single monomial expressed as a set
of clauses, setting additional variables i1 . . . i3. The polynomial then
becomes

x1 + i1 + i2 + i3

With this representation, no. of clauses is 3× 3 regular + 1 xor-clause,
avg. clause length 4.14. Three extra variables also needed

However, representation using a Karnaugh table is

x̄1 ∨ x̄3 x̄2 ∨ x3 x̄1 ∨ x̄2

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 18 / 22



Outline

1 Background
DPLL-based SAT solvers
Stream ciphers

2 Adapting the SAT solver
XOR-support
Gaussian elimination
Dynamic behaviour analysis

3 Adapting the cipher representation
Logical circuit representation
Representation of non-linear functions

4 Implemented attacks
Crypto-1 and HiTag2
Bivium

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 19 / 22



Crypto-1&HiTag2

Crypto-1

Best attack with SAT-solvers[Courtois08Algebraic]: 200 seconds, but
this uses mathematical means to bring down the complexity (simple,
as Crypto-1 uses only an LFSR)

We break it in 40 seconds.

HiTag2

Without our optimisation: 221 s to break

Takes 214.5 s to break with our technique

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 20 / 22



Bivium

Bivium is a simplified version of Trivium. Best attack against it takes 243 s.

100

1000

10000

100000

1e+06

42 44 46 48 50 52 54 56

T
im

e
(s

)

No. of randomly guessed bits

We break it in 236.5 s.

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 21 / 22



Thank you for your time

Thank you for your time!

M. Soos, K. Nohl, C. Castelluccia () Extending SAT Solvers to Crypto July 1, 2009 22 / 22


	Background
	DPLL-based SAT solvers
	Stream ciphers

	Adapting the SAT solver
	XOR-support
	Gaussian elimination
	Dynamic behaviour analysis

	Adapting the cipher representation
	Logical circuit representation
	Representation of non-linear functions

	Implemented attacks
	Crypto-1 and HiTag2
	Bivium


