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Taking a plain special case as a model, one canulate the question raised in
the title as follows.
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Consider a system of pondieranasses consisting of a

spherical shell K with mass M, which s
homogeneously distributed over the surface of the
sphere, and the material poltwith massm, which

Is set in the center of this sphere. Does a faot®n

the fixed material poinP if | impart an acceleration

I' to the shellK? The following arguments will
induce us to view such a force effect as reallyngei
present and will give us its magnitude in first
approximation.

1. According to the theory of relativity, the itiat mass of a closed
physical system depends on its energy contentdh auvay that an increase of

the energy of the system Uy will increase the inertial mass bgL wherec

denotes the velocity of light in a vacuum. ThudJlilenotes the inertial mass of
K in the absence &1, andm denotes the inertial mass Bfin the absence df,
or, in other words, iM + m denotes the inertial mass of the system consisting
P andK together in case whereis infinitely far fromkK, then it follows that the
inertial mass of the system consistingkchindm possesses the value

M +m— MM 1)

Rc,

if mis in the center oK, wherek denotes the gravitational constant &the

kMm

radius ofK. For? (at least in first approximation) is the energgttone

must apply in order to transpd?tfrom the center oK to infinity.

2. In a paper that will shortly appear in thanalen der Physjkl have
shown, based on a hypothesis about the naturedtétic gravitation field, that



a material point moves in a static gravitationaldiaccording to the following
equations:
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Here, x=%, andqg denotes the velocity of the material pomitjts mass,

R the force acting on it¢ the velocity of light, which is to be viewed as a

function of the coordinates y, z. From these equations it follows, among other
mc
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g% in first approximation, as its kinetic energyn drder to obtain the kinetic

things, that is to be regarded as the energy of the material,pand

energy in the customary unit, one has to multiplg expression by the constant
c,,» Which is equal to the velocity of light at infipj let the latter be equal to the

average velocity of light in our gravitational potial. Thus, in the customary
units the kinetic energly is
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In order to know the expression forfor an arbitrary place, we still have
to determinec as a function ok y z In accordance with the indicated equation
of motion, for a sufficiently slowly moving poinubjected to no forces aside
from the gravitation field,
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X =-c—, etc,
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Or, if one defines the gravitational potentain similar manner,

After integration, this yields with sufficient agewey, if o,denotes the
gravitational potential prevailing at infinity,
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For the material point in the interior &f, @,-®is equal tok?M, so that one

obtains for it approximately
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and hence for an inertial massinfluenced byK
L kmM
m = m+ RC (2)

The result is of great interest in itself. It shothat the presence of the inertial
shellK increases the inertial mass of the material pBimiside the shell. This
suggests that thentire inertia of a mass point is an effect of the presenicall
other masses, which is based on a kind of intenaatith the lattef. The degree
to which this conception is justified will becomenxdevn when we will be
fortunate enough to have come into possession sdr@ceable dynamics of
gravitation.

It is clear that, in the same way, the presencE micreases the inertial
mass oK. By means of an argument totally analogous tmtieejust presented,
one obtains for the inertial mass of K influenced by the presence Bf
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3. We now seek the forcésandf necessary to impart the acceleratidns
and y to the masse# or m in a given direction. IfA, a, and a denote
coefficients that are unknown for the time beimgrt we will have to set

F=A+ay)
f=a 1' (4)
=ay+al .
The coefficients of the second term )(are chosen to be the same in the two
equations, since the reaction Kf on P when only K is accelerated must
obviously be equal to the reactionf®dbn K when onlyP is accelerated.

The coefficientsA, a, and a follow from the consideration of the three
special cases to which equations (1), (2) andgf&y r

In the first caseK andP have the same acceleration. Let this common
acceleration bg-. From (4) and (1) one obtains

M'=M +

! This is exactly the same point of view that E. Maclvanced in his astute investigations on thigestih(E.
Mach, “Die Entwicklung der Prinzipien der Dynamiveites Kaopitel. Newtons Anischten Uber Zeit, Raum
und ewegung.”The science of mechanics: a critical and histori@atount of its developmenthapter 2,
“Newton’s views on time, space and motion.”]
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or
Mkm
A+a+20=M+m—— la
R (1a)

In the second case, in whi€halone is accelerated, one has, according to the
second of equations (4) and according to (2),

_ _( kmMj
f=ay=| m+ %
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The third case yields, analogously,
kmM
RC
From equations (1a), (2a) and (3a) we obtain
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In the case where onl is accelerated, buP kept fixed, the second of
equations (4) assumes the form, using the valuetbét was just found:
3 kmM
(K)=3%e

k is here the force that must be exerted on thermhpoint P in order for it to
remain at rest; thug;k) is the force exerted (induced) Brby the spherical shell
K, which possesses the accelerationThis force has the same sign as the

acceleration, in contrast to the correspondingraat®n between equivalent
electrical masses.

a=m+

(2a)

A=M+

(3a)



