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ABSTRACT. The first part of this paper consists of an exposition of the views expressed 
by Pierre Duhem in his Aim and Structure of Physical Theory concerning the philosophy 
and historiography of mathematics. The second part provides a critique of these views, 
pointing to the conclusion that they are in need of reformulation. In the concluding third 
part, it is suggested that a number of the most important claims made by Duhem 
concerning physical theory, e.g., those relating to the "Newtonian method', the limited 
falsifiability of theories, and the restricted role of logic, can be meaningfully applied to 
mathematics. 

It is an interesting but rarely noted fact that Pierre Duhem included a 
number of claims concerning the history and philosophy of mathematics 
in his Aim and Structure of Physical Theory as well as in his other 
writings (Duhem 1954; 1909; 1915). 1 Although these claims may at 
times appear to be digressions, careful examination shows that they 
function in a significant manner in Duhem's exposition of his philoso- 
phy; in particular, Duhem in many cases formulated his main positions 
regarding physical theory by contrasting it with mathematics. In the 
three parts of the present paper, I shall suggest answers to the following 
three questions: 

(1) What views did Duhem express in his Aim and Structure of 
Physical Theory concerning the nature and development of mathemat- 
ics? 

(2) Are these views correct? 
(3) Can any of Duhem's ideas concerning the nature and development 

of physical theory be applied to mathematics? 
The surprising result that has emerged from my efforts to answer 

these questions is the recommendation that the second question be 
answered negatively, but the third affirmatively. It is hoped that the 
analysis in this paper will simultaneously contribute to a deeper under- 
standing of Duhem's thought and also shed light from a Duhemian 
direction on the search by historians and philosophers of mathematics 
for patterns of conceptual change in mathematics. 2 
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P A R T  ONE 

What were Duhem's views about the history and philosophy of mathe- 
matics? The following three claims are probably among the most 
important: 

(1) The method of mathematics is 'profoundly different' (Duhem 
1954, p. 265) from that of physics. In support of this claim, Duhem 
asserted that mathematicians begin with axioms, which are universally 
accepted, whereas physicists repeatedly alter their theories in response 
to new empirical information. Moreover, whereas mathematicians must 
follow logic, physicists in the process of formulating theories have the 
freedom at times to set logic aside. 

(2) The development of mathematics has been very different from that 
of physics. For example, mathematics grows in a linear and cumulative 
fashion and has avoided the controversies that have beset physics. 

(3) A knowledge of the history of physics is vitally important to 
physicists, whereas mathematicians need have no knowledge of the 
history of their discipline. 

Allied to these claims are some less central points, for example, 
that mathematicians make extensive use of the reduction to absurdity 
method, v~hereas physicists are barred from employing this powerful 
technique (Duhem 1954, p. 188). 

Let us now examine some passages in Duhem's Aim and Structure 
where he articulated these claims. The first claim is embodied in 
Duhem's warning that: 

The plan to obtain from common-sense knowledge the demonstration of hypotheses on 
which physical theories rest is motivated by the desire to construct physics in imitation 
of geometry; in fact, the axioms from which geometry is derived with such perfect rigor. 
the "demands' that Euclid formulated at the beginning of his Elements are propositions 
whose self-evident truth is affirmed by common sense. But we have seen on several 
occasions how dangerous it is to establish an alliance between mathematical method 
and the method that physical theories follow; how, underneath their entirely external 
resemblance . . . .  these two methods reveal themselves to be profoundly different. 
(Duhem 1954, p. 265) 

Shortly thereafter, Duhem contrasted the clarity and simplicity of 
mathematical ideas with the confusion and complexity of concepts in 
physics: 

[T]he mathematical sciences are very exceptional sciences; they arc fortunate enough to 
deal with ideas which emerge from our daily perceptions through the spontaneous work 
of abstraction and generalization, and which still appear afterwards as clear, pure. and 
simple. 
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This good fortune is refused in physics. The notions provided by the perceptions with 
which it has to deal are infinitely confused and complex notions, the study of which 
requires long and painful work of analysis. (Duhem 1954, p. 266) 

In describing the methodology of physics, Duhem also warned against 
excessive reliance on logic and, moreover, stressed the limitations of 
what Duhem, following Pascal, called the 'geometrical mind'. 

Pure logic is not the only rule for our judgments; certain opinions [in theoretical physics] 
which do not fall under the hammer of the principle of contradiction are in any case 
perfectly unreasonable. These motives which do not proceed from logic yet direct our 
choices, these 'reasons which reason does not know' and which speak to the ample "mind 
of finesse" but not to the ~geometrical mind', constitute what is appropriately called good 
sense. (Duhem 1954, p. 217) 

Duhem's stress on the dissimilarities between the methods of mathe- 
matics and of physics was no doubt linked to his conviction that the 
patterns of development characteristic of these two disciplines have 
also been very different. Regarding the pattern of development of 
mathematics, Duhem remarked: 

The propositions that make up purely mathematical sciences are. to the highest degree. 
universally accepted truths. The precision of language and the rigor of the methods of 
demonstration leave no room for any permanent divergences among the views of different 
mathematicians: over the centuries doctrines are developed by continuous progress with- 
out new conquests causing the loss of any previously acquired domains. 

There is no thinker who does not wish for the science he cultivates a growth as calm 
and as regular as that of mathematics. But if there is a science for which this wish seems 
particularly legitimate, it is indeed theoretical physics, for of all the well-established 
branches of knowledge it surely is the one which least departs from algebra and geometry, 
(Duhem 1954, p. 10) 

Nonetheless, theoretical physics, according to Duhem, has enjoyed 
no such "calm" and "regular" development. In fact, he described it as 
having been beset throughout most of its history by "perpetual, sterile 
disputes" (Duhem 1954, 107). Duhem attributed many such disputes 
to the tendency of physicists, when formulating their theories, to have 
recourse to metaphysics; as he stated: "to make physical theories de- 
pend on metaphysics is surely not the way to let them enjoy the privilege 
of universal consent" (Duhem 1954, p. 10). 

Elsewhere in his book, Duhem elaborated on this point in more 
detail, contrasting the linear and cumulative character of the develop- 
ment of mathematics with the organic pattern of growth he attributed 
to physics. 
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Physics makes progress t h r o u g h . . ,  continually supplementing laws in order to include 
the exceptions. It was because the laws of weight were contradicted by a piece of amber 
rubbed by wool that physics created the laws of electrostatics, and because a magnet 
lifted iron despite these same laws of weight that physics formulated the laws of magne- 
t i s m . . .  Physics does not progress as does geometry, which adds new final and indisput- 
able propositions to the final and indisputable propositions it already possessed . . . .  
(Duhem 1954, p. 177) 

Duhem later repeated this point, drawing implications from it for the 
pedagogy of physics: 

Instruction [in physics] ought to get the student to grasp this primary truth: Experimental 
verifications are not the base of theory but its crown. Physics does not make progress in 
the way geometry does: the latter grows by the continual contribution of a new theorem 
demonstrated once and for all and added to theorems already demonstrated: the former 
is a symbolic painting in which continual retouching gives greater comprehensiveness and 
unity, and the whole of which gives a picture resembling more and more the whole of 
the experimental facts, whereas each detail of this p!cture cut off and isolated from the 
whole loses all meaning and no longer represents anything. (Duhem 1954, pp. 204-5) 

It was no doubt because he felt these points were so significant that he 
stressed the importance for the physicist of a knowledge of the history 
of physical theory, even while denying that the history of mathematics 
has a comparable role to play in mathematics. He asserted: 

This importance which the history of the methods by which discoveries are made acquires 
in the study of physics is an additional mark of the great difference between physics and 
geometry. 

In geometry, where the clarity of deductive method is fused directly with the self- 
evidence of common sense, instruction can be offered in a completely logical manner. It 
is enough for a postulate to be stated for a student to grasp immediately the data of 
common-sense knowledge that such a judgment condenses: he does not need to know 
the road by which this postulate has penetrated into science. The history of mathematics 
is. of course, a legitimate object of curiosity, but it is not essential to the understanding 
of mathematics. 

It is not the same with physics. There. we have seen. it is forbidden to be purely and 
completely logical in teaching. Consequently, the only way to relate the formal judgments 
of a theory to the factual matter which these judgments are to represent, and still avoid 
the surreptitious entry of false ideas, is to justify each essential hypothesis through its 
history. 

To give the history of a physical principle is at the same time to make a logical analysis 
of it. (Duhem 1954, p. 269) 

P A R T  TWO 

With this information as background, let us examine the validity of 
Duhem's claims about the history and philosophy of mathematics. The 
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theses that I shall attempt to develop are (1) that the above cited claims 
of Duhem are all seriously defective, and (2) that a number of Duhem's 
most famous claims about physical theory can shed light on the history 
and philosophy of mathematics. 

It is an interesting fact that Duhem's claims about the calm inevita- 
bility and the linearity of the development of mathematics were made 
at a time when mathematics was undergoing major changes and was 
beset by a variety of controversies. To see evidence of these alterations 
and altercations concerning mathematics, one needs look no farther 
than the philosophical writing of Duhem's contemporary Henri Poin- 
car& One wave of controversy began with the creation during the 1840s 
by William Rowan Hamilton and by Hermann Gfinther Grassmann of 
nontraditional algebras, for example, algebras in which the commuta- 
tive law for multiplication is not obeyed, that is, where A x B does not 
equal B x A. The broadened view of algebra that resulted included the 
realization that mathematicians can create new and useful algebraic 
systems very different from that single system that had been central 
to mathematics before 1830 (Crowe 1985). One example of the rich 
opportunities that were opened up by this new view of algebra is 
Benjamin Pierce's Linear Associative Algebra of 1870 in which Pierce 
delineated 162 different algebraic systems. Another embodiment of this 
result was a debate that raged from about 1870 to about 1900 over the 
various systems of vectorial analysis. Duhem, from the beginning of his 
scientific training, must have encountered this controversy concerning 
which vectorial system - the Hamiltonian, the Grassmannian, or the 
Gibbs-Heaviside system - should be employed in physics and geometry, 
or whether no vectorial methods should be employed. Aspects of this 
debate surfaced in Duhem's Aim and Structure of Physical Theory, 
where he somewhat disparagingly dismissed the British penchant for 
vectorial methods as another example of the British passion for concrete 
representations of physical quantities (Duhem 1954, pp. 77-79). 

The shock experienced by the mathematical community at the cre- 
ation of nontraditional algebras was far surpassed by the tremor that 
gradually began to spread after 1829 when Nicolai Lobachevsky pub- 
lished the first non-Euclidean geometry (Bonola 1955; Gray 1979; Tru- 
deau 1987). Four years later and independently of Lobachevsky, Johann 
Bolyai published his essentially identical system. In 1851, Bernhard 
Riemann presented his famous 'Ueber die Hypotheses, welche der 
Geometrie zu Grunde liegen', in which he introduced a second major 
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non-Euclidean system. Among the French, it was above all Jules Hotiel 
who introduced his countrymen to these radically new and different 
geometrical systems. The spread of non-Euclidean geometries in France 
can be dated from 1866 when Hotiel published a French translation of 
one of Lobachevsky's presentations along with selections from Gauss's 
correspondence with Schumacher. The publication of Gauss's letters 
was crucially important because they revealed that this eminent mathe- 
matician had endorsed these geometries before his death in 1855. 

Although Duhem made no mention of non-Euclidean geometry in 
his Aim and Structure, 3 the philosophical implications of the new geo- 
metries were noted by a number of French authors, particularly Poin- 
car6, who in his Science and Hypothesis of 1902 put forth the radical 
assertion that "The geometrical a x i o m s . . ,  are neither synthetic a priori 
intuitions nor experimental facts. They are conventions" (Poincar~ 
1952, p. 50). The changes in geometry went substantially beyond this. 
Not only was geometry forced to expand so as to be capacious enough 
to include both the Euclidean and the non-Euclidean systems as well 
as geometries of more than three dimensions, but also Euclid's paradig- 
matic Elements was seriously challenged. In this regard, C. S. Peirce 
asserted in 1892: 

Euclid's treatise was acknowledged by all kinds of minds to be all but absolutely perfect 
in its reasoning, and the very type of what science should aim at as to form and m a t t e r . . .  

The truth is that elementary geometry, instead of being the perfection of human 
reasoning, is riddled with fallacies, and is thoroughly unmathematical in its method of 
development. (Peirce 1975, pp. 136-7) 

As Joan Richards has recently documented in detail, a major contro- 
versy erupted in England during the final decades of the nineteenth 
century concerning not only the non-Euclidean geometries, but over 
Euclidean geometry itself (Richards 1988). One major culmination of 
this controversy was the publication in 1899 by David Hilbert of his 
Grundlagen der Geometrie in which he reformulated the axioms of 
Euclidean geometry in a strikingly new and more rigorous manner. 

The third major branch of mathematics, analysis, was also beset by 
changes. The very foundations of the calculus were repeatedly reformu- 
lated by various mathematicians during the nineteenth century, most 
notably Cauchy and Weierstrass (Boyer 1968, chaps. 23, 25; Hahn 
1956; Kline 1980, chaps. 8-9). The realization of the necessity for this 
was linked to such results as the violation of traditional intuition by 
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such discoveries as that of functions that are everywhere continuous 
but nowhere differentiable. By 1900, probably the greatest controversy 
surrounded the issue of what to make of the introduction by Georg 
Cantor of transfinite numbers - which involved the acceptance of orders 
of infinite quantities within mathematics. 

The list of such fundamental changes in mathematics could be sub- 
stantially extended, for example, by a discussion of the work commen- 
cing in the 1890s by Whitehead, Russell, Peano, and Frege on the 
logical foundations of mathematics. Moreover, much could be said 
about the problems evident in Duhem's description of mathematical 
propositions as "universally accepted truths'" and of mathematical theo- 
rems as "demonstrated once and for all" in light of his statement in his 
La Science allemande that "The great men who, from the XVIIth to 
the middle of the XIXth century, have created Algebra, Integral Calcu- 
lus, and Celestial Mechanics, have often justified their most important 
discoveries with the aid of defective arguments or even by flagrant 
paralogisms" (Duhem 1915, p. 7). But enough has already been noted 
to suggest that Duhem's characterization of mathematics as, unlike 
physics, enjoying a "calm a n d . . ,  regular" development in which pro- 
gress is made by the adding of "new final and indisputable propositions 
to the final and indisputable propositions it already possessed. . ."  is 
beset by problems. 

P A R T  T H R E E  

It seems unnecessary to elaborate further at this point on the question- 
able character of Duhem's claims about mathematics. What I shall do 
now is investigate whether any of the central theses in Duhem's analysis 
of physical theory can be applied to mathematics and its development. 
If it can be shown that this is in fact the case, it will emerge as a 
secondary result that Duhem's explicit contrast between physical theory 
and mathematics should be viewed as flawed. In other words, if it can 
be shown that the methodology and aevelopment of mathematics fit 
with some of Duhem's fundamental theses about the nature and de- 
velopment of physical theory, then it will be evident that these disci- 
plines are not as 'profoundly different' as the previously cited quotations 
from Duhem would lead one to believe. 

What are Duhem's most important claims about physical theory? 
Although not complete, the following list includes a number of them. 

(1) The so-called Newtonian method of doing physics in which each 
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of the fundamental laws of physics is built up directly from experiment 
is not the method that physicists have followed (whatever their claims 
to the contrary may be), nor is it the method physicists should invariably 
pursue in attempting to develop theories. One aspect of this claim is 
Duhem's assertion that experiments, rather than being the basis of 
physics, are its crown. I shall call this first claim the 'Newtonian method 
as myth claim'. 

(2) According to Duhem, theories in physics, rather than being iso- 
lated entities that can be directly tested, are bound together in clusters. 
Moreover, he asserted that when confronted with a contradiction, theo- 
ries can in many cases be rescued by modifying another element in the 
cluster. In short, this claim concerns the ability of theories to resist 
falsification. 

(3) The role that logic has played and should play in physical theory 
is substantially more limited than is commonly assumed. The physicist 
must in a fundamental way rely on good judgment, on 'bon sens'. 
Correspondingly, physical theories must be judged as wholes. The 
physicist, rather than being like a watchmaker who examines a watch 
by taking it apart, is like the physician who, prevented from dissecting 
patients, must examine them as entire entities, attempting to postulate 
causes of disease that explain the symptoms afflicting patients (Duhem 
1954, p. 188). In this sense, Duhem stressed the human quality of the 
work of the theoretical physicist. In what follows this overall claim will 
be referred to as the 'restricted role of logic claim'. 

(4) A knowledge of the history of physical theory is important for 
the physicist; for example, it can save the physicist from the "mad 
ambitions of dogmatism as well as the despair of Pyrrhonian skepticism" 
(Duhem 1954, p. 270). Duhem's fourth claim can be designated as the 
'relevance of history claim'. 

Let us now examine each of these four Duhemian claims about 
physical theory, attempting in each instance to see whether analogues 
applicable to mathematics can be formulated. 

One of the most brilliant insights that Duhem drew from his experi- 
ence teaching physics was that what he called the "Newtonian method" 
of developing physical theory is a myth. He described this doctrine, 
which he associated with Newton's ~'General Scholium" in his Principia, 
as the requirement that the fundamental hypotheses of a physical theory 
"'must be tested one by one: none would have to be accepted until it 
presented all the certainty that experimental method can confer on an 
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abstract and general proposition; that is to say, each would necessarily 
be either a law drawn from observation by the sole use of those two 
intellectual operations called induction and generalization, or else a 
corollary mathematically deduced from such laws" (Duhem 1954, p. 
190). In his 'Physics of a Believer', Duhem recounted how, after having 
been taught at the I~cole normale that this is the proper method for 
physical theory, he found when he first began teaching physics at Lille 
that this method is a myth (Duhem 1954, pp. 275-79), a "chimera" as 
he called it (Duhem 1954, p. 200). In arguing against the Newtonian 
method in his Aim and Structure, Duhem demonstrated that neither 
Newton nor Amp6re, despite their claims to the contrary, followed this 
method. Near the end of his analysis, Duhem asserted: 

Experimental  verifications are not the base of theory but its crown. Physics does not 
make progress in the way geometry does: the latter grows by the continual contribution 
of a new theorem demonstra ted once and for all and added to theorems already demon-  
strated; the former is a symbolic painting in which continual retouching gives greater  
comprehensiveness  and unity, and the whole of which gives a picture resembling more 
and more  the whoi'e of the experimental  facts . . . .  (Duhem 1954, pp. 204-5) 

Let us now ask: is there a myth about mathematical method anal- 
ogous to that which Duhem detected for physical theory? I suggest that 
this is in fact the case and that the myth can appropriately be called 
the 'myth of tire Euclidean method'. The traditional interpretation of 
Euclid, derived partly from Aristotle's writings, is that Euclid began 
with a number of definitions, axioms, and postulates that were based 
on experience and that from these fundamentals, by purely deductive 
means, he derived the 465 theorems contained in his Elements. It is 
further asserted that the truth of Euclid's later propositions, for exam- 
ple, the Pythagorean theorem (Bk. I, Prop. 47), is guaranteed by the 
certainty of tile postulates and axioms as well as by the deductive 
structure of the derivation. The idea is that the mathematician proceeds 
from the better known postulates and axioms to the less well known 
theorems. Moreover, it is frequently assumed that the logical structure 
of Euclid's Elements more or less exactly duplicates the historical se- 
quence in which the propositions were discovered. But this portrayal 
of the Euclidean method is surely a myth. First of all, it may be 
significant tha~ Euclid himself made no such explicit claims about the 
certainty of his axioms and postulates. In fact, historical research has 
shown that even before Euclid, a number of Greek mathematicians 
favored a quasi-formalist approach, according to which the beginning 
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principles are taken simply as postulates, rather than as indubitable 
generalizations from experience (Lasserre 1964, chap. 1). And there are 
deeper difficulties. Recall that the Pythagorean theorem, rather than 
being a creation of Euclid or even of Pythagoras, has been traced to 
Babylonian clay tablets of the eighteenth century B.C. Such information 
suggests that what Euclid knew best were not his somewhat artifically 
formulated definitions, axioms, and postulates but such results as the 
Pythagorean theorem, that Euclid, rather than composing this theorem 
as the last stage of his preparation of Book One of his Elements, may 
very well have formulated his definitions, axioms, and postulates late 
in the process of composing Book One. Moreover, it seems plausible 
to argue that what gave Euclid confidence in those beginning principles 
was above all that he found he could derive from them such certain 
results as the Pythagorean theorem. This is to suggest that in an impor- 
tant sense, mathematicians, including those who work in pure mathe- 
matics, employ the hypothetico-deductive method in which the funda- 
mental principles are warranted by the conclusions that can be drawn 
from them. 4 

When examined from a broader perspective, this claim may appear 
less extreme. Where and when did the fundamental postulates of mod- 
ern Euclidean geometry have their origin? Their source is not lost in 
the mists of Greek antiquity as is sometimes assumed; they derived 
from late nineteenth-century Germany, in particular, from Hilbert's 
Grundlagen der Geometrie. Possibly even this claim looks too far into 
the past. The fundamental principles of the most recent geometry texts 
are no doubt of more recent vintage, resulting from subsequent critiques 
of Hilbert's formulation. 

The Same point emerges from a knowledge of the history of other 
areas of mathematics. When was the fundamental theorem of algebra 
first proven? Early in the nineteenth century. The same period saw 
the formulation of such other fundamental algebraic entities as the 
associative, commutative, and distributive laws. Where in algebra texts 
are these fundamental principles presented? At the very beginning, 
whereas algebraic theorems developed in many cases centuries earlier 
appear on subsequent pages. Similarly, examination of a calculus text 
reveals that many of its most complicated theorems are of early vintage, 
whereas the fundamental principles, the definitions of such crucial enti- 
ties as function and limit, came forth a century or more later as a result 
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of the rigorization of calculus that was among the major achievements 
of nineteenth-century mathematics. Mathematics is not a tree that 
grows only at its upper extremities; rather the roots are involved in 
continuous transformation. We can put this overall point in Duhemian 
terms: the postulates and fundamental principles of mathematics are 
not only the base of mathematics but also its crown. Mathematics 
develops as a whole, with alterations occurring in every part, including 
at its foundation. The growth of mathematics is not linear, but organic. 

Before leaving this point, let us return twice to Duhem's text. In the 
course of his refutation of the Newtonian method, Duhem made the 
surprising remark: 

It is as impracticable for the physicist to follow the inductive m e t h o d . . ,  as it is for the 
mathematician to follow that perfect deductive method which would consist in defining 
and demonstrating everything, a method of inquiry to which certain geometers seem 
passionately attached, although Pascal properly and rigorously disposed of it a long time 
ago. (Duhem 1954, p. 201) 5 

It seems that Duhem, who as Niall Martin has shown drew so heavily 
upon Pascal (Martin 1981, chaps. 6-7), failed to realize fully the impli- 
cations of this assertion. Another conclusion that Duhem drew from 
his analysis of the Newtonian method also merits consideration. Late 
in that analysis in which he had vigorously contrasted the methodologies 
of physics and mathematics, Duhem asserted that physical theory, 
rather than beginning from experiments, is "grounded on postulates, 
that is to say, on propositions that it is at leisure to state as it pleases, 
provided that no contradiction exists among the terms of the same 
postulate or between two distinct postulates" (Duhem 1954, p. 206). If 
postulates play such a prominent role in physical theory, this surely 
suggests that its methodology is not so dissimilar from that of mathemat- 
ics. 

Let us turn now to Duhem's claim concerning the ability of theories 
to resist falsification. 6 In his exposition of this famous claim, Duhem, 
again contrasting the methods of physics and mathematics, asserted: 

Those who assimilate experimental contradiction to reduction to absurdity imagine that 
in physics we may use a line of argument similar to the one Euclid employed so frequently 
in geometry. Do you wish to obtain from a group of phenomena a theoretically certain 
and indisputable explanation? Enumerate all the hypotheses that can be made to account 
for this group of phenomena;  then, by experimental contradiction eliminate all except 
one: the latter will no longer be a hypothesis, but will become a certainty. (Duhem 1954. 
p. 188) 
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Duhem proceeded to argue that the reduction to absurdity method, 
although of such great power in mathematics, is not comparably appli- 
cable in physics. As he stated: "Unlike the reduction to absurdity 
employed by geometers, experimental contradiction does not have the 
power to transform a physical hypothesis into an indisputable t r u t h . . . "  
(Duhem 1954, p. 190). Implicit in his analysis was the doctrine that 
whenever a contradiction is encountered in mathematics, the mathemat- 
ical claim from which the contradiction was derived must be abandoned. 
Although this may seem sensible, good evidence indicates that this is 
not a mandate that mathematicians have always felt constrained to 
follow. I know of no better demonstration of this point than Imre 
Lakatos's Proofs and Refutations. In that work, Lakatos examined the 
history of Euler's claim that the number of faces, edges, and vertices 
of polyhedra always obey the equation V - E + F = 2. What Lakatos 
found was that throughout its history, this claim, as well as proofs 
presented for it, repeatedly encountered contradictions, none of which 
was deemed decisive; in fact, Euler's conjecture was in every instance 
rescued from falsification. In tracing this history, Lakatos revealed the 
rich repertoire of techniques available to mathematicians wishing to 
rescue mathematical entities beset by counterexamples. Moreover, 
numerous other cases of apparent contradictions can be cited from the 
history of mathematics in which the favored concept, law, or theorem 
was salvaged. Consider the celebrated theorem with which Euclid 
brought his Elements to a close and for the sake of which, according 
to some commentators, he composed the entire work: "No other figure, 
besides [the five regular solids] can be constructed which is contained 
by equilateral and equiangular figures equal to one another". Suppose 
Euclid were shown the six-sided figure (see figure) formed by placing 
together two regular tetraheda. This new solid, although fully conform- 
ing to Euclid's definition of 'regular solid', refutes his theorem. One 
can scarcely imagine that Euclid would have been led thereby to aban- 
don his theorem. Rather what he would have done is to salvage his 
theorem by modifying his definition of regular solid, as was later done, 
so as to exclude this counterexample. To provide another example: 
think of complex numbers, which faced constant contradictions. 
Throughout most of their history they stood in contradiction to the 
such laws as that every number must be greater than, equal to, or less 
than zero, that the square of any number must be positive, and that 
any algebraic entity must be geometrically representable. They survived 
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tations, although other elements in mathematics, for example, the defi- 
nition of number itself required modification, It can of course occur 
that the mathematical community will decide to declare a contradiction 
to be conclusive, but this is a matter of choice and may involve extensive 
controversy 

This analysis of Duhem's second claim sets the stage for a consider- 
ation of his third claim, what I have called the "restricted role of logic 
claim". In one of the most controversial, and possibly least understood 
sections of Duhem's  Aim and Structure, he stressed that at times physi- 
cists find themselves convinced that a theoretical system must be modi- 
fied, even though experiment has not provided sufficient evidence as 
to what elements are to be altered. In those instances, Duhem asserted, 
"No absolute principle directs this inquiry, which different physicists 
may conduct in very different ways without having the right to accuse 
one another of illogicality" (Duhem 1954, p. 216). What is to be done 
in such cases? Duhem's answer, which some see as implying the aban- 
donment of logic and as entailing surrendering to relativism, was to 
remind his readers that 

Pure logic is not the only rule for our judgments; certain opinions [in theoretical physics] 
which do not fall under the hammer of the principle of contradiction are in any case 
perfectly unreasonable. These motives which do not proceed from logic and yet direct 
our choices, these "reasons which reason does not know" and which speak to the ample 
"mind of finesse" but not to the ~'geometrical mind",  constitute what is appropriately 
called good sense. (Duhem 1954, p. 217) 

Duhem further underlined the inevitably human character of theoretical 
work in physics by adding: 

The sound experimental criticism of a hypothesis is subordinate to certain moral con- 
ditions; in order to estimate correctly the agreement of a physical theory with the facts, 
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it is not enough to be a good mathematician and a skilled experimenter; one must also 
be an impartial and faithful judge. (Duhem 1954, p. 218) 

In short, Duhem espoused the position, too rarely explicitly admitted 
in treatises on scientific method and sometimes implicitly denied in 
them, that important as logic is in physical inquiry, human factors 
influence the inquirer. Among such factors are impartiality and the 
'reasons of the heart ' ,  which cannot, ultimately be reduced to quasi- 
mechanical processes of reasoning. 

Certainly a comparably human element is to be found among mathe- 
maticians, who repeatedly face decisions that are not governed solely 
by logic. Many areas of mathematics, analysis most famously, have 
been beset by inconsistencies, anomalies, contradictions (real and ap- 
parent),  and counter-intuitive deductions, concerning which mathemati- 
cians have been forced to adopt a position. Mathematicians must also 
select the postulates from which a mathematical system begins. In this 
regard, it is relevant to recall Duhem's statement, cited previously, that 
it is impractical for the mathematician to rely on that "perfect  deductive 
method which would consist in defining and demonstrating everything, 
a method of inquiry [that] Pascal properly and rigorously disposed 
o f . . .  a long time ago" (Duhem 1954, p. 201). Moreover,  mathemati- 
cians must regularly choose among various mathematical methods of 
attacking problems; a relevant example, where Duhem was himself 
involved, was the decision as to whether or which vectorial methods 
should be employed. 

In this overall context, it is interesting to note that Duhem, following 
Pascal, stressed the variety of styles exhibited by working mathemati- 
cians. In particular, he pointed out that important contributions have 
been made to mathematics by persons possessing the ample mind of 
finesse rather than the geometrical mind. Duhem asserted: 

It i s . . .  ampleness of mind which constitutes the peculiar genius of many a geometer and 
algebraist. More than one reader of Pascal, perhaps, will not fail to be astonished on 
seeing him sometimes place mathematicians among the number of ample but weak minds. 
This cross-classification is not one of the lesser proofs of [Pascal's] penetration. (Duhem 
1954, p. 62). 

And Duhem illustrated this point by a rich array of examples. 7 
Duhem's  use of Pascal's famous classification of minds suggests an- 

other point, which is of general relevance. It should come as no surprise 
that Duhem's  ideas about physical theory have applications to mathe- 
matics if it is recalled that Duhem, when formulating his views on 
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methodology, relied heavily on the writing of Pascal, who had originally 
formulated many of his methodological ideas with reference primarily 
to mathematics. 

Finally, let us turn to Duhem's claim that a knowledge of the history 
of physical theory is of direct value to physicists. One Of the chief 
arguments Duhem provided for this claim was that, as he stated, "To 
give the history of a physical principle is at the same time to make a 
logical analysis of it" (Duhem 1954, p. 269). This statement, however, 
needs commentary, because its deeper meaning is somewhat different 
from what one might infer from a first reading. In particular, it seems 
probable that what Duhem was suggesting was not that historical analy- 
sis does precisely what ordinary logic can also accomplish, but rather 
that a historical investigation of a physical theory can create an aware- 
ness of the deeper logic of the theory, of those "reasons that reason 
does not know", those reasons that transcend ordinary logic but that 
are the province of 'bon sens'. A number of the arguments made in 
this paper, and not least its central theses, suggest that a comparable 
benefit should result from approaching mathematics in a historical 
manner. Moreover, a knowledge of the historical development of math- 
ematics may save not only the mathematician, but also the philosopher 
of physical theory, from distorted claims about the aim and structure 
and development of mathematics. 

Before concluding this paper, I should add a final note that is both 
historically significant and a further support for its central claim. After 
drafting the paper, I read an essay published in 1907 by Pierre Boutroux 
(1880-1922), the son of the philosopher Emile Boutroux. The younger 
Boutroux was a mathematician who also made important contributions 
to the history and philosophy of mathematics. In his essay, which he 
entitled 'La Thgorie physique de M. Duhem et les math6matiques', 
Boutroux, using a different set of arguments from those I have pre- 
sented, urged that a number of Duhem's doctrines concerning physical 
theory are also applicable to mathematics. For example, Boutroux 
stated: 

For some years I have sought to s h o w . . ,  that Mathematical  Analysis is not a perfect 
and exceptional science, that  its evolution recalls to mind,  in many cases, the evolution 
of the physical sciences . . . .  I have the impression that one can apply to mathematics  
what D u h e m  says of physics. (Boutroux 1907, p. 368) 

Boutroux illustrated this claim by noting, for example, the importance 
of experimentation in mathematics as well as of 'bon sens' and intuition. 
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I sha l l  n o t  a t t e m p t  to  r e c a p i t u l a t e  his  v a l u a b l e  a n a l y s i s ,  b u t  sha l l  o n l y  

n o t e  t h a t  I s h a r e  n o t  o n l y  B o u t r o u x ' s  v i e w  b u t  a l so  his  h o p e  t h a t  D u h e m  

w o u l d  f ind  s u c h  a n  a n a l y s i s  o f  i n t e r e s t  a n d  v a l u e .  

NOTES 

* I am indebted to Professors Douglas Jesseph and Philip Quinn for helpful comments 
on this paper. 
1 On Duhem's views concerning the nature of mathematics, see Boutroux (1907), his 
nearly identical Boutroux (1920), and Jaki (1984), 349-51,361. 
2 1 have discussed the views of a number of authors, including Duhem, on the historiogra- 
phy of mathematics in Crowe (1988). 
3 Duhem did discuss non-Euclidean geometries to some extent in his La Science alle- 
mande; see, for example, pp. 113-22, where he expressed major reservations about such 
geometries. 
4 This point is developed in more detail in Crowe (1988), where it is shown that Hilary 
Putnam and others have maintained that mathematicians employ the hypothetico-deduc- 
tire method. 
5 Although Duhem did not specify where Pascal had formulated this claim, he was no 
doubt thinking of Pascal's fragmentary 'De l'esprit g6om6trique'. 
6For an important analysis of Duhem's ideas in this regard, see Ariew (1984). 
7 Duhem extensively discussed the relation to mathematics of the two types of minds in 
his La Science allemande 
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