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 Solving Differential Equations
 by Symmetry Groups

 John Starrett

 1. WHICH ODEs ARE EASY TO SOLVE? Consider the first order ODEs

 dy st \ dy t \ ? = f(x), ?=g(y). ax ax

 It is easy to see that the solutions are found by computing

 fdy = jmdx, fj^ = fdx,
 respectively.

 In an elementary course in differential equations, we learn that equations of the form
 dy/dx ? f(x)g(y) are separable and are simple to solve because we can separate
 terms involving only x from those involving only y = y(x). In fact, as we will see,
 the deeper property that lets us solve these is the presence of a Lie group1 symmetry:
 a continuous transformation that takes each solution curve y = (p(x, a) into another.
 The constant of integration a can be thought of as an adjustable parameter of the
 continuous group action that maps one solution curve into another.

 In these two cases, the symmetries are particularly simple. In the first case, because
 dy/dx = f(x), the slopes dy/dx of the solution curves y = (j)(x, a) are independent
 of y. Therefore we can slide any solution curve in the y-direction into any of the other
 solution curves by means of the correspondence (x, y) \-> (x, y + a), as in the left
 hand graph of Figure 1. Similarly, for dy/dx = g(y) the slopes dy/dx of the solution
 curves y = \f/(x, ?) are independent of x, so we can slide any of these curves in the x
 direction into any other via (x, y) h> (x + ?, y), as in the right-hand graph of Figure
 1. These two continuous transformations exemplify the group idea in this context:
 any sequence of two translations is also a translation, there is an identity translation
 (no translation), and for any translation there is an inverse translation that undoes it
 (resulting in the identity translation).

 Now consider the differential equation

 dty_ = y3 +x2y -x -y
 dx x3 + xy2 ? x + y '

 which, at first glance, may seem quite difficult to solve. However, a change of variables
 to polar coordinates x = r cos 0, y = r sin 0 results in an equation in r and 0,

 dr n

 that is separable in the new variables. We see that the slope dr/dO of this differential
 equation is independent of 0, so translation in the 0-direction will take one solution

 1A Lie group is a topological group (i.e., a group endowed with a topology with respect to which the group
 operations are continuous) that is also a manifold.
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 Figure 1. On the left, a family of curves that is invariant under a shift in the y-direction; on the right, a family
 of curves that is invariant under a shift in the x -direction.

 curve r ? h(0,y) into another. The solutions to (1) are invariant under the continuous
 group of transformations (r, 0) h-> (r, 0 + y) that represent rotations about the origin.
 A graph of a number of solution curves to this equation is shown in Figure 2.

 Figure 2. A family of curves that is invariant under a shift in the 6-direction.

 These simple examples suggest that a first-order ODE can be transformed into a
 separable equation if its set of solution curves is invariant under translation in some
 coordinate system. Given a first-order ODE, our goal is to find a general method to
 determine this coordinate system so that the simplified equation can be integrated:
 this reduces the order of the first-order equation by one. In fact, this is the general
 procedure for higher order ODEs, where we have symmetry groups involving more
 than one parameter. We aim to reduce the order step-by-step, one step per parameter,
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 until we can integrate the final first order ODE. Unfortunately, this goal is not always
 achievable. We do not consider second-order (or higher order) ODEs in this article,
 nor Lie group methods for PDEs. The subject is experiencing a renewal in interest,
 and there are several good modern texts listed in the bibliography for those interested
 in pursuing these ideas further.

 Finding differential equations for families of curves. Suppose we have a family
 of curves that can map into each other along some direction. Can we find a differ
 ential equation for which this family is a set of solution curves? For instance, con
 sider the family of concentric circles centered at the origin described by the equations
 x2 + y2 = c2 (c > 0). The easiest way to arrive at an associated differential equation
 is to differentiate this equation implicitly until all the arbitrary constants are gone:
 Dx(x2 -f y2 = c2) becomes x + yy' = 0 or

 / = -x/y. (2)
 Here, Dx signifies the total derivative operator defined by

 dx 3 dy 3 dy' 3 3 ,3 ? 3
 dx ox dx ?y dx dy' ox oy ay'

 which accomplishes implicit differentiation when it is applied to an equation in
 x, y(x), yf(x), ... . We can easily solve the separable equation (2):

 ydy = - I xdx,

 which leads to the implicit solution y2 + x2 = k for arbitrary nonnegative k, and thus
 to our original family of curves (except for the degenerate case k = 0). Now, even
 though equation (2) is separable, there is a change of variables (r, s) = (x, y2/2) that
 results in a differential equation ds/dr = ? r the slopes of whose solution curves are
 independent of the dependent variable s. This means that solution curves can be trans
 lated into one another in the ^-direction. The change of variables is easily computed as
 follows:

 ?l. - ?l? - Dxiy2 - '
 dr Dxr Dxx

 Then, substitution of y' = ?x/y leads to ds/dr = ? x = ? r. Even simpler, we can
 see by inspection that the circles are described by the differential equation dr ?dB = 0
 in polar coordinates.
 Now consider the family of curves y = (je ? c)2 ? c2 pictured in Figure 3. By ap

 plication of the total derivative operator we obtain the differential equation

 y' ? y/x + x.

 Unlike the case of the family of circles, it is not obvious from inspection of the given
 family of parabolas what a simplifying coordinate system might be.

 More generally, a family of curves with n free parameters is a solution to an nth
 order differential equation. The family of ellipses x2/a2 + y2/b2 = c2 (c > 0), for
 instance, has a second-order differential equation

 ? y'(y - xy')
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 Figure 3. The family of curves y = (x ? c)2 ? c2.

 as can be seen by applying the total derivative operator twice, substituting and sim
 plifying along the way. The reader can discover some sophisticated tricks for solving
 differential equations by starting with a family of curves, repeatedly taking the total
 derivative, and then figuring out how to work backwards from the final differential
 equation.

 At this point we need to look more carefully at Lie group symmetries so that we
 can assemble a systematic approach to finding these simplifying coordinate transfor
 mations. This we do in the next section.

 2. SYMMETRIES AND ODEs. A symmetry is a mapping of one mathematical ob
 ject into itself or into another mathematical object that preserves some property of the
 object. The easiest symmetries to see are the discrete symmetries of geometrical ob
 jects, such as the rotational symmetries of the objects in Figure 4. Note that the sphere
 in the middle is invariant under a continuous group of rotational symmetries, not just
 a discrete group.

 Figure 4. Geometric objects that have symmetries.

 In the previous section, we gave three examples of differential equations whose
 solutions map into each other in some very simple way: the solutions just slid into
 each other in some coordinate direction. These solution curves are isometric, that is,
 they have exactly the same shape, so that they can be mapped into each other by rigid

 motions.
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 Suppose that the solutions of a differential equation can be mapped into each other
 nonisometrically, as in the examples of the family of circles or ellipses. Can we still
 solve the differential equation by an appropriate change of coordinates? For first-order
 differential equations the answer is a qualified yes. In effect, we find a change of
 coordinates that "straightens out" the direction in which we "slide" the curves. For
 example, if we write dy/dx = ?x/y in polar coordinates, we obtain the equation
 dr/dO = 0 whose solution is r = C. In polar coordinates, solution curves slide into
 one another along the r-direction.

 Lie group symmetries. We have been speaking implicitly about groups of transfor
 mations of families of curves qb (x, y) = c in the plane. Let x = (x,y) and X = (X, Y)
 be points in the Euclidean plane, and for X in R, let P?:xb f(x, X) = X be a trans
 formation, depending on the parameter X, that takes points x to points X. There will be
 a composition rule \f/(fL,v) defining the composition of two transformations with pa
 rameters ?JL and v, but we can always reparameterize the group so that the composition
 is additive, that is, \?/(Xi, X2) = A.i + X2. (With this parameterization, the identity trans
 formation corresponds to ? = 0.) We say the set of transformations Px is a (additive)
 transformation group G if the following conditions are satisfied:

 1. Px is one-to-one and onto;

 2. PX2oPM =PX2+M,thatis,f(f(x,?,),?2) = f(x,?2 + M);
 3. P0 = I (i.e., f(x, 0) - x);

 4. For each X\ there exists a unique X2 (in fact, X2 = ?X\) such that PXl o PX] =
 PQ = I, that is, f(f(x, XX),X2)= f(x, 0) = x.

 If, in addition to these four group properties, f is infinitely differentiable with respect
 to x and analytic with respect to X, we say G is a one-parameter Lie group (or a Lie
 point transformation). A point transformation maps points in the Euclidean plane into
 other points in the plane.2 If X = 0, then

 Pk : (x, y) h> (X, y)|x=0 = {f{x, y, 0), g(x, y, 0)) - (x, y).

 For example, if Pk : (x, y) t-> (jc + X, y ? X)) or Px : (x,y) h? (exx, y), then when
 X = 0 we have (X, Y) = (x,y).

 The Lie group symmetries we are considering are symmetries under a local group,
 that is, the group action may not be defined over the whole plane. For instance, the
 group action

 is defined only if ? < l/x when x > 0 and X > l/x when x < 0.
 The ODE dy/dx = 0 has many (in fact, like all first-order differential equations, an

 infinite number of) symmetries, among them Px : (jc, y) \-> (x, exy), Px : (x, y) i->
 (x + X, exy), Px : (x, y) \-> (x,X -\- y), Px : (x, y) h? (exx, y), etc. It is easy to see

 why: the solutions to this ODE, shown in Figure 5, take the form y = c, which has as
 its family of solution curves the family of horizontal lines in the plane. Stretch them,
 shift them, stretch and shift them in either the x- or the y-direction or both, and you still
 have a family of horizontal lines in the plane. The symmetries Px : (x,y) -* (exx, y)

 2There are more general transformations, such as contact transformations and Lie-Backlund transforma
 tions, but we ignore them in this introduction.
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 jtfxL

 n?i?i?i?rO"
 -1-:

 ?1-1-1-1-1-1-1

 -J-2

 Figure 5. Solution curves to dy/dx = 0.

 and Px : (x,y) -> (x + ?, y) are called trivial, because for this particular equation
 they take each solution curve into itself. Trivial symmetries, as well as discrete sym
 metries, are not useful for our purposes.

 Orbits of solutions. Consider a particular point (x0, yo) and the action of an additive
 Lie group

 Px (xq, y0) ^ (X0, Yq) = (/(xo, Jo, ^), g(x0, y0, A)).

 As X varies, the point (X0, F0) moves about the plane tracing out a continuous curve, as
 in Figure 6. This curve is called the orbit of (x0, yo) under the group, or just an orbit of
 the group. If the Lie group is a (nontrivial) symmetry group of a differential equation
 dy/dx = h(x, y), then an orbit of the group takes a continuous path transverse to

 <Kx,?)

 <Kx,a)

 Figure 6. One portion of an orbit of a symmetry is shown darkened. The labels </>(x, a) and 0(x, ?) refer
 to solutions 0(x) = ci, 0(x) = C2 of the differential equation for two different parameter values ? = a and
 A. = |S.
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 solution curves of the differential equation. An orbit of solution curves is a continuous
 family <p(x,y) ? c(X). Along this orbit, changes in ? map solution curves to other
 solution curves.

 An orbit of a particular point (x0, yo) in a solution curve is a candidate for one of the
 coordinates in a coordinate system in which the differential equation becomes easy to
 integrate, because in this "direction" solution curves slide into one another. As a spe
 cific example, consider the set of solutions to the Bernoulli equation y' ? y (x ? y)/x2,
 whose graphs are shown in Figure 7. By a method we will discuss a little later, we are
 able to find a coordinate system (r, s) = (x, ?x/y) in which solutions translate into
 each other in one of the coordinate directions. When the Bernoulli equation is writ
 ten in these coordinates, it transforms, using ds/dr = Dxs/Dxr, to ds/dr = 1/r, the
 right-hand side of which is independent of s. Thus, solution curves can be translated in
 the ^-direction into each other, and the equation is separable in these variables. Solving
 the new equation and substituting the original variables in the result gives the solution
 we seek, y = x/(lnx + C).

 Figure 7. A family of solutions (heavy lines) to the Bernoulli equation, along with a canonical coordinate
 system r = x, s = ?x/y.

 One of the standard techniques for solving an equation like this is to notice that

 y = x-y^ = y?(l)2. X1 X \xJ

 Then we make a change of variable u=x/yorv = y/x, differentiate, substitute, and
 solve the differential equation. This technique, like most standard solution methods, is
 really a special case of solution by Lie group methods.
 When we slide solution curves into each other along a canonical coordinate direc

 tion, we are using implicitly the relation between the original curves and the curves in
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 the new variables. Suppose we have a differential equation

 dy
 dx = h(x,y)  (3)

 and know a symmetry Px : (x, y) h-> (X, Y). Then, because the symmetry group takes
 solutions into other solutions, upon substitution of (X, Y) into (3) we should have

 dY
 Jx=h,x-r>

 when dy/dx = h(x, y), that is, the differential equation should have exactly the same
 form.

 Because we know an explicit form (X, Y) = (f(x, y, X), g(x, y, X)) for the sym
 metry, we can easily calculate h(X, Y). In order to write the transformed differential
 equation explicitly, we need to calculate dY/dX. Using the total derivative, we find
 that

 dY
 ~dX

 DXY Yx + y'Yy
 DXX Xx + y'Xy

 = h(X,Y).

 Now, because yf = h(x, y),we can write

 Yx+h(x,y)Yy
 Xx+h(x,y)X}

 = h(X,Y).  (4)

 This nonlinear partial differential equation gives us the symmetry (x,y) h-> (X, Y)
 we seek implicitly in terms of (x, y). If we could solve (4) for X and Y, we could
 find our simplifying coordinate system, but in practice it is usually impossible to do
 so. However, if we linearize this equation, we get something that frequently can be
 solved, and from that solution we can find the simplifying coordinate system. In the
 next section, we see how this can be done.

 Vector fields of group orbits. We now develop the machinery to find the vector field
 (linearization) of the group orbit. This vector field is everywhere tangent to the coor
 dinate curves of our new coordinate system. Suppose that we knew a symmetry group
 Pk : (x, y) h> (X, Y) = (f(x, y, X), g(x, y, X)) for our differential equation. Then,
 along the orbits, we would have

 dX _df _ dY _dg _
 dX dX dX dX

 with

 dX
 ~dX ?=0

 dY
 ~dX ?=0

 = (?(x,y),r](x,y)).

 The functions ? and r?, sometimes called the symbols of the infinitesimal transforma
 tion, are central to the process of finding new coordinates in which an equation gets
 simplified. They are the tangents to the coordinate curves we seek.

 In order to compute the vector field of the group of orbits, we expand X, Y, and
 h(X, Y) in Taylor series around X = 0:
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 X = x + ??(jc, y) + O (?2) , F = y + ?r?(x, y) + ? (?2) ,

 A(X, F) = h(x, y) + MM*, yMx, y) + Ay(x, y)^(x, y)) + O (?2) .

 By ignoring terms of order X2 and higher, we obtain linearizations of X, F, and
 h(X, Y). Because linearization gives the slope of a curve, it defines a vector field,
 and therefore the orbit curves can be retrieved by integration.

 In order to simplify the symmetry condition (4), we linearize by substituting (5)
 into equation (4), ignoring terms of order X2 and higher:

 h + X(rix + hnv)

 1+X&+A?,)

 Multiplying and again disregarding terms of order X2 and higher, we find that

 h + X(nx + (ny - ?x)h - ?yh2) = h + X{$hx + rjhy),

 which simplifies to

 T]X - ?yh2 + {Jly - ?X)h - {^hX + nhy) = 0, (6)

 the linearized symmetry condition for first-order differential equations. This equation
 is, in general, impossible to solve unless we make an assumption about the form of the
 solution.

 Example 1. Consider the differential equation dy/dx = h = y2/x. Substitute h =
 y2/x into the linearized symmetry condition rjx ? l=yh2 + (rjy ? %x)h ? (tjhx + rjhy) =
 0 to obtain

 y4 y2 y2 2y
 fix - %y- + (Jly - S*)- +H-2-n ? =Q Xa X X1 X

 In this form it is still not easy to solve, so we make a simplifying assumption:
 namely, that ? depends only on x, rj only on y. If (?, r?) = (?(x), rj(y)), then

 riy-2-=?x- -. y x

 This is a partial differential equation in which the variables separate. We find solutions
 by setting each side equal to a constant c (for the sake of simplicity we choose c = 0).
 The symbols are therefore ? = c\x and rj = c2y2 . In the next section we will see how
 to find a simplifying coordinate system from the symbols.

 Canonical coordinates. In canonical coordinates (r(x, y), s(x, y)), a given differen
 tial equation becomes separable: for the simplest cases we obtain either ds/dr = f(r)
 or ds/dr = f(s). For the sake of definiteness, we treat only the case ds/dr = f(r).
 Then (R, S) = (r, s + X), that is, in the new coordinates there is a point symmetry
 Px : (r, s) h> (R, S) = (r, s + X) that amounts to translation in the s-direction. Then
 the tangent vector at (r, s) will be

 dR
 ~dX

 dS
 ' ~dX  = 1.

 ?=0 U=0
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 Taking derivatives with respect to X at X = 0 leads to

 dR dy dR_
 ~dX

 dS_
 dX

 x=o

 x=o

 dRdx
 dx dX
 dSdx
 dx dX

 x=o dydx x=o

 _ dr dr _
 dx dy

 x=o
 dS_dy
 dy dX x=o

 ds ds
 dx dy

 or

 rx% + ryr] = 0, sx? + syT? = 1.  (7)

 Now equations (7) are first-order linear partial differential equations for r = r (x, y)
 and s = s(x, y), and solutions r = c and s = k are first integrals (i.e., functions
 </>(x, y) constant along solution curves, but generally with different constants along
 different solution curves). Geometrically, solutions to equations (7) may be repre
 sented by surfaces, and the projections of the level curves r(x, y) = c, s(x, y) = k
 on the (jc, j)-plane form the family of curves that will become our simplifying coor
 dinate system.

 Figure 8. Solution surface for a first-order linear PDE along with the projection of some of its level curves.

 If i-(x, y) = dX/dX\k=0 = 0 or rj(x, y) = dY/dk\ Q = 0, then we can solve equa
 tions (7) directly to obtain (r, s) = (x, f dy/r\) or (r, s) = (y, f ds/i-), respectively.
 Otherwise, we solve (7) by the method of characteristics, whereby we can find the
 solution to a linear PDE by solving a system of ODEs.

 Consider the linear partial differential equation in u(x, y)

 a(x, y)ux(x, y) + b(x, y)uy(x, y) = c(x, y),  (8)

 whose solutions u(x,y) each define a surface S = S(x,y,u(x,y)) ? S(x,y,z).
 We have from (8) that a, b, c, and u must satisfy (a, b, c) (ux, uy, ?1) = 0, and
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 because any solution surface S has a normal vector n = (ux,uy, ?l), the vector
 (a(x, y), b(x, y), c(x, y)) must lie in the tangent plane to S for each (x, y). Now
 consider a curve C parameterized by t h> (x(t), y(t), z(t)) and lying in the surface
 S whose tangent vector is in the direction (a(x(t), y(t)), b(x(t), y(t)), c(x(t), y(t))).
 Then we must have

 dx dy dz ? = Ca, ? = Cb, ? = Cc dt dt dt

 for some positive constant C, or

 dx dy dz
 abc

 These are called the characteristic equations of (8).
 For the particular case of (7), characteristic equations are, respectively,

 dx dy dx dy
 H rj ' ? rj

 and we may find r and s by solving these systems. The solution to the first takes the
 form

 r = k = g(x,y),

 and we can solve dx/% = ds by integrating

 dx

 =/*=/
 Example 2. As an example, suppose that some differential equation has the symme
 try ? = 1, rj = x. In this case we must solve dy/x = dx/l to get y = x2/2 -f c, so
 r = c = y ? x2/2 gives us the r-coordinate. Then we integrate f ds = f dx/l to
 obtain s = x, so that (r, s) = (y ? x2/2, x). If the symmetries were instead of the
 form (?, r?) = (0, x2), then r = x = c and we would find s by solving dy/x2 = ds:
 fdy/x2 = f ds -> s ? y/x2. Therefore, our simplifying coordinates are (r, s) =
 (x,y/x2).

 The equation in canonical coordinates. The antepenultimate step is to transform
 the given equation to canonical coordinates. This is a simple process for a first-order
 ODE. The nonlinear symmetry condition is

 ds sx + h(x, y)sy
 dr rx+h(x, y)ry '

 (9)

 and we have every element we need: we know the canonical coordinates r(x,y) and
 s(x,y), and we have h(x,y) from the original equation. After this step, all that re

 mains is to solve the simplified ODE and translate the solution into the original coor
 dinates. Of course, even for a separable ODE, we may not be able to find a solution in
 terms of simple functions. We consider the ODE solved when it has been reduced to
 quadrature.
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 3. SOLVING FIRST-ORDER ODES. We are now ready to solve a full-fledged ex
 ample from start to finish. The steps are:

 1. Find Lie symmetries of the unknown solutions of the differential equation, say
 dy/dx ? h(x, y), by appealing to the linearized symmetry condition (6)

 nx - ?yh2 + (?]y - $x)h - (?hx + rjhy) = 0.

 To do this, we must make a guess at the form of a symmetry (remember, there
 are an infinite number, so a few guesses usually suffice).

 2. Use the solutions to the linearized symmetry condition (the symbols ? and rj) to
 find a coordinate system (r, s) in which the solutions depend on only one of the
 variables. To do this, we integrate the characteristic equations dx/tj = dy/n and
 dx/t- = dy/n = ds of the orbit.

 3. Substitute the canonical coordinates into

 ds sx + h(x, y)sy
 dr rx+h(x,y)ry

 and solve the differential equation in the canonical coordinate system.

 4. Express the solution in the original coordinates.

 Example 3. As a first easy example, and one that we know how to solve with the aid
 of an integrating factor, we solve the differential equation y' ? y/x + x for the family
 of curves described by y = (x ? c)2 ? c2 (c real) that we considered earlier (Figure
 3). Our goal is to make this a separable equation in its canonical coordinates. The
 linearized symmetry condition (6) reduces for our particular equation to

 rjx - ?y(y/x + x)2 + (rjy - ?x)(y/x + x) - (?(1 - y/x2) + n{\/x)) = 0.

 As usual with first-order ODEs, the symmetry condition is too difficult to deal with
 as it stands. We look for symbols ? and rj of the type ? = 0, r? = rj(x). Substituting
 this into the symmetry condition, we obtain r?x = rj/x, which we can easily solve
 to get rj = ex. Why did we choose this form? There are many possibilities, so we
 picked a simple one, hoping that it would do the trick. If our choice had failed, we
 would try another. Usually, it pays to try the simplest polynomials of a single variable
 ? = P(*), r) = Q(y) or ? = P(y), n = Q(x) first, then sums ? = Px(x) + ?i()0,
 rj = P2(x) + Q2(y), products ? - Pi(x)Qx(y), r? = P2(x)Q2(y), quotients, etc.

 Next we find the canonical coordinates. As before, because ? = 0 we have r = c =
 x, and we integrate ds = dy/n ? dy ?ex to get s = y/ex. In canonical coordinates the
 equation becomes

 ds sx + h(x, y)sy
 dr rx + h(x,y)ry

 or

 ds _ -y/x2 + (y/x + x)l/x _
 dr ~ 1+0 ~

 Accordingly, s = r + k. Finally, substitution yields y = x2 + xk, which we can readily
 check to be a solution of the given ODE.
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 Example 4. The Bernoulli equation dy/dx = y -f- y ]ex, when substituted into con
 dition (6), leads to

 rix - Hyiy + y~Xex)2 + (riy - ?x)(y + y~ V) - (?(v~V) + r/(l - ex/y2)) = 0.

 This, again, is too difficult as it sits, so we try a few simplifying assumptions before
 we discover that f = 1, r? = n(y) yields

 r]y(y + v-V) - (y"V) - r?{\ - y-V) - 0.

 Because some terms depend only on y, we solve yrjy ? rj = 0 to obtain r? = cy. In
 serting this form of r\ into the remaining equation rjy + y~ln ? 1 = 0, we arrive at
 rj = y/2.

 Now that we have settled on the symbols (?, 77) = (1, y/2), we find canonical coor
 dinates by solving dy/dx = 77/f = y/2 to get r and s. Remember that we seek fami
 lies of functions that remain constant for r, so r = c = ye~x/2. The second coordinate
 s is found by integrating ds = dx/l to get s = x.

 The next step is to find the differential equation in the canonical coordinates by
 computing

 ds sx + syh
 dr rx + ryh

 We learn that

 ds _ 1 _ 1
 dr ~ -lye-x/2 + e-x/2(y + y-\ex) ~ Lye-x/2 + y-\ex/2'

 Expressing ^ye~x/2 + y~xex/2 in terms of r and s leads to r/2 + 1/r, whence

 ds r
 ~dr = r2/2+T

 This integrates to

 s = ln(r2/2 + 1) + c.

 Returning to the original coordinates, we obtain

 y = ?^/ce2x ? 2ex.

 Example 5. Consider the ODE y1 = y/(x ? y). We can solve this by exchanging x
 and y and computing

 dx Dxx x ? y
 dy Dxy y

 The ODE is now easily solvable using an integrating factor, but we want to go back to
 the original equation and solve it using Lie group methods from the start. The symme
 try condition (6) takes the form

 (y2 - 2yx + x2)nx + (yx - y2)r]y + (y2 - yx)?x - y2?y + y? - xn = 0,
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 but we can see that it simplifies to

 (y2 - 2yx + x2)nx + {xy - y2)ny - xrj - y2?y + y? = 0

 if we choose ? to be a function of y alone. Because of the dependence of ? upon y,
 y? ? y2^, = 0 separately, and we can solve this to obtain ? = y. Now, the remainder
 in rj is difficult to solve but is identically satisfied by rj = 0. Therefore, we try (i-,rj) =
 (y, 0). Integrating the characteristic equations, we get (r, s) = (y, x/y). Computing

 ds sx + syyf
 dr rx+ryyr

 we see that ds/dr = ? 1/r, which upon substitution of the original variables becomes
 x/y = ? In y + c. We can easily verify by implicit differentiation that this satisfies the
 original ODE.

 Example 6. Consider the ODE y' = 1 + (1 - y2)/(xy) (taken from [3, p. 32]). This
 nonlinear ODE does not appear to be solvable by any of the standard methods. The
 key, as usual, is to find the point symmetries of this equation. Our assumption for the
 tangent vector field is that

 ? =a(x), rj = ?(x)y + y(x).

 Taking derivatives and substituting into condition (6), we get

 We can compare coefficients of powers of y, which reveals the following information:

 1. y-2:y = 0;
 2. y-1: (? - a')/x = -a/x2 - ?/x;
 3. y?:?=a'.

 From the second and third statements we infer that a' + a/x ? 0, with solution a ?
 cx~\ so ? = ?cx~2. The tangent vector field of the Lie symmetry group thus has the
 form

 (?,r?) = (cx~\ -cx~2).

 Since ? t^ 0, we can solve dy/dx = r\/% = ?y/x to get r ? xy and s = f dx/i= =
 c f x dx. We conclude that

 1 2
 r = xy, s = -x . 2

 Because of the symmetry condition, we know that

 ds sx + hsy x + 0
 dr rx+hry y | x h-y2+*y\

 Simplifying and substituting r and s for x and y, we arrive at

 ds r
 dr 1 + r'
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 which has the solution

 s = r ? ln(l ? r)

 or

 1 ?
 -x = xy ? ln(l + xy)

 in the original coordinates.

 4. SUMMARY. In this paper we have attempted to give a simple, self-contained in
 troduction to the use of Lie group methods for the solution of first-order ODEs. The

 method applied to such equations is particularly nice in that a geometric interpretation
 can be given. The Lie group method of solving higher order ODEs, PDEs, and sys
 tems of differential equations is more involved, but the basic idea is the same: we find
 a coordinate system in which the equations are simpler and exploit this simplification.

 Although the best known applications of Sophus Lie's theory of continuous groups
 are in differential geometry, relativity, classical and quantum mechanics, continuum
 mechanics, and control theory, there is now a renewed interest in his original applica
 tion to solutions of differential equations, and a number of fine texts have appeared.
 Some of these are listed in the bibliography. The introduction of at least some of these
 ideas into an elementary course on differential equations seems reasonable, practical,
 and desirable.
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