
Demonstrative Induction: Its Significant Role in the History of Physics 

Author(s): Jon Dorling 

Source: Philosophy of Science , Sep., 1973, Vol. 40, No. 3 (Sep., 1973), pp. 360-372  

Published by: The University of Chicago Press on behalf of the Philosophy of Science 
Association  

Stable URL: https://www.jstor.org/stable/186196

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

The University of Chicago Press  and Philosophy of Science Association  are collaborating with 
JSTOR to digitize, preserve and extend access to Philosophy of Science

This content downloaded from 
������������128.196.130.121 on Fri, 23 Jul 2021 00:36:49 UTC������������ 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/186196


 DEMONSTRATIVE INDUCTION: ITS SIGNIFICANT ROLE
 IN THE HISTORY OF PHYSICS*

 JON DORLING

 University of London

 It is argued in this paper that the valid argument forms coming under the general
 heading of Demonstrative Induction have played a highly significant role in the history
 of theoretical physics. This situation was thoroughly appreciated by several earlier
 philosophers of science and deserves to be more widely known and understood.

 The general feature of the arguments which I shall discuss is that they involve
 the deduction of an explanans from one of its own explananda.

 I shall first give a simple formal example of such an argument. Then I shall give
 numerous examples from the history of physics. Finally I shall review what the
 philosophical literature has had to say about such arguments.

 The principal argument schema which I propose to consider is one in which a
 universal generalization is deduced from one of its own particular instances. Of
 course this deduction involves the use of additional theoretical premises. The
 important thing about these additional premises is that they must not themselves
 imply the universal generalization in question and that they be such that, in a
 realistic situation, we could have more initial confidence in them, than in the
 universal generalization which we proposed to deduce with their help.

 Instead of offering a schema which enables one thus to infer (x)Fx from Fa, I
 shall offer one which licenses the (seemingly more restrictive) inference to (x)Fkx
 from Fka, where the constant k can be thought of, if you like, as picking out a
 particular property Fk from a more general class of properties F. I do things in
 this way merely in order to be able to formulate the additional premises needed
 wholly within first-order logic, whereas they would otherwise need to be formu-
 lated within the less familiar second-order logic.

 The additional premises that I propose are two. The first asserts the existence
 of a universal law of a certain specified form; its formal version reads: (3n)(x)Fnx.
 That is, it specifies the law in question up to an undetermined parameter n. (This
 might seem a very specific kind of restriction: but in fact virtually any restriction
 on the form of the law can be expressed formally in this way.) The second addi-
 tional premise asserts that there cannot be more than one value of the parameter
 n for any given value of the argument x, and reads formally: (x)(m)(n)(Fmx &
 Fnx -> m = n). I shall call this condition the uniqueness condition and the first
 condition the existence condition. In some applications the uniqueness condition
 will be fairly trivially satisfied. In all applications F will be such as to have the

 * Received April, 1973.
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 DEMONSTRATIVE INDUCTION 361

 effect that the variable x ranges over the domain over which we wish to generalize,
 e.g. pairs of bodies, sets of bodies, distances, etc.
 Here is a formal proof of the validity of the argument schema in question.

 1. Fka Premise.
 2. (3n)(x)Fnx Premise.

 3. (x)(m)(n)(Frnx & Fnx m n) Premise.
 4. (x)Fjx (2), existential instantiation.
 5. Fja (4), universal instantiation.
 6. Fka & Eja (1), (5), and-addition.
 7. Fka & Eja -> k = j (3), three universal instantiations.
 8, k =]j (6), (7), modus ponens.
 9. (x)Fkx (4), (8), substitutivity of identity.

 Q.E.D.

 This is a valid argument in first-order predicate logic with identity. Let me illus-
 trate it with some examples from the history of physics.

 Passing over Newton's deduction of the gravitational inverse square law (which
 is certainly not a simple and straightforward instance of the argument I have in

 mind; its detailed logical structure is too complex to analyze here), the next funda-
 mental law to be introduced into physics was the electrostatic inverse square law.
 Now although the electrostatic and magnetostatic inverse square laws were both
 arrived at by Coulomb [4] in 1785 on the basis of what appeared to be rather
 direct inductive generalizations from experiments, the electrostatlc law had in
 fact been arrived at already by Cavendish in 1773 (though not published at the
 time) by what Maxwell was later to claim as a very much more accurate method,
 and one which relies on the result of only a single experiment.1 However, while
 the Cavendish argument is an historically important example of the use of demon-

 strative induction, it is nevertheless, philosophically, a comparatively uninteresting
 example because the existence condition on which Cavendish relied is not such that
 one could reasonably have had appreciably more confidence in it than in
 the universal generalization which was to be deduced with its help. At least that
 is my understanding of the theoretical situation at the time Cavendish was
 working. A full historical and philosophical analysis of this example is given
 in [10].

 'The details of Cavendish's experiment and of the argument by which the electrostatic
 inverse square law may be inferred from its result can be studied in Cavendish's own version
 in Maxwell's [251 and in Maxwell's version in the section entitled "On the proof of the law of
 the inverse square" in Maxwell's [23]. 1 have myself examined this argument closely, [10], and
 am satisfied that its fundamental step is indeed in accordance with the demonstrative induction
 schema given above, the existence condition being Cavendish's assumption of some inverse
 power law, and the uniqueness condition amounting to the assumption that the forces in ques-
 tion depend only on the distance. These are of course not the only theoretical assumptions
 Cavendish needed to infer from the result of his experiment with two concentric globes that
 the force between any two smal portions of the electric fluid varied as the inverse 2 ? 0.02th
 power of their distance apart. But it is they which enable Cavendsh valdly to deduce the law
 in question from one of its own particular instances.
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 362 JON DORLING

 Surprisingly enough one finds implicit in Coulomb's method of reaching the
 electrostatic inverse square law [4] another demonstrative induction with better
 philosophical credentials. We recall that Coulomb experimented with a par-
 ticular pair of small charged wooden balls and inferred from observations on the
 force between them at a comparatively small number of distances (three), a law
 for the force between them at all distances. However, this comparatively low-
 level generalization about the behavior of a particular pair of balls of elder wood
 in a particular experimental situation is obviously itself only a very special case
 of the electrostatic inverse square law. How did Coulomb infer the full electro-
 static inverse square law from this special case? It seems to me that the simplest
 rational reconstruction of his procedure is not to suppose that he took that law
 as an hypothesis, or to suppose that he arrived at it by a wild inductive generaliza-
 tion from a single instance, but to suppose that he was already committed to a
 theoretical assumption to the effect that there existed some force law giving the
 force between charges as a function of their quantities and their distances apart,
 which law was to be valid for all pairs of charges in all relative states of position.
 Since the uniqueness condition corresponding to this existence condition is com-
 paratively trivial (Coulomb would hardly entertain the possibility of two different
 distance dependences for the force between his charged balls) he has enough
 theoretical assumptions to which he is already committed to permit him to deduce
 the full electrostatic inverse square law from the low-level generalization which
 he inferred from his experimental results. The argument is a special case of the
 demonstrative induction schema I drew up originally, the predicate F in this case
 itself containing a variable bound by a universal quantifier (namely one ranging
 over all distances) while the universal generalization licensed by the demonstrative
 induction schema is the further one over all pairs of charged bodies. Here, as is
 often the case, the statement of the phenomena from which the deduction starts
 is itself a low-level generalization (although I have been at pains to emphasize
 that this is not a logical requirement): the argument of philosophical interest is
 that by which further universal quantifiers are added. This particular example
 seems to be a realistic example of one where the scientist in question evidently
 would have had more initial confidence in the theoretical premises needed to
 mediate the deduction, than in the particular universal generalization which could
 be deduced with their help.

 The next celebrated example of a demonstrative induction from the phenomena
 is Ampere's The'orie Mathe'matique des Phenomenes 1lectrodynamiques Uniquement
 Deduite de 1'Expe'rience, [1], in which Ampere's celebrated (and, according to our
 modern views, incorrect) formula for the force between two current elements is
 allegedly deduced from the results of four specific experiments. I have sketched the
 essential structure of the argument in the diagram opposite.

 The basic deduction seems to me cogent provided one allows that Ampere's
 starting point is low-level experimental generalizations rather than actual experi-
 mental results and provided one grants him the additional crucial extra-experi-
 mental assumptions which he quite openly requires for his deduction: in par-
 ticular the assumption that the force between the current elements is along the
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 DEMONSTRATIVE INDUCTION 363

 THEORIE MATHEMATIQUE DES PHENOMPNES 1PLECTRO-DYNAMIQUES
 UNIQUEMENT DIEDUITE DE L'EXPERIENCE

 A.-M. Ampere 1827.

 A rational reconstruction of Whittaker's rational reconstruction of Ampere's deduction
 (The English quotations are from Whittaker [27], p. 85. Notice that what he describes as Am-
 pere's experimental results are really low level generalizations from them. Unbroken arrows
 signiify deductive inferences, broken arrows hypothetico-deductive inferences or inductive
 inferences according to your philosophical fancy.)

 Force Law Ampe're's Experiments
 Under the conditions of Ampere's specific

 1. dF - dF(i, i', ds, ds', r) experiments the force depends - . experiments
 (perhaps only inter alia) on these unnecessary
 variables.

 "Expt. 1: The effect of a current is reversed
 when the direction of the current is reversed" actual Expt. 1

 < proportionality to i by definition, to i' by
 equality of action and reaction

 all physical
 2. dF ii'dF(ds, ds', r) -Newtonian mechanics<-- experience

 force is along line _ All forces reduce to
 joining current elements inter-particle forces a-- - -"rien ite s oppose'

 (central dogma)
 3. dF ii'idf(ds, ds', r)

 - - invariance under translations and rotations * common experience
 4 invariance under reflections -* - - - - - - - - - - -?

 4. dF ii'rdf(ds. ds, ds'. ds', ds. ds', r.r, ds.r, ds'.r)
 "Expt. 2: The effect of a current flowing in a

 linearity and circuit twisted into small sinuosities is the * actual Expt. 2
 homogeneity in same as if the circuit were smoothed out"
 ds and ds' all physical

 L-equality of action and reaction Newtonian mechanics *- - experience

 5. dF i'(A(r)(ds.ds') + B(r)(ds.r)(ds'.r)) All forces reduce to --rien nesoppose.
 inter-particle forces nenesope

 dF proportional to l/r" -* -

 6. dF - n(a.(ds.ds') + b.(ds.t)(ds'.f))
 rn

 "Expt. 4: The force between two elements of currents is
 -unaffected when all linear dimensions are increased *-_ actual Expt. 4

 proportionately, the current strengths remaining unaltered"

 7. dF - Lf (a.(ds.ds') + b.(ds.ir)(ds'A.r))
 r2

 "Expt. 3: The force exerted by a closed circuit on an
 < element of another circuit is at right-angles to the latter"_*--actual Expt. 3

 8. dF k- P (2(ds.ds') - 3(ds.ir)(ds'.f))
 r2

 The sign of k is -ve if two parallel currents attract; < -additional
 Set the magnitude of k 1, by an appropriate unspecified

 defn. of current strength experiment

 9. dF - -~-(3(ds.r)(ds'.) - 2(ds.ds'))

 (dF is the force exerted by circuit element ds (current strength i) on circuit element ds' (current
 strength i', relative position r)).

 A TYPICAL CASE OF A DEDUCTIVE JUSTIFICATION OF A NEW
 FUNDAMENTAL HYPOTHESIS
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 364 JON DORLING

 line joining them and satisfies the law of equality of action and reaction.2 Ampere's

 argument is neatly presented in Whittaker, [27]; I have followed Whittaker's
 modern notation and have taken the liberty of filling in a few minor lacunae in
 both Whittaker's and Amp&re's presentations of the argument. Amp6re's weakest
 assumption is his appeal to an inverse power law. Here I have indicated Whittaker's
 suggested alternative route, which relies on a rather broad low-level generalization
 of one of Amp&re's experimental results. This alternative route is essentially
 equivalent to Laplace's argument for the inverse square law here on dimensional
 grounds.

 The steps in this deduction which are essentially cases of the inference scheme
 I have already described are those from formula 6 to formula 7 and from formula
 7 to formula 8. In the course of these steps implicit existential quantifiers govern-
 ing the variable n and the ratio of the constants a and b are eliminated in just the
 manner one expects from the scheme I gave earlier. The half dozen other crucial
 inferential steps seem to be essentially of the form:

 (3n)(x)(Fnx & Gx)

 --<- (x)Fkx

 (x)(Fkx & Gx).

 This inference scheme may seem even more trivial than the earlier one but it shares
 the feature that the conclusion can function as the explanans of a minor premise
 required in its own deduction.

 The deductive structure in the diagram possesses the important feature that every
 one of the formulae on the left is itself rededucible from its immediate successor
 by existential generalization. It is this feature which allows us to treat Ampere's
 whole theory as included in formula 9 itself, and which might encourage the
 naive hypothetico-deductivist to treat this as Ampere's hypothesis and to ignore
 the deductive steps which led to it. However such a construction of Amperes
 theory would lead to the mistaken inference that any experiments which later
 threw doubt on Ampere's formula merely called into question a single rather
 arbitrary-looking hypothetical force formula, whereas in fact, had such an ex-
 perimental refutation been devisable, it would have called in question some of
 the most fundamental assumptions of classical physics. Indeed it is only by taking
 crucial account of the relativity of simultaneity, that we are able today to under-
 stand how Amp&re's deduction went astray and failed to yield the force formula
 which we now accept, namely Grassman's, which was rightly never taken seriously

 2 These assumptions were criticized by Ampere's contemporaries because they ruled out
 torques. But the formula which we accept today (and which follows in the appropriate approxi-
 mation from relativistic electron theory), namely Grassmann's formula,

 dF-i 2 ((ds' .r)ds - (ds.ds')r),

 also rules out torques. And our explanation of the absence of torques is the same as Ampere's,
 namely that one doesn't get torques if the force is reducible to the forces between the (point)
 particles assumed to make up the (infinitesimal) current elements.
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 DEMONSTRATIV INDUCTION 365

 by Grassman's contemporaries. (Since modern electron theory still requires that

 the forces between relatively moving particles are, in a certain sense, along the lines
 joining them (we can ignore the acceleration forces in the case of steady currents),
 it is at first surprising that we fail to recover Amp&re's result. However, the paradox
 disappears when we take explicit account of the several frames of reference
 involved.)

 The virtues in the physical sciences of demonstrative inductions of this kind,

 as against simple-minded induction or hypothetico-deduction, were well appre-
 ciated in the philosophical writings of at least one of Ampere's contemporaries.
 Thus John Herschel wrote in sections 210 and 211 of his Discourse on the Study

 of Natural Philosophy [17]:

 We have next to consider the laws which regulate the action of these our primary agents;
 and these we can only arrive at in three ways: 1st, by inductive reasoning ... .; 2ndly, by form-
 ing at once a bold hypothesis ...; or, 3rdly, by a process partaking of both these, and
 combining the advantages of both without their defects, viz. by assuming indeed the
 laws we would discover, but so generally expressed, that they shall include an unlimited
 variety of particular laws; following out the consequences of this assumption, by the
 application of such general principles as the case admits;-comparing them in succession
 with all the particular cases within our knowledge; and, lastly, on this comparison, so modi-
 fying and restricting the general enunciation of our laws as to make the results agree.

 All these three processes for the discovery of those general elementary laws on which
 the higher theories are grounded are applicable with different advantage in different
 circumstances. We might exemplify their successive application to the case of gravitation;
 but as this would rather lead into a disquisition too particular for the objects of this
 discourse, and carry us too much into the domain of technical mathematics, we shall
 content ourselves with remarking, that the method last mentioned is that which mathe-
 maticians (especially such as have a considerable command of those general modes of
 representing and reasoning on quantity, which constitute the higher analysis), find the
 most universally applicable, and the most efficacious; and that it is applicable with especial
 advantage in cases where subordinate inductions of the kind described in the last section
 have already led to laws of a certain generality admitting of mathematical expression.

 Herschel was of course better placed to understand the actual reasoning of men
 of science than have been many of his twentieth century successors in the philosophy
 of scientific method.

 The phenomenal premise on which a demonstrative induction rests may of
 course itself be quite a high-level generalization; indeed it may well be itself the
 conclusion of an earlier piece of demonstrative induction, such for example as
 Ampere's force formula. This actually happened in this case when Wilhelm Weber
 in 1848 [26] took Ampere's force formula as the starting point for his own demon-
 strative induction to a formula for the force between two charges in arbitrary
 relative motion.

 Weber assumed that currents consist of positive and negative moving charges
 and that Ampere's forces between current elements must therefore be reducible
 to the forces between charges. Weber himself believed that the positive and nega-
 tive charges move in a current with equal and opposite velocities; however his
 deduction goes through without this restrictive assumption provided it is assumed
 merely that the quantity of positive electricity in each current element is equal
 to the quantity of negative electricity (cf. Maxwell, [23]). Weber assumed that
 the force between charges reduced to the Coulomb force only when the first and
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 366 JON DORLING

 higher time-derivatives of the distance between the charges vanished, but that in
 general it would be also a function of these higher time-derivatives of the dis-
 tance between the charges. The formula he eventually arrives at is

 F ee + rd (r)2)

 where e and e' are the charges, r is the distance between them, and c is a constant
 of the dimensions of a velocity, and which Weber evaluated experimentally with
 Kohlrausch and showed to have the same order of magnitude as the velocity of
 light. The distance derivatives in the formula are not to be confused with relative
 velocities and relative accelerations, but are simply time-derivatives of the scalar
 distance between the charges, and are thus invariant under transformation to,
 for example, a uniformly rotating frame of reference. (Weber did not say why he
 imposed this requirement, though he did know that an alternative formula due to
 Gauss which involved the ordinary relative velocity was inconsistent with energy
 conservation.) In deducing this formula from Ampere's formula, Weber does not
 make it as clear as he might what general assumptions are needed in order rigor-
 ously to obtain the uniqueness that he claims for his formula. However it turns out
 on investigation that it is sufficient that he assume that fourth and higher deriva-
 tives of the distance can be neglected; he need make no restrictive assumptions on
 the form of the functional dependence on r and the other derivatives; his formula
 is then uniquely deducible from the requirement that it yield Coulomb's law for
 stationary charges and Ampere's result for the forces between current elements.

 The importance of Weber's formula is not that we can still accept it-we cannot;
 but that its experimental refutation would have called in question either the quite
 plausible assumptions on which Weber's deduction of it rests, or Ampere's formula
 and the assumptions on which that rests. As things turned out Weber's formula
 was empirically brilliantly successful since it proved to be capable of accounting
 not only for Ampere's results but also for the quite separate phenomenon of electro-

 magnetic induction; however it later came under fierce criticism on peculiarly
 nonempirical grounds and fell a victim to the power and prestige of its principal
 opponent, Helmholtz.

 Maxwell motivated his own initial attempts to construct a rival electromagnetic
 theory by appeal to the alleged mechanical difficulties of Weber's theory. His own
 procedure in these early papers vacillated between the frankly speculative and the
 claim that he was merely studying mechanical analogies rather than proposing
 physical hypotheses. However, in his later papers ([21], [23]) his claim is that he
 has deduced his own equations from admitted facts by applying the laws of general
 mechanics with the help of the sole additional premise that the energy resides in
 the field. His method here evidently purports to be that of demonstrative induction
 but it can hardly be considered a felicitous application of that method, given the
 succession of dubious and mutually inconsistent arguments to which Maxwell
 had to appeal in order to motivate his key innovation, the introduction of the
 displacement current term. A few years later, [24], Maxwell endeavored to apply
 the same technique of demonstrative induction to the kinetic theory, and offered
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 DEMONSTRATIVE INDUCTION 367

 an explicit derivation of its fundamental hypotheses from the experimental facts

 and the fundamental equations of analytical dynamics, claiming that, "When
 examples of this method of physical speculation have been properly set forth and

 explained, we shall hear fewer complaints of the looseness of the reasoning of
 men of science, and the method of inductive philosophy will no longer be derided
 as mere guess-work" ([24], p. 357). While Maxwell's detailed argument is again
 not free from blemishes (I have discussed it at length elsewhere [7]), the attempt
 was of the greatest methodological interest and led to that process of mathematical
 consolidation of the foundations of the kinetic theory, which enabled physicists,
 by the end of the century, to interpret the well-known experimental discrepancies,
 not merely as a refutation of some particular hypothetical kinetic model, but
 rather as casting doubt on the most general equations of classical dynamics.

 The quantum theory began with Planck's theoretical contribution, which, as
 his contemporaries were quick to point out, is merely a case of invalid deduction
 from a wholly classical starting point. Nevertheless, Einsteln's 1905 argument
 for the existence of photons does appear to take the form of a demonstrative
 induction, with the Wien limit of Planck's empirical black-body radiation law
 playing the role of the phenomena and thermodynamics and Boltzmann's relation,
 between entropy and probability functioning as the general theoretical constraints.
 The argument from these premises is deductive apart from one crucial step which
 Einstein himself seems to have regarded as speculative. I have shown in another
 paper [8], that this step, too, can be rendered strictly deductive.

 The key argument of Einstein's special relativity paper of the same year [11],
 namely the derivation of the Lorentz transformation equations, also takes the form
 of a demonstrative induction. The principle of the constancy of the velocity of
 light functions as phenomenal premise in the deduction of a conclusion which
 exceeds it in generality by the addition of at least three universal quantifiers, namely
 the generalization to all processes that propagate at the velocity c, to all velocities,
 and to all kinematical quantities and not just to velocities. The existence and
 uniqueness conditions licensing this deduction include the principle of relativity
 itself and the requirement of linearity of the transformation equations. Contrary
 to the impression given in some accounts, it is the conclusion of this demonstrative
 induction, namely the Lorentz transformation equations, which must be taken
 as the explanans, and the constancy of the velocity of light, together with the
 other special relativistic effects, as the explananda. This is clear from the evidently
 greater generality of the former.

 The next important advance in theoretical physics was Bohr's old quantum
 theory. Bohr's 1913 arguments were not very satisfactory, nor were the different
 justifications he then offered for his quantization condition entirely consistent
 with one another (cf. Heilbron and Kuhn [15]). However, the best of them do
 appear to take the form of demonstrative inductions. Thus, assuming that a
 spectral line is emitted as a result of a transition between two stationary states,
 and that the energy difference between those states is equal to Planck's constant
 times the emitted frequency, Bohr is able to infer an expression for the energies
 of the stationary states by arguing backwards from the Balmer formula for the
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 368 JON DORLING

 emitted frequencies. Bohr is then able to infer the value of an undetermined con-

 stant in his expression, by considering a single special case, namely the classical

 limiting case, and he hence arrives at a theoretical expression for the empirical

 Rydberg constant in the Balmer formula. Here Bohr has deduced the precise form

 of his explanans, the formula for the energy levels, from two of its own explananda.
 While later advances in the quantum theory seem to owe most to an explicitly

 hypothetico-deductive methodology, demonstrative induction continues to play

 a role, especially in applications of the correspondence principle. The existence
 of stimulated emission, as postulated in Einstein's 1917 paper "On the Quantum
 Theory of Radiation," [13], not only provides an explanation of one of the crucial

 features of Planck's radiation law, but can also be seen as required by the form

 of that law, when compared with that of Wien. Alternatively it can be construed

 as deduced from the correspondence principle requirement that the density of

 radiation increase indefinitely with the temperature. Both these arguments could

 be reconstructed as demonstrative inductions, although that is not quite the form
 in which Einstein presented them. In the same paper Einstein claimed that the

 existence of a momentum transfer, equal to h/A, when a molecule emits or absorbs

 a quantum of radiation of energy equal to hv, is required if the interaction with the
 radiation field is to continue to allow an equilibrium distribution of molecular
 velocities. If this argument were reconstructible in a satisfactorily rigorous form,
 it too would have to take the form of a demonstrative induction. Again, when
 Heisenberg, [16], in 1930, reconstructed his 1925-1926 route to the quantum
 theory, he spoke of the "deduction of the fundamental equations of the new quan-
 tum mechanics," and he takes the premises for this deduction to consist of empirical
 facts together with the correspondence principle. While the correspondence prin-
 ciple can hardly be the only theoretical premise required, Heisenberg is wrong to
 say of his argument, that "this cannot be a deduction in the mathematical sense
 of the word, since the equations to be obtained form themselves the postulates of
 the theory" ([16], p. 105 ff.).

 An even clearer case of a deduction of the detailed form of a new fundamental
 equation from very general theoretical requirements, together with what purports
 to be a particular special case required for conformity with the empirical evidence,
 occurred in Dirac's 1928 introduction of the relativistic wave equation for the
 electron ([5] and cf. [6]). Dirac imposes as general theoretical requirements the
 condition that the equation remain relativistically invariant when electromagnetic

 terms are included and the condition that it be linear in the operator @/lt, which
 latter condition he takes to be required for conformity with the general principles
 of quantum mechanics. These requirements uniquely determine the general form
 of the new equation. Dirac then evaluates the as yet undetermined coefficients in
 the equation, by requiring that the equation imply the earlier Klein-Gordon equa-
 tion, which he takes to be a necessary condition that his new equation continue to
 yield the classical relativistic equation for a charged particle in the limit of large
 quantum numbers. Clearly the form of Dirac's general argument here is that of
 a typical case of demonstrative induction.

 As a final example we may consider the arguments by which Einstein, [12], [14],
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 DEMONSTRATIVE INDUCTION 369

 justifies his choice of the fundamental field equations of the general theory of rela-
 tivity. Again it is a case of carefully motivating sufficient theoretical requirements
 on the general form that the new equations must take, for their specific form then
 to be determined uniquely, modulo the fixing of certain coefficients by appeal to
 particular consequences that these equations are required to yield in order to
 conform with the known empirical facts. Einstein's general theoretical require-
 ments included the local validity of special relativity, the incorporation of gravita-
 tion into the geometrical structure of space-time, and the requirement that the
 gravitational field should arise from the density of ponderable matter in a manner
 analogous to that required by Poisson's equation in the Newtonian theory. (Ein-
 stein also thought that he had, in some nontrivial sense, imposed the requirement
 of a general relativity of motion; indeed at one point in his 1916 paper he spoke
 as if this were the requirement from which his equations proceeded "by the method
 of pure mathematics:" here he was mistaken.) Given his theoretical requirements
 Einstein then argued that his field equations were uniquely determined, provided

 we chose the value of a certain coefficient equal to 1/2, by imposing the condition
 that the field equations yielded energy momentum conservation as a consequence,
 and we evaluated the remaining constant, k, by considering the classical limiting
 case. In these final steps, as well as in several of the earlier steps, the equations
 which are to play the role of the explanans, are mathematically deduced from more
 general theoretical preconditions only by essential appeal to particular cases of
 their own explananda, and, as in all other cases of demonstrative induction, the
 final conclusion is formally taken to explain all, or nearly all, the premises which
 led to it.

 If I am right as to the significant role that arguments taking the form of demon-
 strative inductions have thus played in the history of theoretical physics, it is
 remarkable that philosophers of science have not generally attached much signifi-
 cance to this argument form. This has not always been so, as my quotation from
 Herschel indicated, and in his recent article, "Henry Brougham and the Scottish
 Methodological Tradition" [3], G. N. Cantor has drawn attention to some earlier
 philosophical defenses of this particular tradition in scientific method. However,
 Mill appears to make no mention of this form of argument in his Logic, nor, as
 far as I know, is it given any emphasis by Whewell.

 Preoccupation with the problem of justifying induction in general has no doubt
 been largely responsible for this neglect. For it is clear that demonstrative induction
 has little or no bearing on this problem, for it merely shifts the burden of inductive
 justification onto the general premises which are required for the validity of its
 argument forms. However this does not mean that it is not of considerable signifi-
 cance and importance in actual scientific reasoning. While Herschel may go too
 far in claiming that arguments by demonstrative induction not only combine the
 advantages, but also lack the defects, of the simpler forms of induction and hypo-
 thetico-deduction, it may nevertheless be true, that if one wishes to attain to in-
 formative specific hypotheses without surrendering altogether the demands of
 reasonable scientific caution, then demonstrative induction is, in the words of one
 of the ablest of past philosophers of scientific method, "the best way of arguing
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 which the Nature of Things admits of." There are also two significant specific
 roles which it can play when really revolutionary scientific developments are at
 issue. First, it seems to provide the only reliable way of generating severe experi-
 mental tests for the most general assumptions of a science at a particular time.
 Second, when these most general assumptions have been shown collectively to be
 irreconcilable with certain newly established experimental facts, the surest way of
 attaining to new fundamental hypotheses, which can enjoy some credence, is to
 deduce them from the new experimental facts, with the help of those earlier general
 assumptions which seem to have been least directly impugned.

 Although, as my examples have illustrated, Einstein himself made frequent
 use of this method, there has been almost complete silence about the method of
 demonstrative induction in the writings of twentieth century philosophers of science.
 It is true that, in the article on Logic in the 1902 edition of the Encyclopaedia
 Britannica, Thomas Case presented an eloquent defense of the method of demon-
 strative induction, tracing it back, through the medieval distinction between the
 progressus a principiis ad principiata and the regressus a principiatis ad principia,
 to the writings of Aristotle and Alexander the Commentator, emphasizing that
 "no distinction is more vital in the logic of inference in general, and of scientific
 inference in particular," and that "the full value of the ancient theory of these
 processes cannot be appreciated until we recognize that as Aristotle planned them
 Newton used them." It is also true that W. E. Johnson devoted some space to this
 form of argument, [18], which he subtitled Demonstrative Inference: Deductive and
 Inductive. His presentation is especially perspicuous and deserves to be quoted:

 The Formula of Direct Universalization

 Composite premiss: Every S is characterized by some the same determinate under the
 determinable P.

 Instantial Premiss: This S is p.
 Conclusion: .'. Every S is p.

 To take a typical illustration from science:

 Every specimen of argon has some the same atomic weight.
 This specimen of argon has atomic weight 39.9.
 Every specimen of argon has atomic weight 39.9.

 In this, as in all such cases of scientific demonstration, the major premiss is established-
 not directly, by mere enumeration of instances-but rather by deductive application of a
 wider generalization which has been ultimately so established. In the given example it is
 assumed that all the chemical properties of a substance, defined by certain 'test' properties
 will be the same for all specimens; and this general formula is applied here to the specific
 substance argon, and to the specific property atomic weight. The assumption in this case
 is established by problematic induction, i.e. directly by an accumulation of instances.
 In practically all experimental work, a single instance is sufficient to establish a universal
 proposition: when instances are multiplied it is for the purpose of eliminating errors of
 measurement. It is owing to the fact that the general proposition, functioning as a major
 or supreme premiss, has the special form of an alternation of universals that, by means of
 a minor premiss expressing the result of a single observation, we are enabled to establish
 a universal conclusion. This conclusion, in accordance with our general account of
 demonstrative induction, is a specification of what is predicated indeterminately in the
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 universal premiss, and a generalization of the proposition recording the result of a single
 observed instance. ([18], vol. 2, pp. 216-217)3

 What I have tried to show throughout this essay is not that demonstrative induc-
 tion provides a royal road to advance in theoretical science, but that, where ap-
 plicable, it can provide a very significant addition to the simple forms of induction
 and hypothetico-deduction. An hypothesis is placed at a considerable advantage
 if it can be shown to be required by the facts provided we assume certain plausible
 general principles; the method of demonstrative induction can also, in principle,
 play a significant role in the logic of discovery as well as in the logic of justification.
 From the point of view of that approach to scientific inference which seeks to
 construe legitimate scientific inferences as reconstructible in principle as valid
 subjective probabilistic inferences (cf. [9]), demonstrative inductions are only a
 rather special case of legitimate scientific inference. But this special case is of suffi-
 cient historical importance, and of sufficient theoretical utility for the practicing
 scientist, to deserve greater emphasis than it has recently received in discussions
 of scientific method. A proper appreciation of the logical legitimacy of this general
 form of argument would also promote less superficial reconstructions and ap-
 praisals of the intentions and achievements of quite a number of scientists of the
 past, than those all too current. In fact I know of few advances in theoretical
 science in which demonstrative inductions have not played either a major, or a
 minor but significant, role.

 3 Johnson's discussion was taken up by Broad in a couple of articles in [2] and again by
 H. E. Kyburg in [19]. Broad says that in Johnson's example, "The ultimate major premise is
 no doubt the proposition that if some sample of a chemical element has a certain atomic weight
 then all samples of that element will have that weight" ([2], pp. 302, 406), and he thus formal-
 izes it as:

 (Ex)(Ox.ox) :D (x)(+x DO x),
 which seems to me an unnecessary trivialization of Johnson's intentions. Nor does Broad seem
 aware that demonstrative induction is of wider application in science than merely to arguments
 from natural kinds. Kyburg's article [19], started out encouragingly with:

 Most of the arguments encountered in scientific literature are supported by reference
 to (a) general empirical premises, and (b) particular statements of empirical evidence.
 The argument which proceeds from (a) and (b) to the inductive conclusion is often demon-
 strative.

 But, disappointingly, Kyburg fails to cite examples from theoretical physics, and he ends with:
 The most fruitful of these analyses of demonstrative induction is that provided by Broad

 of the argument from natural kinds. In advanced sciences this sort of argument is often
 employed explicitly, and with great plausibility. It is a well-confirmed and often employed
 generalization, for example, that each chemical element is a natural kind in the sense
 that there is a large family of properties, in addition to the defining properties of the kind,
 which are such that if one sample of an element has one of these properties, then all
 samples of that element have it. Although it is difficult to see any conceivable way in
 which such an hypothesis could be used in every inductive argument, or even how it could
 be used in all scientific disciplines, it is clear that many important forms of inductive
 argument can be reconstructed in this way.

 Again, the reader of Kyburg's later discussion of the topic, in his [20], will gain the impression
 that this form of demonstrative induction is essentially restricted to "arguments in which a
 key concept is that of a natural kind," with examples coming primarily from biology and
 chemistry, rather than that it, and related argument forms, are, as I argue, of considerable
 significance in the theoretical development of fundamental science.
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