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1. Experimental problems for Helmholtz’s electrodynamics

In recent years much work has been done on the theory and practice of electrody-
namics that was developed by the German polymath Hermann Helmholtz in the late
1860s and throughout the 1870s.1 We have learned the details of his comprehensive
attempt to capture the experimental essence of every form of electrodynamics that was
prevalent in his time, an attempt that, Helmholtz felt, could incorporate the acceptable
implications of each form by assigning appropriate values to certain constants, or by
adding an additional entity (namely, the ether) with requisite properties to the set of
electrodynamically-interacting bodies. Previous histories have discussed the ways in
which Helmholtz’s electrodynamics was put to work in his Berlin laboratory, including
the use of it by his student Heinrich Hertz in analyzing certain questions that were put
to him by Helmholtz.2

Despite the indubitable fact that Helmholtz’s system was widely discussed and occa-
sionally used during the 1870s and early 1880s (particularly in Berlin, but elsewhere as
well), it did not evolve into an enduring structure that spread to other research loci. In part
as a result of this lack of evolution, historians have not hitherto uncovered instances of

1 Buchwald, 1985, Buchwald, 1993a, Buchwald, 1993b, Buchwald, 1994, Darrigol, 1993a,
Darrigol, 1993b, Darrigol, 2000, Kaiser, 1993.

2 E.g. Buchwald, 1994, esp. Chap. 6. Helmholtz’s papers on electrodynamics are collected in
Helmholtz, 1882.
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technical disagreement between the system’s practitioners – though arguments between
those who deployed Helmholtz’s scheme and those who did not certainly took place.3

This lacuna is particularly unfortunate because disagreements between people who are
expert in the use of a complex system can nicely reveal aspects of it that may otherwise
be obscure to present eyes.

Nevertheless, we do have material that seems to provide a reasonable facsimile of a
disagreement among Helmholtzian adepts. In 1874 Helmholtz briefly examined a situa-
tion that is quite similar to one that his student Heinrich Hertz analyzed in a manuscript
written for Helmholtz’s eyes alone a half decade later. Hertz did not refer explicitly to
Helmholtz’s previous consideration in 1874, but his analysis was based unequivocally
on equations that were unique to Helmholtz. Yet in this particular application of the mas-
ter’s system, its creator in 1874 and his student in 1879 seem to have arrived at markedly
different, indeed at conflicting, conclusions. This apparent difference between the two
can, we shall see, be used fruitfully to probe the structure of Helmholtz’s electrodynam-
ics – to probe, in particular, the novel intuitions that a successful practitioner of it had
to acquire.

We need not rehearse the details of Helmholtz’s electrodynamics itself since they
have been given several times (see note 1). Instead, we will begin directly with the
system’s fundamental assumption, which is the existence of a ‘potential function’ from
which the electrodynamic interaction between paired differential volumes of (e.g.) con-
ducting bodies may be deduced. This function,P, can be interpreted, and used, as an
energy of the electrodynamic system; it depends on the electric current that each volume
element in the system carries, as well as upon the distances between the elements. In its
most general formP is:

P = A2
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HereA is a universal electrodynamic constant,C andC′ are interacting currents,r runs
from the origin toC, r ′ runs from the origin toC′, andk distinguishes among the
different permissible expressions for the interaction.

The functionP was designed by Helmholtz to yield the by-then standard Ampère
force between current-bearing circuits when the circuits are closed. Indeed, if either of
the interacting systems to which the volume elementsd3r andd3r ′ respectively belong
is closed, then this most general expression for the potential reduces to its first term. That
expression (for closed, linear circuits) was first obtained by Franz Neumann at Königs-
berg in his successful attempt to find a single function from which both electrodynamic
force and electromagnetic induction could be obtained by, respectively, space and time

3 For two examples see Buchwald, 1994, pp. 16–19 and 405–6.
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differentiation.4 In the system considered on paper by Hertz in 1879, as well as in the
experimental systems that were examined by Helmholtz and his collaborators earlier in
the 1870s, one of the current-bearing objects always forms an effectively closed circuit,
so that, with them, we may limit our considerations here to the implications of this first
term inP.

The forces that act on the current bearing objects are calculated by varying the func-
tion P. The volume elements may experience two kinds of effect. Each may be acted on
by a force that tends to move the element physically from one location to another in the
usual way (i.e. by producing an acceleration equal to the force divided by the mass of the
element) – contemporary language referred to this kind of force asponderomotive. Each
may also experience an action that tends to change the current that exists within it – or, in
common parlance, anelectromotive force (or emf ). The latter force does not produce a
bodily acceleration; rather, where conductors are involved it is to be inserted into a gen-
eralized form of “Ohm’s law”, according to which the directed currents are proportional
to the vector sum of electromotive forces. The important point for our purposes in what
follows is this: Helmholtz’s potential function yields the same forces as the ones that are
implied by other theories of the dayonly when the element that is being acted on itself
forms part of a closed system; otherwise Helmholtz’s scheme entails novel effects.5 As
a result, Helmholtz located the distinguishing experimental characteristic of his scheme
here, and this led to a considerable amount of work at his Berlin laboratory during the
1870s that was aimed at detecting, in particular, the novel electromotive force that his
potential entailed.

In order to obtain a facsimile of Maxwell’s electrodynamics, which was one of the
other systems that Helmholtz intended his potential function to embrace, Helmholtz
knew that he would have to introduce an invisible electrodynamic object into his sys-
tem, namely an ether. Among the British the ether was considered to besui generis,
rather the underlying basis of all things than itself simply a form of matter. Helmholtz
held a considerably different point of view, for he considered that the ether (should it be
electrically active at all) must be treated as though it were a ubiquitous object that can
be polarized electrically (like dielectrics) and magnetically (like paramagnetic bodies).
That is, whatever properties the ether possesses were not considered to be different in
kind from the electric and magnetic properties of bodies as we know them in the world
about us. Helmholtz’s ether was however distinguished from ordinary bodies at least in
this, that it was both ubiquitous and intangible. This way of thinking immediately led
to concrete practice: to develop a system of electrodynamics that incorporates the ether,
one must add to every electric or magnetic interaction between a pair of ordinary bodies
a hidden third and fourth one – between each of them and the ether itself. Helmholtz
analyzed aspects of this system in 1870 (Helmholtz, 1870) under the twin assumptions
that the ether is electrically and magnetically polarizable in precisely the same sense

4 Archibald, 1989, and Olesko, 1991, Chap. 5. See also Darrigol, 2000.
5 The differences can be misleading in the case of field theory, primarily because Helmholtz’s

system (in the absence of ether) and field theory utilize conflicting equations for the continuity of
electric currents. For a discussion of this point in respect to the ponderomotive force see Darrigol,
1993b.
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that ordinary bodies may be. However, because the ether was intangible, it remained a
hypothetical – and therefore suspect – entity for Helmholtz.

We may in view of this distinguish two related strands in the electrodynamic research
that took place in Helmholtz’s laboratory during the 1870s. There were first of all the
pristine effects – the novel forcesabsent consideration of the ether – that were associat-
ed with Helmholtz’s potential function. Did they exist or not? If they did (in the forms
that were implied simply by considering the interactions of ordinary bodies with one
another), then, clearly, whatever effects the ether itself might have would necessarily be
outside the realm that affects the detectable forces between bodies in the world to which
we have, as it were, direct instrumental access. If, on the other hand, the forces did not
exist, or if their magnitudes were other than what the pristine theory entailed, then at the
very least one would have to consider that another body – an intangible one – was also
at work. Such a body, namely the ether, would affect the measured forces in ways that
depend quite directly on the magnitudes of its electric and magnetic susceptibilities. If,
in particular, the ether’s electric susceptibility were so large as to be effectively infinite
insofar as our instruments are concerned, then Helmholtz’s novel forces (which arise
only with open circuits) could be masked by the compensating actions of the huge po-
larization charges that arise at the boundaries between charged conductors and the ether
itself. These novel forces would still exist – indeed they must do so – but to them would
now be added forces from the ether’s polarization (which raises questions concerning
momentum balance, since the force-exerting ether must now be taken into account as
a body capable reciprocally of being acted on by ponderomotive force, or at least of
transmitting momentum).

No experiment that was done during the 1870s ever did give any indication that the
new electromotive forces entailed by the pristine Helmholtz theory existed. Unfortu-
nately no manuscript note, no laboratory report, no scrap of computation seems to have
survived, perhaps because the experiments did not yield the hoped-for positive results.
Published accounts of some at least of the experiments do however exist. These, partic-
ularly the ones written by Helmholtz himself, are sketchy, in that they do not provide
details concerning the experiments’ anticipated accuracy, their instrumental limitations,
and so on. The printed accounts do nevertheless indicate that Helmholtz felt that, at
the very least, the evidence seemed to indicate that a polarizable ether must be brought
directly into the theory’s foundations, though its properties were to that point not pinned
down beyond doubt.

And not only that – for if an ether did have to be brought in when measuring electrody-
namic forces, then its presence raised the question of whether it might have other effects
as well, ones that were claimed by British followers of Maxwell, and that Helmholtz had
himself treated analytically in 1870. This raised new questions that were particularly
pertinent in the context of Helmholtz’s laboratory, though not in Maxwellian Britain. As
we remarked above, the British did not think of the ether as anything like an invisible
dielectriccum magnetizable body. Not at all – to them the ether was an entitysui generis
that, properly speaking, is the site of all electromagnetic processes. Material bodies, the
furniture of the world around us, do not truly possess their own electromagnetic prop-
erties at all; rather, they modify the values of the ether’s properties in the regions that
they inhabit. Indeed, when writing in a speculative vein many British physicists thought
of matter itself as a modificationof the ether, which meant that they did not think of



A Potential Disagreement Between Helmholtz and Hertz 369

ether as something that waslike matter. Precisely because the ether was different from
ordinary bodies, British Maxwellians did not think to split its properties into separate
compartments. They had already united its electric and magnetic properties within the
complex (and rather heterogeneous) structure of field theory, so that among them there
was little interest in asking, e.g., whether changing electric flux in the ether can produce
a magnetic field andvice versa. This was not the case for Helmholtz, since in his view
the ether was not thefoundation of electrodynamics but rather an element – perhaps a
necessary one – that might be added on to it, depending on the verdict of the laboratory.
And so Helmholtz was intensely interested in finding out whether bodies that should
behave like the ether – such as dielectrics – can for example be electrically polarized by
a changing current in a conductor, or (conversely) whether a dielectric with changing
polarization can exert a magnetic force like a current-bearing conductor.

The British rarely if ever thought to look into these two effects of tangible bodies,
and they certainly never did mount anything like a laboratory investigation. But Helm-
holtz was deeply concerned to find out whether or not these effects existed, for if they
did then he could probe not only behaviors of tangible bodies, but also the behaviors of
the otherwise-inaccessible ether. One might say that Helmholtz was pressed to examine
these actions just because the ether had apparently been thrust upon him by laboratory
necessity. Detecting such things would be difficult at best, and so it is not surprising that
the second major task he assigned the talented young Heinrich Hertz in his laboratory
was to look into the possibility of doing so. To that end in, 1879 Hertz produced, for
Helmholtz’s own eyes, a feasibility study, aprospectus as it were of what might be done
in this vein (Hertz, 1879).

And here we find a most unusual thing, for the very foundations of Hertz’sprospec-
tus seem to run counter to conclusions that Helmholtz himself had, perhaps reluctantly,
reached as a result of the experiments that had been done in his laboratory during the
1870s. The fact that Helmholtz’s novel electromotive force had not been detected could
be explained by the presence of an ether with extremely high polarizability. The new
force would indeed exist, but then so would masking forces from the ether itself. It would
accordingly seem to be utterly pointless to design any experiment that made direct use
of these instrumentally-inefficacious actions. And yet the experiments that Hertz de-
tailed for Helmholtz in this private study depended quite directly on the effective action
of the very forces whose detectible existence seemed to have been foreclosed by the
experiments of the 1870s. Even more curious, throughout this manuscript Hertz gave
no indication at all that he found it problematic to use as instruments the very forces
that could not possibly work in the ways that he needed if the ether had the properties
that the 1870s experiments in Helmholtz’s laboratory seemed to indicate. This is the
more striking in that Helmholtz’s main interest in having Hertz invent these experi-
ments in the first place was almost certainly because of their implications for a field-like
electrodynamics.

What can we conclude from this? Perhaps we might think that the young Hertz was
rather strikingly ignorant of what had gone on not long before his arrival in Berlin,
despite the fact that the results had been published, that Helmholtz had himself written
about them, and that they must have been subjects of active discussion among the assis-
tants and visitors to the laboratory. This is unlikely, since we know from explicit citation
as well as practice (see below) that Hertz was quite familiar with the intimate details of
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Helmholtz’s work, who was after all at the very center of his emerging life as a young
physicist, and for whom Hertz was writing.

There is an alternative to ignorance. Suppose that Hertz knew much more than what
appeared explicitly in print, or that has been preserved in manuscript, diary or memoir.
Suppose in fact that Hertz understood Helmholtz to have framed his conclusions primar-
ily in terms of the specific experiments that had been performed up to that point. These
experiments had been of two sorts: one kind sought the action of magnets in deflecting
the open end of a current-bearing conductor; the other kind sought to measure theemf
that, according to Helmholtz’s pristine (ether-free) theory, shouldnot exist at the termi-
nus of an isolated conducting arm that is spun in specific circumstances under magnetic
action. In the former case experiments had given no deflection – a null result; in the
latter,emf had been detected – a positive result. Neither experiment involved tangible
dielectric bodies, and both were subject to the limitations of measurement, which were
not easy to specify, particularly in the case of the null result.

Much depended upon the magnitudes involved, and on them hinged the precise value
of the ether’s polarizability. It certainly had to be extremely large (if it were responsible
for the experimental results), but just how large depended on the specific limitations
of these experiments. Hertz, for one, apparently did not think (at least in 1879) that
the limitations were sufficiently compelling to conclude that it was hopeless to use the
novel forces as tools for the purpose of detecting the properties of dielectric bodies.
Given Hertz’s close connections to Helmholtz at this very time, it seems possible that
Helmholtz himself had doubts about the persuasive character of the 1870s experiments.
Indeed, were Hertz to have designed instrumentally-feasible experiments (which he was
unable to do, even given the assumption that the ether was altogether inefficacious) then
the very success of such an experiment would have constituted presumptive evidence
that the ether could not have the extraordinarily high level of polarizability that was
required by field theory. High it might be, but perhaps not as high as all that.

The Hertz portrayed here must have had an extremely deep understanding of Helm-
holtz’s work. Is there any persuasive evidence that he did? Indeed there is, evidence that
shows, furthermore, the extent to which he remained imbued with Helmholtz’s outlook
throughout the next decade. Recently Hertz’s inaugural lecture at the University of Kiel,
dated 1884, has become available (Hertz, 1999). It provides clear evidence that at that
time Hertz still thought of electrodynamics in essentially the same way that Helmholtz
had developed in 1870, namely as a form of interaction among circuit elements, whether
these elements constitute conducting or dielectric bodies, or parts even of the ether itself.

It’s worth spending a moment on Hertz’s remarks in this lecture in order to see just
how thoroughly steeped in Helmholtz’s views he remained until the very late 1880s.
In its Sect. 1.5, entitled “the electromagnetic theory of light”, Hertz illustrated for his
audience how a phenomenon like light might have an electromagnetic basis. He argued
that the electromagnetic theory makes it reasonable to set to the side troublesome issues
in optics that concern the differences between the ether’s mechanics and that of ordinary
bodies, and which he had just finished discussing. He produced a conversation between
electrodynamics and optics to illustrate the point:

Won’t we be acting for the sake of both of them if we bring them together and tell them –
to electrodynamics: after all, take optical waves as the ones you’re looking for, since they
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have the same speed and propagate according to the same laws,{and} consider the exis-
tence of these waves as proof of the correctness of your ideas; and to optics: if you borrow
your conception of the nature of the waves whose propagation you are examining rather
from electrodynamics than from elasticity theory, then you’ll escape your difficulties, the
properties of your ether will no longer be in striking contrast with those of visible bodies.
That way both will be helped. Admittedly, one might say that our solution is somewhat
uncertain. A numerical agreement can probably occur accidentally in nature. However,
that isn’t probable precisely here.6

The argument that Hertz developed here, together with apposite drawings, was an
effective realization of Helmholtz’s own imagery and concepts. In essence, Hertz asked
his auditors to envision “two metal spheres linked by a copper wire” (p. 98). Charge
the two spheres to different amounts, and a current will flow back and forth through the
wire connecting them.7 The object thereby becomes an open, oscillating linear circuit.
As such it will act by electromagnetic induction to set any neighboring objects of the
same sort into oscillation, albeit with phase delays. Imagine a model built out of an array
of such things. Because each acts on the other, the magnitude of the current varies from
object to object in the pattern of a wave. Replace the wire objects with sticks of dielectric
material, and set up somehow an oscillating polarization in one of them. If we further
assume that changing polarization can, like a current in a wire, produce electromotive
force, then a wave pattern – now of polarization – will result. Shrink the sticks to in-
definitely small size and assume that the ether is made out of such things, and we have
Hertz’s electromagnetic model for light.

There is little new here, because this is very much the same model for a wave-prop-
agating dielectric that Helmholtz had offered in 1870 (Helmholtz, 1870). Hertz added
only the novelty of visualization by providing the concrete image of a current-element
as two copper spheres linked by wire. One might be tempted to see here the proximate
origin of Hertz’s experimental radiator.8 If so one would be wrong, because there is
no evidence whatsoever to suggest that Hertz later set out with the idea of producing
electric waves in air by means of such a dipole oscillator. Quite the contrary. According
to his own explicit later testimony, as well as the evidence of the papers that he wrote
at the time, Hertz thought to use his instrument as a generator of waves in air only after
deploying it (or rather somewhat different versions of it) for the very different purposes
of investigating the properties of waves in wires and of showing that changing polariza-
tion acts electromotively (Buchwald, 1994, Chaps. 14–16). However, in another sense
it is reasonable to consider the concept of such an oscillator as already formed in 1884,

6 Hertz, 1999, p. 105. He goes on to explain his reasons, arguing that the optical and electrody-
namic velocities come from such utterly different kinds of experiments, though both are velocities
of propagation, that it can hardly be mere coincidence.

7 As Helmholtz had long before discussed and experimented on using Leyden jars – see Helm-
holtz, 1869 – and as Hertz knew perfectly well by the late 1870s. The sole novelty here is the
image of charged spheres instead of Leyden jars, but that is a nearly obvious simplification for
Hertz’s purposes here of illustration.

8 As Fölsing, the editor of the Hertz lecture, seems to suggest (pp. 15–16).
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because it had existed since 1870. For anyone trained by Helmholtz this was a perfect
way (indeed theonly way) to think about electric waves.9

We can be quite confident that the young Hertz carefully studied Helmholtz’s work
and used it both for purposes of calculation (as in the 1879 manuscript mentioned above)
and even for imaginative illustrations designed to make abstruse concepts accessible (as
in 1884). How then did Hertz in this very manuscript of 1879 arrive by computation at
results that seem to conflict with ones that Helmholtz had explicitly set out in print five
years before? Surely Hertz read Helmholtz’s paper, though he might have overlooked
the remark. But even if he had missed it, or if he had not read the paper at all, how,
using Helmholtz’s own electrodynamics, could he have reached a different result? Is
it a simple case of a mistaken calculation by a young apprentice? Or had Helmholtz
himself erred? And, if so, why did neither Helmholtz (who read Hertz’s MS) nor Hertz
apparently ever notice it? Is it just that we no longer have Helmholtz’s written remarks
to Hertz about the MS (if they existed at all), and that Hertz never returned to the issue?
Or is there something more? Perhaps we have here the rare opportunity to catch Hertz
in a revealing act of Helmholtzian calculation, one that may help us to understand the
novel intuitions that this form of electrodynamics – a form that evolved and then passed
away in the space of two decades – entailed.

2. Hertz and Helmholtz seem to disagree

The problem first appeared in 1874. In April of that year Helmholtz ended an article
entitled “Kritisches zur Elektrodynamik”, which considered objections to his formula-
tion of electrodynamics, by pointing to a specific case in which his system yielded results
that are different from those that are implied by all of the others.10 Helmholtz described
the situation in the following words: “Imagine a metal disk that is spinning rapidly about
its axis and that is crossed by magnetic lines of forces that are parallel to the axis and
symmetrically distributed about it, then the edge of the disk will be electrified according

9 One might object that the specific notion of hooking together two spheres by a wire is not
present in Helmholtz’s work of 1870, which is certainly true. However, the concept of a current-
bearing element is present in 1870, as are capacitively-loaded oscillations (in 1869). Hertz’s wire
is accordingly a clear representation of a Helmholtz element, while his terminating spheres are
replacements for Helmholtz’s Leyden jars and serve the same function. In any case, we know as
a matter of testamentary fact that Hertz did not think to develop the dipole oscillator as a free-
space wave producer until after working through a complex instrumental evolution in which the
spark-gap oscillator with terminating spheres was an end-product and not a beginning.

10 Note again that Helmholtz’s potential can capture all systems for the case of closed currents
that are not rapidly changing. In the latter case Maxwell’s electrodynamics has additional impli-
cations which require introducing an ether with specific polar properties into Helmholtz’s system;
once introduced such an ether can be subject to Helmholtz’s electrodynamic potential, and the
combination can then yield all of the fundamental implications of Maxwell’s electrodynamics.
See Buchwald, 1985, Buchwald, 1994, Darrigol, 1993, Darrigol, 2000.
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Fig. 1. Helmholtz’s spinning disk

to the Amp̀ere law,11 but it will not be according to the potential law.” (Helmholtz 1874,
p. 762)12

To understand what was at stake here, let’s begin with modern electrodynamics and
generalize the problem to an object that moves with a velocityv through a magnetic
field B; a point in the object is specified by the vectorr that is drawn to the point from
the origin of coordinates, and the object’s center of mass is itself located by the vector
r cm (see Fig. 2). The object will experience an electromotive force (emf) FAMP that is
given by the cross-product of the velocity with the magnetic field:

FAMP = v × B (1)
The “Amp ère” expression for the electromotive force13

If our object spins with angular velocity� about its center of mass then the linear velocity
v at the point in the object that is specified by the vectorr will be:

v = � × (r − r cm) (2)
The velocity at a point of a spinning object

Consequently, according to the Ampère expression the electromotive force atr will be:

FAMP = [� × (r − r cm)] × B (3)
The “Amp ère” emf for a spinning object

Suppose now that the angular velocity is parallel to the magnetic field. According to this
equation, theemf cannot then vanish (unless the point in question lies along a line from

11 This is the electromotive force due to motion that follows from an electrodynamics that also
yields Amp̀ere’s original bodily force between circuit-elements carrying electric currents. In what
follows we will for the sake of brevity refer to this as the “Ampère” emf, although Amp̀ere him-
self certainly never obtained any such thing since he did not of course discover electromagnetic
induction (though he probably did observe it: see, e.g., Hofmann, 1995, Chap. 8).

12 The original reads: “Denken wir uns eine drehende Metalscheibe, schnell um ihre Axe
rotirend, und von magnetischen Kraftlinien durchzogen, die der Axe parallel, und rings um die
Axe symmetrisch vertheilt sind, so wird der Rand der Scheibe nach dem Ampère’schen Gesetze
elektrisch werden, nach dem Potentialgesetze nicht.”

13 See note 11 for an explanation of the terminology. Maxwell’s own expression differs from
this “Ampère” one because it contains in addition the gradient of a function that is constrained by
the equation of continuity. See Darrigol, 1993b for a discussion.
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Fig. 2. Object vectors

the center of mass that is itself parallel to the angular velocity, i.e. unlessv at that point
vanishes altogether).

Yet according to Helmholtz in 1874 the spinning object willnot experience anemf
in these circumstances. Why? The answer is, in one sense, quite simple: Helmholtz’s
expression for theemf contains a term in addition to the Ampère expression, and this
term can in the right circumstances annul the latter. According to Helmholtz, the elec-
tromotive force that acts on an object which moves with velocityv in the presence of
what we shall call a vector potentialA is:

FHELM = v × (∇ × A)− ∇(v · A) (4)

emf according to Helmholtz

As the Appendix below shows, this auxiliary vector is defined by Helmholtz (and so by
Hertz) primitively in terms of currents (or derivatively in terms of magnetization). The
potential gains significance altogether from its role as the vector that a current multi-
plies in calculating the energy of the system comprised of the current in question and the
currents or magnetization with which it is interacting (vide Eq. (30)).14 In Helmholtz’s
energy-based electrodynamics the vector potential has no other function or meaning
than this, but, just because of its immediate presence in the energy, the potential was
considerably more fundamental than the forces to which the energy gave rise.

The first term in Helmholtz’s expression for the force is the same as the Ampère
expression; the second term is new. It can cancel out Ampèreemfs – and, according to
Helmholtz, it does so when an object spins about an axis that is parallel to a magnetic
field which is symmetric about the axis. Our discussion accordingly has two interest-
ing aspects. First, there is a clear and (it may be) experimentally-significant difference
between theemf according to the Amp̀ere expression, on the one hand, and according
to Helmholtz’s, on the other. Second, despite the fact that the young Hertz used exactly
Helmholtz’s formula for this very force, he – unlike Helmholtz himself in 1874 – did not

14 In the case of currentsA(r ) has the form
∫
(C(r ′)/|r −r ′|)d3r ′; in the case of a magnetization

M the vectorA becomes−∇r × ∫
(M (r ′)/|r − r ′|)d3r ′. See below, note 16.
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find that the force must vanish when the angular velocity and the magnetic field are paral-
lel to one another, as we shall see in detail. Yet in both cases essentially the same magnetic
field and velocity are involved. Here, then, we spy the kinds of differences that may be
significant for probing the underpinnings of electrodynamics as practiced in Berlin at
Helmholtz’s laboratory, for we seem to have a disagreement on paper between a student
and a master, both of whom used the master’s theory to reach their respective solutions.

3. Hertz’s sphere

Hertz did not consider precisely the same configuration that his mentor Helmholtz
had, but the one that he did examine provides a more general case that embraces Helm-
holtz’s, as we shall see. Hertz’s particular goal was to find a way of experimentally
testing whether or not the electromotive force that is generated by motion through a
magnetic field can polarize dielectrics just as it can generate currents in conductors. To
do so he thought to use the force that would be generated in a small object by spinning it
in the earth’s magnetic field. To that end he had first to calculate the magnetic force at the
earth’s surface, for which he used auxiliary functions that were in reasonably standard
German employ at the time.

Hertz began with a quantity� which he used to represent the potential of the earth’s
magnetizationM (i.e. to represent its magnetic moment per unit volume). With� given
by

∫
(M (r ′)/|r − r ′|)d3r ′, the corresponding vectorA that is to be used in Helmholtz’s

Eq. (4) has the form−∇ × �15:

A = −∇ × � where
(5)

� ≡
∫
(M (r ′)/|r − r ′|)d3r ′

The vector potential A for magnetization M16

We can substituteA into Helmholtz’s basic expression for the force to obtain17:

15 Note that the vector� functions in a way that is analogous to that of the scalar potential
for electric charge since∇2� = −4πM . By the time that Hertz arrived in Berlin, methods for
calculating the force exerted by magnetic distributions were well known, although specific details
might differ from author to author. The route from Helmholtz’s definition of the auxiliary vector
A in terms of currents (see Eq. (21) in the Appendix, where the vectorU stands forA) to the
specification ofA for magnetization was also well known, though again details would differ from
author to author. Helmholtz in any case provided the details that Hertz would have needed in this
respect, if he did not already know them, in Helmholtz, 1870, pp. 617–19.

16 Expression (5) for the vector potential due to magnetization is nowadays rather unfamiliar.
Using the Coulomb gauge we today write (ignoring a sign difference due to Helmholtz’s conven-
tion)

∫
((∇r ′ × M (r ′))/|r − r ′|)d3r ′. The two forms are however equivalent: they differ by a term∫

(∇r ′ × (M (r ′)/|r − r ′|))d3r ′, and this vanishes on integration over all space if the magnetization
is localized. See Jackson, 1975, Sect. 5.8.

17 Hertz actually worked from Helmholtz’s expression for the force (Eq. (4)) modified by the
introduction of an auxiliary scalar functionχ equal to−∇ ·�, which facilitated the comparison of
Helmholtz’s expression for theemf with one that had been derived in 1864 on the basis of Weber’s
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FMAG
HELM = v × ∇(∇ · �)− ∇(v · (∇ × �)) (6)

The force expressed in terms of the magnetization potential

In Eq. (6) the force is labeledFMAG
HELM to emphasize that it is not as yet in a form appro-

priate to Hertz’s specific application to the earth, in that� may to this point derive from
any source of magnetization whatsoever.

Let’s now follow Hertz’s application of the formula to the case of an object spin-
ning in the earth’s field, adding in a few details that he omitted in order to facilitate our
comparison of his results with those of Helmholtz. Take the earth’s magnetizationm to
be directed along thez axis, and assume that the magnetic effects which are responsible
for the earth’s field are localized near the earth’s center, so that we can take the distance
from the earth’s center to our spinning object also to be the effective distance between
the object and the earth’s magnetization (see Fig. 3). The vector� will be:

�HTZ = m

r
ez (7)

Hertz’s magnetization potential�HTZ for the earth’s field

Hertz did not provide the vectorA for calculating the magnetic force since he had no
specific need for it given expression (6), but for future reference we note thatA has the
following exact and approximate forms:

A is exactly − ∇ ×
(m
r

ez
)

or approximately
m

R2
cos�ey. (8)

Hereez lies along the polar axis,R is the earth’s radius,� is the latitude, andey is
orthogonal to a meridian plane.

Hertz next moved almost directly to give expressions for theemfs that result accord-
ing to (6) and (7) when a small object spins near the surface of the earth. First of all, let’s
assume, as he did, that our object’s angular velocity lies entirely in the plane formed by
the earth’s polar axis (to which the magnetization is assumed to be parallel) and the line
from the earth’s center to the object. That is, our object spins only about an axis that
lies in the plane of the local meridian – we will not examine the effect of an east-west
component. Since the earth’s field is axially symmetric about the polar (sayz) axis,
we can in full generality consider the forces that act in any plane section that contains
the axis. For simplicity we will take thexz plane as the one in which we calculate forc-
es.18 The object’s angular velocity accordingly has (by assumption) no component along
they axis, but it may have components along thez (polar) andx (equatorial) axes. Denote

electrodynamics by Emil Jochmann (Jochmann, 1864). Assuming that∇2� vanishes – which sim-
ply means that the force calculation holds for points that are located outside the magnetization
proper – then Hertz could replace∇ × (∇ ×�) with −∇χ in the expression−v × (∇ × (∇ ×�))
for the Amp̀ere term.

18 Precisely because Hertz computed the force assuming a magnetic dipole located at the
earth’s center his coordinate system had its origin there as well. We will see in what follows that
the choice of coordinate systems is closely connected to the apparent difference between Hertz
and Helmholtz.
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Fig. 3. Spinning object near earth’s surface

the latitude at our object by�, and assume as well that the object’s dimensions are small
to first order in respect to the radiusR of the earth. In the final result we can accordingly
replacer (the distance to the object point) withR (the radius of the earth – see Fig. 3).

We can now proceed to substitute Hertz’s magnetization potential (Eq. (7)) into
Helmholtz’s force (Eq. (6)), after which we replace both of the distancesr andrcm with
the earth’s radiusR (Fig. 3). We then drop all expressions in which the third or higher
power of the earth’s radius appears in the denominator, on the grounds that other terms
remain that contain a factor of only 1/R2, as we shall see in a moment. This last as-
sumption completely removes the expression that corresponds to the Ampèreemf (viz.
v × ∇(∇ · �)).19 Limiting our consideration to thexz plane, we find with Hertz that the
spinning body will experience the followingemf :

Fx
HTZ = − m

2R2
�z cos(�)

F
y
HTZ = 0 (9)

Fz
HTZ = − m

2R2
�x cos(�)

The emf on the spinning object according to Hertz

Theseemf s vanish altogether at the poles and are a maximum at the equator, for a given
angular velocity.

We ask next what direction the magnetic force itself has at the latitude�. For consis-
tency we must use Hertz’s expression for the magnetization potential in our computation
(Eq. (7)). Since the corresponding magnetic force must be−∇ × (∇ ×�), we find (again
under the approximation that in the end we replace bothr andrcm with R):

19 It removes as well an extremely small term that is linear in the distance from the object’s
center of mass to the point in it at which theemf is to be computed.
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Fig. 4. The emf at the equator for an object spinning parallel to the polar axis, according to Hertz’s
equations

Bx
HTZ = m

R3
(3 sin(�) cos(�))

B
y
HTZ = 0 (10)

Bz
HTZ = m

R3
(2 − 3 cos2(�))

The magnetic force corresponding to Hertz’s magnetization potential

We can obviously adjust the angular velocity so that it parallels the magnetic force at a
given latitude.20 In fact, we can rewrite Hertz’s expressions for theemf in terms of the
local components of the magnetic force in the following way:

Fx
HTZ = −R

2
�z

(
Bz
HTZ cos(�)− Bx

HTZ sin(�)
)

F
y
HTZ = 0

Fz
HTZ = −R

2
�x

(
Bz
HTZ cos(�)− Bx

HTZ sin(�)
)

To take a simple example, we can locate ourselves at the equator, where the magnetic
force runs along a north-south axis (c.f. Eq. (10), with� set to zero), and where the
emf reaches a maximum. We can set a sphere of radiusrs , say, spinning about its center
around this same axis (tangent to the local meridian), in which case theemf will point
directly downwards (see Fig. 4). In this same situation, the Ampère expression (v × B)
yields anemf directed at each point along a line that is perpendicular to the object’s
axis of spin, aiming directly away from the axis and towards the surface of the sphere.
However, the Amp̀ereemf will be incomparably smaller than this new one that Hertz

20 The angular velocity will parallel the magnetic force if its equatorial and polar components
are in the ratio 3 sin(�) cos(�)/(2 − 3 cos2(�)).
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has calculated, since it will contain a factorrs , whereas the Hertz force contains a corre-
sponding factorR.21 That is, the new force is larger than the Ampèreemf by the immense
ratioR/rs . Of course, the Hertz force should not exist at all according to Helmholtz’s
remarks in 1874, who had at the time used precisely the same expression for calculating
theemf that his student Hertz used later (viz. Eq. (4)). Turn now to Helmholtz’s claim.

4. Helmholtz’s disk

Helmholtz had not specifically discussed an arbitrary object spinning in any direc-
tion in the earth’s magnetic field. His comment referred to a disk that turns about its
axis of symmetry in a field of magnetic force that is parallel to, and symmetric about,
the axis. Under these conditions, Helmholtz had asserted in 1874, the Ampère expres-
sion requires the existence of anemf that is directed from the central axis towards the
disk’s perimeter. But his own force law, he continued, implies that there will be noemf
at all in these circumstances. We will turn below to the reasoning that may lie behind
Helmholtz’s claim. Lets first consider whether, and if so in what manner, it applies to
the situation that Hertz envisioned half a decade later.22

One might argue that the two situations (Helmholtz’s and Hertz’s) differ from one
another because Helmholtz required a magnetic field that is symmetric about and par-
allel to a disk’s axis of spin, whereas Hertz considered the earth’s field, which certainly
seems not to satisfy the requirement,vide Eq. (10). However, the spinning object is vastly
smaller than the earth, and in its vicinity the earth’s field should certainly be effectively
uniform, thereby trivially fulfilling Helmholtz’s symmetry requirement. Nevertheless,
Helmholtz’s conclusion implicated the symmetry of a field of magnetic force, whereas
Hertz’s calculation was based upon a specific expression for the magnetization potential,
from which the force was computed. In order to clarify the plausible assertion that the
(locally insignificant) inhomogeneity of Hertz’s magnetic force cannot be the source
of the difference between his and Helmholtz’s claims, we will first connect Hertz’s
calculation to a vectorA that does yield a strictly uniform force.

We need to find a vector whose curl will be equal to a homogeneous magnetic field
B.23 One such isAr :

Ar = 1

2
(B × r ) (11)

A vector potential that produces a uniform magnetic field

InsertingAr into the general Helmholtz expression for the force (FHELM , Eq. (4)) we
obtain (naming the resultFr ):

21 For this particular example, the Ampèreemf would bersωzBz, whereas the Hertzemf would
be−R

2ωzBz.
22 Helmholtz’s spinning disk corresponds to a slice of Hertz’s sphere taken orthogonally to the

sphere’s axis of rotation. Whatever consequences correctly hold for Helmholtz’s disk willipso
facto hold as well for Hertz’s sphere by treating the sphere as the limit of a series of stacked disks.

23 Note again that a field uniform in direction and magnitude is trivially symmetric about its
direction and so is clearly a special case of Helmholtz’s requirement.
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Fr = 1

2
v × B + 1

2
� × (B × r ) (12)

First expression for theemf corresponding to Ar

This newemf can be written in strict mathematical equivalence as:

Fr = 1

2
(r − r cm)× (B × �)+ 1

2
� × (B × r cm) (13)

Second expression for theemf corresponding to Ar

We next insert into Eq. (13) the very same expressions for the magnetic field that result
from Hertz’s magnetization (Eq. (10)). In addition, we also approximate the center-
of-mass distance(rcm) by the earth’s radius (R). Doing so yieldsprecisely the same
expression for theemf on the spinning object that Hertz himself had obtained (Eq. (9)).
In other words, the vectorAr produces the very sameemf as the vectorA (Eq. (8))
that corresponds to Hertz’s magnetization potential,�HTZ (Eq. (7)), when the same
approximations are used.

Since we now see that Hertz’s expressions for theemf follow perfectly well from a
calculation based on the assumption that the local magnetic force is uniform in direction
and magnitude, it follows that the difference between his and Helmholtz’s assertions can
have nothing to do with any slight local inhomogeneity. If Hertz’s claim is correct, then
it seems that Helmholtz’s simply cannot be, andvice versa.

Or have we missed something essential here? To see whether or not we have, turn first
to Helmholtz’s original statement. Helmholtz had there referred explicitly to “magnetic
lines of force. . . that are parallel to the axis and symmetrically distributed about it”.
Although he used the phrase “magnetic lines of force”, Helmholtz just might have been
thinking of a field of vector potential, since his entire discussion of theemf s involved in
motion proceeds from his fundamental interaction energy, which is formulated in terms
of the vector potential and not (by necessity) the corresponding magnetic force. If that
were so, then Helmholtz’s conclusion would be almost obvious, given the foundation
of his electrodynamics in variational calculations based on interaction energy: for if the
vector potential is itself symmetric about the disk’s axis of rotation, then the potential
that will be seen by any point of the rotating sphere or disk must always be the same –
in which case the energy-variation that underpins Helmholtz’s calculations can yield no
resultant force at all, just as he asserted.24 Under this interpretation there is no conflict
between Hertz’s and Helmholtz’s claims; we are instead left with a sloppy statement
on the part of Helmholtz – and worse, one that would not correspond to any reasonable
experimental situation, since the originating currents follow the axially-parallel vector
potential in direction.25

24 We can easily understand this by remarking (in contrast) thatAr (Eq. (11)) implicates the
distancer , which implies that the potential that a point on the rotating arm will see must depend
upon the specific angular position of the arm sincer does not remain the same during the rotation.

25 In such a situation the curl of the vector potential (i.e the magnetic force) would always
be tangent to concentric circles having a central axis as their common normal, and it could vary
with distance from the origin along, and in the plane normal to, this common central axis. The
magnetic field would accordingly circulate about the disk’s axis, and to produce this would require
something like a closed solenoid that coils around the disk’s perimeter.
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There is another possibility. What if Hertz’semfs do not in fact follow uniquely from
the assumption that the field of magnetic force is uniform (or symmetric about the axis
of spin)? This seems unlikely, since we have already found that there is nothing at all
wrong with his computation, and, moreover, that it is entirely compatible with the local
uniformity of the magnetic force. But to imply a proposition is not necessarily to be
implied by it.

Let’s return to the vector potential that corresponds to a uniform magnetic force. We
consideredAr , which, we saw above, produces Hertz’semf when we require (as we
may) that the expressions for theB field in the resultant force (Eq. (12)) be the same as
those that are implied by Hertz’s magnetization. But this is not the only vector potential
that can produce the requisite magnetic force. In fact, we can clearly add any constant,
or the gradient of any function, toAr and still obtain what we need if we are concerned
only with the resultant magnetic force. For example, we could if we like replace the
distancer to the point in the object at which theemf is calculated with the distance from
the object’s center of mass to that point, because the additional term that results (namely
−1

2(B × r cm)) is itself a constant. The resulting potentialAcm would then be:

Acm = 1

2
[B × (r − r cm)] (14)

A magnetically-equivalent vector potential

Note that if the magnetic fieldB is parallel to the angular velocity� then this vector
potential will itself parallel the linear velocityv. Note also that our new vector potential
is axially symmetric since it does not depend on the position of the disk’s radius in the
disk’s own plane. This is not true forAr because the position vectorr is not perpendicular
to the disk’s axis (vide note 24).

If we now insertAcm into Helmholtz’s formula then we obtain, after considerable but
standard manipulation (recalling that the location of the center of mass and the angular
velocity of the spinning body are both to be considered constant):

Fcm = v × (∇ × Acm)− ∇(v · Acm) = 1

2
[v × B − � × (B × (r − r cm))] (15)

First expression for theemf corresponding to Acm according to Helmholtz’s
formula

We can immediately see that this new force differs by the term−1
2[v × B + � ×(B ×

(r − r cm))] from the expression (Eq. (3)) for the Ampèreemf . Of course, the force that
derives fromAr (Eq. (12)) also differs from the Ampère expression. The question is
whether our new force, which derives fromAcm, differs in an appropriate manner from
the one that is implied byAr .

Indeed it does. The new expression can be manipulated to yield, in strict equivalence:

Fcm = 1

2
[(r − r cm)× (B × �)] (16)

Second expression for the force corresponding to Acm according to Helmholtz’s
formula
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According to this equivalent second expression, theemf will indeed vanish altogether
whenever the angular velocity parallels the magnetic field. We have therefore found
a vector potential that yields a uniform field of magnetic force and that nevertheless
produces the very effect that Helmholtz had claimed.

How can this be so? The answer is deceptively simple: although a constant addi-
tion to the vector potential has no affect at all on the magnetic force, it certainly may
have one on the electromotive force according to Helmholtz’s electrodynamics, because
Helmholtz’s general expression foremf contains the additional term (in comparison to
Ampère)−∇(v · A). Even if the addition (call itA′) to the vector potential is constant,
this extra term in the force will yield two novel contributions: namely,−(A′ · ∇)v and
−A′ × (∇ × v). Neither of these necessarily vanishes, becausev may depend upon
r (vide Eq. (2)). As a result,Fcm, but notFr , does indeed disappear when the angular
velocity is parallel to the magnetic force. It’s instructive to rewrite the force that arises
from the Hertz potential (Ar ) in the following manner, since we can then see directly
how it differs from the one that arises fromAcm:

Fr =

The Hertz force︷ ︸︸ ︷
1

2
[(r − r cm)× (B × �)]︸ ︷︷ ︸

Fcm the Helmholtz force fromAcm

+ 1

2
[� × (B × r cm)]︸ ︷︷ ︸
addition fromAr

(17)

Comparison of the Hertz and Helmholtz forces

Here we see clearly that the Hertz force can yield a result even when the Helmholtzemf
vanishes altogether. Unlike field theory, Helmholtz’s system is manifestly not gauge-
invariant, and in this case of the spinning disk or sphere we have found a situation in
which the lack of invariance has a testable consequence.

We can naturally ask whether Helmholtz might have envisioned such an expression
asAcm. If we recognize that he, unlike Hertz (who started from the earth’s magnetiza-
tion), began with a field of magnetic force and a spinning object, then it seems plausible
that Helmholtz would have thought of this expression for the vector potential, had he
produced any at all, and not the one that Hertz’s lengthy computation entailed. Unlike
Hertz, who naturally reckoned from the earth’s center, Helmholtz (thinking just in terms
of a local magnetic field) would no doubt have worked in terms of local cylindrical co-
ordinates, placing the origin at the center of his spinning disk. The potentialAcm, unlike
Ar , contains the vectorr − r cm, or ρ, which represents the distance from the center of
mass of the spinning object to the point on it at which we wish to calculate theemf .
This same distance appears in the velocityv (Eq. (2)) of such a point. Accordingly, if
Helmholtz had wondered at all about an appropriate vector potential to correspond to
his magnetic field, then he would likely have used the very same vector that appears
in the velocity, thereby ensuring the absence ofemf . We will turn in a moment to the
possible course of Helmholtz’s reasoning during the year following the publication of
his remark concerning theemf in a spinning disk, but let’s first consider the difference
between Hertz’s and Helmholtz’s attitudes in respect to this sort of problem.

Hertz was in an altogether different frame of mind from Helmholtz when he consid-
ered the spinning sphere. Helmholtz in 1874 was looking for a situation that contrasted
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strikingly with the claims of the Amp̀ere emf . Hertz was looking for a way to test
whether electromagnetic induction can polarize dielectrics. Where Helmholtz was look-
ing to provide evidence for a new force law, Hertz was looking to use this same force
law as a tool in order to see whether a particular kind of novel effect that would oth-
erwise be difficult to produce could actually be elicited. Hertz therefore began directly
with the specific physical situation that he had in mind, and he then proceeded in a
straightforward way to calculate the force from it. He started with what he took to be
the most fundamental assumption possible, namely that the earth’s field results from a
magnetic dipole located near its center. Hertz had to work with the dipole’s potential,
and not the force to which it gives rise, because Helmholtz’s law was expressed in terms
of potentials.

Do we have any evidence concerning Helmholtz’s own thoughts in respect to the
requirements of his new force law, based as it was on the vector potential and not on
magnetic force? To answer that question, let’s first return to Helmholtz’s original state-
ment of 1874. There Helmholtz specified a magnetic field that is symmetric about the
disk’s axis of rotation; he said nothing about the vector potentialper se, or even about the
sources of the field. We saw above that we can produce a trivially symmetric magnetic
field – i.e. a constant one – using either of the following two vector potentials (withB
constant of course):

Ar = 1

2
(B × r ) or Acm = 1

2
[B × (r − r cm)].

Neither of these two potentials corresponds to a physically-realizable distribution of
(closed) currents, simply because the curl of their curl – which represents current –
vanishes.26 Nevertheless, the difference between these two expressions contains a hint
that may be historically significant.

We have seen thatAr yields a force on a spinning disk or sphere when the mag-
netic field parallels the rotation, whereasAcm does not. If the field is parallel to the
angular velocity, then we can rewriteAcm as 1

2

[(
B
�

)
� × (r − r cm)

]
. The expression

� × (r − r cm) is just the linear velocityv at the circumference of our rotating sphere
or disk. Here, then, the vector potential circulates symmetrically about the disk’s axis,
while the corresponding magnetic field parallels the axis.27

Consider any given radius of the rotating disk. No matter what the position of the
radius may be at any given moment, it always sees precisely the same valueAcm because
it has always the same velocityv. And here we perhaps spy a clue to Helmholtz’s rea-
soning during the year after his remark was printed. Suppose we assume that the vector
potential is produced by currents that are concentric to, and symmetric about, the disk’s
axis. In such a case as well, the rotating radius will always see the same potential. It is
not a difficult leap from the symmetry of anAcm that produces a constant magnetic field
to the potential (call itAsymcurr) that is produced by axially-symmetric currents proper.

26 If, that is, we consider them to be exact and not just approximations that are useful for nearly
homogeneous magnetic fields.

27 Certainly the magnetic field is also (trivially, because constant) symmetric about the axis,
but we have already seen that this alone will not guarantee the absence ofemf (sinceAr also
producesB): in addition, the originating vector potential must circulate symmetrically.
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NeitherAcm nor Asymcurr will produce anyemf in the rotating disk or sphere, and for
precisely the same reason.

We may now fruitfully examine the consequences of the fact that theemf will vanish
only when the vector potential is axially symmetric. Specifically, suppose thatA has
the axially-symmetric formh(ρ)eϕ whereh(ρ) depends solely on the distance from the
central axis. Here the cylindrical-coordinateρ specifies the distance to a given point
from thez axis, whileϕ specifies the angle ofρ in a plane orthogonal toz. Then the mag-
netic fieldB becomes [(h+ρh′)/ρ]ez, andFemf vanishes.28 This magnetic field is itself
axially symmetric (although orthogonal to its vector potential), so we have now found a
situation that corresponds directly to Helmholtz’s requirement and claim in 1874. The
point that Helmholtz seems to have missed is this: namely, thatA fields which are not
themselves axially-symmetric can nevertheless generateB fields that are, with non-zero
emf s resulting thereby. One suchA field, for example, ish(ρ)eϕ +ϕeρ . The correspond-
ing magnetic field is then [(h+ ρh)/ρ − 1]ez, which is itself axially-symmetric, but the
emf no longer vanishes, becoming in fact−ωeρ .

Hertz’s magnetization potential for the earth is just another example, albeit one in
which the magnetic field is symmetric about the spin axis by virtue of its near uniformi-
ty in the neighborhood. This is most simply understood by considering the potential’s
approximate form, in which we replace the vectors to the object point and to the object’s
center of mass with the earth’s radius. For then we can at once see that the approximate
potential (see Eq. (8)) has the formB × r (see Eq. (10)), and this, as we have seen, does
not abolish the Helmholtzemf .

5. Disagreement avoided, with remarks on mistakes, novelty and practical work

We began our discussion by pointing to a conflict between Helmholtz and his student
Hertz concerning theemf that is generated in a spinning object subject to a magnetic
field. It’s certainly possible that the difference remained unresolved, and that it was
perhaps never even recognized at all by either of them. But Helmholtz did not cease
working on electrodynamics after the paper containing his claim about the spinning disk
was printed. Not at all – he continued to write articles on the subject, and a good deal of
related experimental work occurred in his Berlin laboratory. Is there any evidence in this
subsequent activity that Helmholtz ever recognized, if only implicitly, that his remarks
concerning the spinning disk were problematic?

Indeed there is. The very next year Helmholtz made the following remark in a pa-
per concerning experiments done on induction produced by motion in open circuits.
Helmholtz wrote:

Let the endpointa of the conductor (ab Fig. 1 [Fig. 5 here]) be fixed,b however being
able to rotate in a circle abouta, further let the acting magnets and current elements be so
arranged that the first of these constitute rotationally-symmetric bodies, whose magnetic
axes, as well as whose axes of rotational symmetry, coincide with the normal erected at
the midpoint of the circle, while the circuits build concentric circles about this axis. With

28 Forh equal toBρ, with B constant, this reduces toAcm (Eq. (14)).
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Fig. 5. Helmholtz’s test for emf

such an arrangement, the relative position of the radiusaβ with respect to the magnets
or the currents is precisely the same as{that of} ab; the electrodynamic potential has the
same value in both cases, namely zero, and the potential law would as a result have the
consequence that in this case no electromotive force will act along it during the course of
the rotation of the radiusab into positionaβ. (Helmholtz, 1875, p. 782)

Here we see that Helmholtz has now recognized the conditions that must be satisfied
in order to guarantee the absence ofemf . The currents that act upon the moving radius
all lie in concentric circles having as axis the line about which the armab in the figure
rotates. Further, any magnetic bodies have their axes of magnetization and rotational
symmetry along this same axis, and so here too the rotating radius can never see any
change in the vector potential. Not only are all magnetic fields axially-symmetric, so too
are the corresponding vector potentials.

Clearly, during the time between his remark the year before and this one Helmholtz
had understood the need to specify conditions on the symmetry of the vector potential
rather than the magnetic field. He was undoubtedly pressed to do so by the demands of
an experiment to test theemf produced by motion, for that required producing an ap-
propriate physical configuration of currents and magnets. The situation described here
is what Helmholtz had had in mind the previous year, but with a notable difference: the
magnetic field in this new situation is not necessarily parallel to the arm’s axis of rotation.
It is however always axially-symmetric, as are any currents. For the latter reason alone
there can be no resultantemf .

And so we have solved our apparent conundrum. There is in the end no persistent
disagreement between Helmholtz and his student Hertz over a matter of potential, be-
cause Helmholtz in 1875 altered his inadequate remark of 1874. Hertz’s quick and easy
use of Helmholtz’s equation foremf needs, in the end, no explanation at all, at least
insofar as a putative conflict with Helmholtz is concerned. Unlike Helmholtz himself,
who had deduced the expression, Hertz had learned it. For him applying the formula to
an object spinning in the earth’s field was just an exercise in using what he had learned
from Helmholtz at a comparatively early stage in his career. For Helmholtz, on the other
hand, the new expression foremf had come as the result of considerable work trying to
build a general foundation for electrodynamics. He had not learned it as a student, and
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for Helmholtz, its creator, the new formula undoubtedly did not have the character of
intuitive directness that, for some time in the early 1880s, it had for the young Hertz.

Four different moments in the production of a novel physical system are nicely
illustrated here. Within five years of the system’s initial production by Helmholtz we
find him applying it incorrectly on paper. The next year, faced with the concrete demands
of a real experimental structure, Helmholtz corrected his mistake. Then, four years later,
the neophyte Hertz, who had learned the new system without having been thoroughly
immersed in alternatives to it, applied the scheme almost mechanically, without ques-
tioning the elements in it that experiments had begun to make problematic even to its
originator.

Novelty, error, error rectified, and finally rote application – these are issues that raise
questions for understanding how systems that live both on paper and in the world of
material devices evolve. Initially, the specific novelties of Helmholtz’s system had little
relevance for the contemporary electrodynamics laboratory; there simply weren’t any
devices that worked with the new forces that Helmholtz had created on paper. Neither
were any experimental oddities clarified thereby. More to the point, the world of elec-
trodynamic devices and objects had long been designed and understood on the basis of
symmetries that were scarcely compatible with the new system.

Symmetries often constitute critical elements in apparatus design, usually for in-
tensely practical reasons. In lens design, for example, it had always been important to
avoid astigmatism, which meant that the lens had to have the same form in any plane
section containing its lenticular axis. Moreover, the very manner in which lenses were
ground meant that any asymmetries that did occur had to be the result of undesirable
and hard to control factors. Lenticular symmetry accordingly represented both abstract
desiderata (the avoidance of astigmatism) and practical necessity (lens grinding meth-
ods). The motors and induction coils of electrodynamic devices – the existing world that
Helmholtz’s system had to accommodate – had similar design and practical symmetries
built in. Apparatus builders and paper analysts had long concentrated on the magnetic
forces that push motors around and that induce electric currents. It wasn’t practical to
make, or to calculate, complicated force patterns, and so devices were constructed with
extremely simple symmetries. Usually the goal was to keep the magnetic field as uniform
as possible within the motor or the induction coil, and to avoid complexity in the winding
of coils or armatures. Symmetry of calculation connected to symmetry of design.

Uniform magnetic forces, or forces that are nicely and simply distributed about
well-chosen axes, were all that were needed to build working apparatus until Helm-
holtz’s intervention in 1870. Intuitions had been developed over decades for designing
and building apparatus that had the right kinds of symmetries to produce the desired
actions. Helmholtz himself undoubtedly possessed just this kind of intuitive sense, and
it was precisely this that led him into error in 1874, because his new system broke apart
the prevailing concordance of symmetries.

It’s not generally wise to attribute ‘error’ to work done long ago, because it is en-
tirely too easy to ignore contemporary factors that make reasonable what was done or
said at the time, or to import into past work irrelevant present views. But errorper se
certainly can and does exist. It can be recognized at the time, and, even if it isn’t, the
historian who has mastered the tools and techniques of the era has license to point out
mistaken calculations or claims that shed revealing light on what took place. It is not
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easy to specify a precise set of rules that might govern the act of error-excavation (and
in itself error is not perhaps intrinsically interesting), but at least this much should hold
true: the error-excavator must be reasonably certain that the error-maker could have been
persuaded to acknowledge and to correct his mistakes had they ever been pointed out.

In Helmholtz’s case there is no doubt that he would have acknowledged error, be-
cause he in fact did so (albeit implicitly) the very next year by altering his specification
for a symmetry that would abolish the electromotive forces. During the year between
1874 and 1875 Helmholtz recognized that intuitions based on force symmetries did not
work for his scheme. Symmetries had rather to apply to the vector potential than to
the magnetic force that arises by taking its curl, which meant that apparatus had to be
designed by arranging the wires themselves according to the desired patterns. Intuitions
about symmetric forces had to be replaced by intuitions about symmetrically-placed
wires.

This is particularly significant when we recognize that Helmholtz’s system worked
entirely and directly with entities that formed the tangible electrodynamic workplace.
His scheme did not base itself upon electric particles, as did his rival Wilhelm Weber’s
(and many others in Germany at the time), nor did it work at a fundamental level with
force fields, as the British did. It spoke instead of wires that carried currents, or of
electrically-polarized dielectrics, or of magnetic bodies. These were its primordial ele-
ments, at least in the 1870s, and despite the certain fact that Helmholtz did think that
something more fundamental might lie hidden beneath the tangible world, he did not
for the most part build his theories at a deep level on conjectures about the invisible
realm.

Although the subject of this article has not been a large one since it does not involve
many people over a long period of time, it does have broader implications than might
seem to be the case because its argument runs counter to contemporary historical trends
that resolutely deny the existence of anything beyond the purely local – of beliefs and
behaviors that transcend immediate circumstances and that may hold across national,
cultural, and economic boundaries. Much history of science today sees all events as
irremediably local, as having no counterparts among other people, at other times, and
in different places. Innumerable articles have been written in recent times with the ad-
jective ‘local’ prominently displayed for admiration in title or body to show that the
author does not adhere to the disreputable notions of unity or generality. Heterogeneity
in society is, no doubt, morally and socially salutary. The last century provides too many
examples of what happens when passions for homogeneity govern life and desire. But,
to state what should be trivially obvious, attempts to achieve internal consistency and
general applicability in technical systems (such as electrodynamics) do not necessarily
have much in common with attempts to purge Bosnia of Muslims or Rwanda of Tutsi.

The events that we have examined are certainly ‘local’ in the trivial sense that they
took place in particular places, at specific times, and among certain people. And they are
local even in their express content, since the peculiarities of Helmholtz’s electrodynam-
ics were pursued mostly in Berlin. But in a broader sense much is entirely general here.
Helmholtz erred in thinking that it was sufficient to specify a symmetry for the magnetic
force, and he later knew as much. Hertz correctly and even mechanically carried out an in-
ternally-consistent computation based on Helmholtz’s system. It is entirely reasonable to
assert that Hertz in 1879, but not Helmholtz in 1874, worked correctly and without error.
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Locality in our case pertains rather to the specifics of Helmholtz’s system, which were
certainly not shared by many of his German or British contemporaries, than to the prag-
matics of calculation or even of instrumentation. It would have been quite possible for
the Maxwellian J. J. Thomson, e.g., to uncover Helmholtz’s 1874 error, to follow Hertz’s
1879 calculation, and to see exactly how Helmholtz’s system had correctly to be applied.

Moreover, Helmholtz fully intended that his electrodynamics should be uniquely
correct – that all others would have to fall in some way or other under its sway or else
be abandoned altogether. In this he was no different from any of his contemporaries,
who however held different views as to the best system to adapt, or for that matter from
any mathematically or experimentally oriented investigator since antiquity. Views can
be nuanced, and often have been, concerning such things as whether a particular scheme
is physically as well as mathematically significant, or even whether mathematics can
be used at all. But I do not know of anyone who has ever maintained that two systems
or computations, each of which claims to treat essentially the same physical domain in
similar ways, can both be correct.

Which is why the difference between the 1879 Hertz and the 1874 Helmholtz was
initially so striking. Since one of the two had to have made an error, or overlooked an es-
sential requirement, the historian could hope that the error would reveal something about
the system that they were using. Yet the difference between them might have attracted in-
terest for another reason, one that has of late seduced many historians, anthropologists,
and sociologists of science. Given that Hertz was Helmholtz’s apprentice, one might
have wondered whether Hertz’s contradictory claim in a piece intended for the master’s
eyes represented a subtle attempt to challenge the master-apprentice power relationship.
Perhaps, after all, Hertz chafed under Helmholtz’s continued efforts to make him do
what the master wanted and took the opportunity to challenge him. Indeed, we know for
a fact that Hertz did come to resent Helmholtz’s power over him to some degree at least
(see Buchwald, 1994,passim). But power relations are irrelevant for understanding what
happened here, beyond the elementary fact that the reason Hertz undertook the analysis
in the first place was because Helmholtz asked (or, more probably told) him to. Only one
thing is relevant: the technical working out of the implications of Helmholtz’s electro-
dyamics. That alone, followed carefully and thoroughly, gives meaning to the difference,
for only technical analysis reveals precisely where Helmholtz had been incomplete in
1874, and what significance his remarks have. Knowing this leads the historian to think
that Helmholtz might have corrected himself elsewhere, and indeed this is just what we
found. Someone who looked simply to the difference might easily, and incorrectly, have
attributed to social relations what pertains instead to technical structure.

Appendix: Helmholtz’s potential and corresponding forces

The close links between Helmholtz’s electrodynamics and energy considerations
have been discussed several times by historians, as have his deductions of the corre-
sponding electromagnetic forces.29 Nevertheless, it is worthwhile reproducing as close-

29 Buchwald, 1985, Buchwald, 1994, Darrigol, 1993a, and Darrigol, 2000.
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ly as possible Helmholtz’s own analyses in order to capture the full flavor of his theory
in the manner that he intended. We will rely on previous historical work, including my
own, but will diverge from it in presentation and detail in order to adhere closely to
Helmholtz.

Helmholtz’s own theory of electrodynamics was presented in a series of eleven papers
published from 1870 through 1881. Two among these developed the system in elaborate
detail, specifically 1870b and 1874. The 1870 paper developed the consequences of
Helmholtz’s generalized electrodynamic potential, in particular (as its title suggests) for
currents in conductors at rest, but also (and importantly) for dielectrics. Here Helmholtz
was not concerned with either the mechanical force that acts to move current-bearing
bodies, or the electromotive force engendered by changes in the configuration of sys-
tems in which they exist. In response to a series of intense criticisms by, among others,
Wilhelm Weber, Eduard Riecke and Carl Neumann in Germany, and Joseph Bertrand in
France, Helmholtz carefully worked out the forces implied by his theory.

Although part of Helmholtz’s purpose was to consider the most general possible
form for a potential function that would be compatible with the generally accepted
laws that govern closed circuits, we will here limit our considerations to that part of
the potential which is given by a generalization of the expression developed by Franz
Neumann. This expression was originally developed solely for linear, closed circuits.
One of Helmholtz’s major assumptions was that the elements in the Neumann integral
could be considered independently, thereby extending the expression to open circuits. In
addition, Helmholtz examined three-dimensional currents, to which we will here limit
our own considerations.30

We begin with the electrodynamic ‘potential’ that two three-dimensional current
distributions establish when one at least of them forms a closed system31:

P = −A2

2

∫
r

∫
r ′

C · C
|r − r ′|d

3r ′ d3r. (18)

In this expression forP , the integrations both occur over all space, which counts each
pair of volume elementsd3r ′ d3r twice. If, as Helmholtz remarks (Helmholtz, 1874,
p. 732) the currents occur in physically separated conductors, and the integrations each
occur over only one set, then the factor may be dropped. In addition, the currentsC,
C′ arefluxes: that is, they represent the quantity of charge per unit time per unit area
that flows in a given direction. Helmholtz’s generalization to three-dimensions of the
procedure established originally by Franz Neumann then yields forces according to the
following rules.

The ponderomotive force – the force that moves a body physically – is (following
Helmholtz’s sign convention) to be found from the negative gradient of this function,
with the operator affecting only the locus of the body on which the force acts. Helmholtz
accordingly set the negative variation of the potential function equal to the product of

30 Buchwald, 1994, pp. 25–7 for the forces that arise among linear circuits.
31 Helmholtz, 1874, p. 717 gives the potential for linear circuits, and extends it to three-di-

mensional ones on pp. 730–1. Helmholtz, 1870, p. 568 gives the general expression for the first
time.
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the force sought by the variation in position of the object. If the loci of points in the
body carrying currentC are specified by vectorsr , then the forceFpmf that would act
on an elementd3r as a result of its change in position fromr to r + δr must accordingly
satisfy variational Eq. (19):∫

(Fpmf · δr )d3r + δrP = 0. (19)

The subscript ‘r ’ in δr indicates that the displacement of the object is completely ar-
bitrary. Note thatFpmf depends only upon the configuration of the system and the
magnitudes of the currents.

Other forces, calledelectromotive (or emf ), may also exist that act to change the
magnitudes of the currents themselves. With Helmholtz we consider theemf that would
act on a unit current in a given direction. Such a force is given by the positive rate of
change with time of the potential, with the proviso that theemf must not depend upon
the amount of charge per unit time (that is, thelinear current) which flows through
the object being acted upon. In the case of three-dimensional currents, we construct an
appropriate variational equation purely formally by taking the scalar product of theemf
with whatever current fluxC exists at its locus, and then setting the result equal to the
time-rate of change of the potential function. We will subsequently impose the condition
that the resultingemf must be independent of linear current. This gives Eq. (20)32:

∫
r

Femf · C d3r


 δt − δtP = 0. (20)

The subscript ‘t’ in δt indicates that the change in the potential is calculated over an
arbitrary increment of time. As we will see, the variation in the position of the object
during this time interval is not arbitrary: it is determined by the object’s velocity, and
the corresponding variation represents the change as seen by the moving object.

To facilitate computation Helmholtz in 1870 had introduced a vectorU, which al-
lowed him to express the potential in a manner that provided in the end a compact
representation of the forces33:

U(r ) =
∫
r

C′(r ′)
|r − r ′| d

3r ′ → P = −A2

2

∫
r

C · U d3r. (21)

The constantA in (18) and (21) is fundamental in Helmholtz’s electrodynamics, but
our discussion here does not depend upon it, and so it has been suppressed below for
notational simplicity. Note that in this form the energyP depends directly on the prop-
erties of what we shall now call the vector potentialU. Since everything in Helmholtz’s
electrodynamics follows from the basic energy expressions, intuitions about how to set
up exemplary problems must be developed about current and potential, and not about
the resulting forces, since the forces are derivative, not fundamental, quantities.

32 See Helmholtz, 1874, p. 744.
33 Helmholtz, 1870, p. 568.
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Helmholtz worked as follows.34 Begin with the general expression fordP, which
contains bothC andC′. Consider an infinitesimal portion of current-bearing material,
the volumed3r of the element being(dσ )(dr). Choosedr such that it is parallel to the
current fluxC in our element. We may then write the productC d3r in the equivalent
formC(dσ)dr . As a result, the contributiondP that this element will make to the entire
potential will be35:

dP = −(Cdσ)dr · U. (22)

Since the variation is done without any consideration of the linear currentC(dσ), we
can now set this product to one and ignore it altogether.

Return to Eq. (20), and consider the contribution to the entire variationδtP that
comes from the circuit elementC d3r, which must now be set todr in the variation for
theemf as well:

δt (dP ) = (δt)Femf · dr . (23)

From Eq. (22) we can calculate the variation of the elementdP in terms ofU:

δt (dP ) = −δt (U · dr ). (24)

Consequently we have:

(δt)Femf · dr = −δt (U · dr ). (25)

Helmholtz had now to compute the change that arises when the affected object moves
in relation to the external currents, and when the external currents are themselves allowed
to changein situ , with the virtual displacement of the object occurring as a result solely
of its motion with a velocityv during an infinitesimal time. A modern procedure can
be used greatly to simplify the computation, but it is historically instructive explicitly to
follow Helmholtz’s own route.36

Let’s consider separately the two parts into which the variation divides. The first part
represents the change inU that is seen by a point fixed in the element when the element
moves from a place whereU has one value to a place where its value is different, together

34 Helmholtz, 1874, pp. 742–5.
35 Note that the factor of 1/2 disappears on taking the differential. The factor emerges in the first

place because otherwise the contribution to the potential fromC · C′ d3r d3r ′ would be counted
twice, assuming both integrals to extend over all space. In taking the differential, however, the
integration overr is dropped, and the factor of 1/2 consequently vanishes. Formally, the factor
disappears on taking the differential because the total potential,P , is symmetric in the product
C · C′.

36 See Darrigol, 2000, Appendix 5, which indicates that Helmholtz final’s result can be ob-
tained by calculating the convective derivative of the vector potentialU under the requirement
that the integral of the potential around a curve remains constant under a virtual displacement,
i.e. thatδt

∮
U · dr must vanish. Helmholtz reasoned entirely in terms of a differential element by

considering explicitly both the change in the value of a vector that is seen by a point fixed in the
element, and the change in the element’s length. He did not examine the value of a curve-integral
during a deformation.
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with the temporal change inU. The second part of the variation represents the change
in the value ofU · dr that occurs as a result of the alteration in the element’s length.
Hereafter italic boldface(U) represents a vector as seen by a point that is fixed in the
element:

δt (U · dr ) = (δtU) · dr︸ ︷︷ ︸
1

+ U · δt (dr )︸ ︷︷ ︸
2

. (26)

Hereδt (dr ) is the change in the length of the element that occurs as a result of its motion.
Sinceδt andd commute,37 we may replaceδt (dr )with d(δt r ). And since the differential
operatord is itself (dr ) · ∇, the second part of the variation may be written:

U · δt (dr )︸ ︷︷ ︸
2

= U · [(dr · ∇)δt r ].

Furthermore,δt r itself is just the virtual change inr produced by motion with velocity
v during the time intervalδt , i.e.vδt :

U · δt (dr )︸ ︷︷ ︸
2

= U · [(dr · ∇)v]δt. (27)

As for the first part of the variation in (26), we want to express our result in terms of
the value ofU at a fixed point in space – not at a fixed point of the displaced element.
However, theU that appears in (26) refers to a specific point in the moved element.δtU
must therefore be calculated using the material derivative (following the point) in order
to express our results in terms ofU at a fixed spatial point:

δtU =
[(

∂U
∂t

+ {(v · ∇)U}
)
δt

]
. (28)

Combining Eqs. (25) through (28) yields (after dropping the common scalar factorδt):

Femf · dr = −
[(

∂U
∂t

+ {(v · ∇)U}
)]

· dr − U · [(dr · ∇)v] . (29)

After manipulation, the right-hand side of Eq. (29) can be put in a form that contains
the scalar product of a vector withdr . Equating that vector toFemf yields Helmholtz’s
expression for the electromotive force:

Femf = −∂U
∂t

+ v × (∇ × U)− ∇(v · U). (30)

37 Because the variation of a differential element of length is equal to the difference between
the variations of its endpoints.
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