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L HISTORICAL NOTE

Nearly 200 years have passed since Ernst Florens Frie-
drich Chladni of Saxony published his treatise' in which he
described his well-known method of using sand sprinkled
on plates to show the nodal lines. In 1802 he published
another work,” with a second edition in 1830. In it he ob-
served that the addition of one nodal circle raised the fre-
quency of a circular plate by about the same amount as
adding two nodal diameters, a relationship that Lord Ray-
leigh calls Chladni’s law.?

Chladni’s lectures at European courts attracted many
famous personages. Napoleon was so delighted with his
demonstrations (is there a lesson in this for physics teach-
ers?) that he financed the translation of Die Akustik into
French, and also provided for the Institute of France a
prize of 3000 francs to be awarded for a satisfactory math-
ematical theory of the vibrations of plates. This prize was
awarded in 1815 to Mlle. Sophie Germain, who gave the
correct fourth-order differential equation for plate vibra-
tions, although her choice of boundary conditions was in-
correct.* (Mlle. Germain apparently corresponded with
Gauss using the nom de plume of “Mr. Leblanc,” a not
uncommon custom for women of letters in that day’.)

In 1850 G. R. Kirchhoff published two papers on the
theory of vibrating plates, which gave a more accurate
treatment of the boundary conditions.%’ As is now well
known, each normal mode of a circular plate has m nodal
diameters denoted by cos (m6 — a) =0 and n concentric
circles that are solutions to the equation J,,(K7)

+ AJ,,(iKr) = 0. [/,, (Kr) and J,,, (iK7) are Bessel functions;
a and A are arbitrary constants.] Rayleigh® pointed out
that for large values of Ka (a is the radius of the plate),
Ka~lm(m + 2n). Thus in a plate, f is proportional to
(m + 2n)?, for large f, which is a statement of Chladni’s
law.

A list of scientists who have employed Chladni patterns
tostudy plate vibrations reads like a Who’s Who of physics:
Chladni, Savart, Strehlke, Faraday, Koenig, Debye,
Young, Fliigge, Wood, Andrade, etc. But the most exhaus-
tive studies were made by Mary Désirée Waller, who wrote
31 papers on the subject plus a most remarkable book,
which was published posthumously by her friends.’ In ad-
dition to hundreds of photographs of Chladni patterns, her
book includes a list of 207 references.

II. TECHNIQUES FOR OBSERVING MODES OF
VIBRATION IN PLATES

Every student in a beginning physics course deserves to
see a demonstration of Chladni patterns on vibrating plates
(teachers: imagine that you are Chladni and some student is
Napoleon). As 2 minimum we recommend one circular,
one square, and one rectangular plate. They can be cut
from a sheet of aluminium or steel about 1.5 mm thick.
Painting them flat black increases visibility, especially if
table salt is used in place of sand. In this section we mention
several convenient ways for exciting plate vibrations, ways

271 Am.J. Phys. 50(3), March 1982

to observe Chladni patterns, and other ways to observe
modes of vibrations in plates.

A. Driving the plate

There are a number of ways to excite the various vibra-
tional modes in plates. Chladni stroked the edge of the plate
with a violin bow." Waller preferred to touch the plate with
bits of dry ice,® a technique that is most efficient in the
frequency range of 2000 to 4000 Hz. Excitation of the plate
at a single frequency can be accomplished in several ways:
with a loudspeaker,” a mechanical driver,'® an electro-
magnet,'' or a magnetostrictive rod.'?

We have found some type of electromagnetic drive to be
the most convenient means of exciting plate vibrations. Ap-
plying an alternating current to a small coil attached to the
plate and inserting a cylindrical magnet into the coil works
well. Alternatively, attaching a small magnet to the plate
and subjecting it to the alternating field of an electromag-
net (with a ferrite or powdered-iron core) produces satisfac-
tory results. In the case of a steel plate the small magnet is
unnecessary, since a magnetic field that oscillates at a fre-
quency f/2 will produce a force with a frequency f.

B. Chladni patterns

Chladni generated his vibration patterns by “strewing
sand” on the plate, which then collected along the nodal
lines." Later he noticed that fine shavings from the hair of
his violin bow did not follow the sand to the nodes, but
instead collected at the antinodes. Savart noted the same
behavior for fine lycopodium powder.'* This effect was ex-
plained by Faraday as being due to acoustic streaming. '

Waller includes a discussion of the conditions under
which a given material behaves as a “nodal” versus an “an-
tinodal” powder (see p. 112, Ref. 5). For sand, the particle
diameter should exceed 100 zm to collect at the nodes and
form Chladni patterns. We frequently use table salt for this
purpose, although the crystals are a little larger than opti-
mum size. On wood plates, flakes of “glitter” (such as used
in Christmas decorations) work well.

C. Scanning the sound field

A small microphone in the near field of the radiated
sound can be used to study the modes of vibration of a
plate.'® The plate-to-microphone spacing must be much
smaller than the spacing of the nodal lines that are observed
by noting the change in phase in the signal when a node is
crossed. A convenient way to note changes in phase is to
display the microphone output, suitably amplified and fil-
tered, on the vertical axis of an oscilloscope versus the cur-
rent in the drive coil on the horizontal axis.

D. Interferometry with laser light

The very powerful techniques of time-average holo-
graphic interferometry make it possible to study vibrations
down to very small amplitudes (~ 10~7 m)."” Figure 1 is a
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Fig. 1. Reconstructions from time-average holographic interferogram of 15-in. cymbal 18: (a) (30) mode; (b) (60) mode; (c) mixture of (13,0) and (4,2) modes;
(d) schematic of the hologram in (c).

holographic reconstruction of a vibrating cymbal that laser speckle interferometry.?° Both of these methods have
shows a number of nodal circles and nodal diameters.'® the advantage of giving continuous information about the

Other interferometric means for studying modes of vi-  modes, but the patterns are somewhat difficult to observe
bration include real-time holographic interferometry'®and  and especially to photograph.
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Fig. 2. Modal frequencies of a flat circular plate (data from Ref. 21jas a
functionof m +3n(On=0,An=1,Xn=2,vn=3WBnrn=4).

II1. VIBRATIONS IN CIRCULAR PLATES
A. Flat plates

Waller gives the relative frequencies of over 90 modes of
vibration in a circular brass plate with a free edge.>' She
observes that these frequencies agree with Chladni’s law
only when m is small, which is contrary to the Kirchhoff-
Rayleigh conditions. If the frequency is written as a func-
tion of m + bn, she states that the number b will gradually
increase from 2 to 5 as m increases. She explains this dis-
crepancy as being due to the close spacing of the nodal lines
for large m. When the spacing of the nodal diameters near
the center is less than the thickness, thin-plate theory can
be expected to fail.

Waller’s data can be fitted reasonably well to a relation-
ship of the type f = ¢(m + 3n)*, as shown in Fig. 2. There
are two disadvantages with this, however:

(1) The exponent & varies for different values of n;

(2) The relationship disagrees with the Kirchhoff-Ray-
leigh condition.

The same data can also be fitted to curves of the type
f=c(m + 2n)* by allowing c as well as & to vary slightly
with n, as shown in Fig. 3. The agreement with Chladni’s
law, and with the Kirchhoff-Rayleigh condition is now rea-
sonably good.

B. Nonflat plates

We have studied the modes of vibration in a large num-
ber of percussion musical instruments that are platelike in
their behavior, such as cymbals, gongs, tamtams, and bells.
Itis interesting to examine some of their modal frequencies
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Fig. 3. Modal frequencies of a flat circular plate {data from Ref. 21) fitted
to the relationship f= c{m + 2n)* (-O-n =0, ~A--n =1, - X-n=2,
-A-n=}3-ln=4 .@n= 5).

in the light of Chladni’s law.

Modal frequencies of a 24-in.-diameter cymbal are
shown in Fig. 4. For n =0 (no circular nodes), the data
follow a line with two different slopes. For m <6, &, is.
determined to be 1.86. For m > 6, k, = 1.49.
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Fig. 4. Modal frequencies of a 24-in. diameter cymbal (O n =0,
An=1,Xn=2).
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Table 1. Parameters used to fit the vibration modes of cymbals having
n = 0 to the equation f= c(m + bn)*.

Table II. Parameters used to fit the vibration modes of handbells having
n = 0and 7 = 2 to the equation f = cm *.

Cymbal k, o(Hz}) &k, oMHz) m*? Bell n k, ¢,(Hz) k, ¢,(Hz)
24 in. thin 1.86 7.7 1.49 14.2 6 C, 0 2.44 52.3 1.55 192
18 in. thin 1.75 10.1 1.56 14.1 5 C, 0 2.37 101 1.77 266
1.78 10.6 1.52 15.7 4.5 C, 0 2.32 193 1.74 538
18 in. medium 1.65 13.4 1.46 18.2 4.7 C, 1 neg. 201 73.9
1.70 12.6 1.43 17.8 3.6 Cs 1 neg. 1.80 214
16 in. thin 1.81 10.8 1.48 18.8 5 Cs 1 neg. 1.63 492

1.84 12.0 1.47 19.5 4
16 in. medium 1.70 13.8 1.53 18.3 5

1.65 15.9 1.53 19.4 43
14 in. thick 1.47 20.6

"m_ is the m value at which the slope changes from &, to k,.

In a cymbal, it is difficult to observe modes with well-
defined circular nodes. Often the modal frequencies can be
estimated from observing modes that are combinations of
two nearly-degenerate modes of different m and » [see Fig.
1(c), for example]. We have thus managed to identify three
modes with » = 1 and six modes with #n = 2 in this cymbal,
which are also shown in Fig. 4. The n = 2 family fits rea-
sonably well a line given by f= c(m + bn)* with b =4,
k = 1.2and ¢ = 30 Hz. The modes for n = 1 can be fitted to
lineswithb=2,k=1250rb=4,k=1.7.

Values of £ and ¢ for the » = 0 modes in a number of
cymbals are given in Table I. In most cases a distinct
changein slope (k ) is noted at a particular value of m denot-
ed as m,. The largest k-values occur when the cymbal is
large and thin; the cymbals then approach flat-plate
behavior.

The vibration modes of church bells*? and small hand-
bells** can also be described in terms of the nomenclature
of plate modes, which they resemble. The frequencies of the
modes in the n = 0 group {no nodal circles) decrease from
k, to k, in the same manner as the n = 0 group in cymbals,
although the decrease in slope is more gradual in the hand-
bells. Furthermore, the initial slope &, is greater in the case
of handbells.

In the case of the n = 1 group, the initial slope &, is nega-
tive; that is, the frequency decreases with increasing num-
ber of nodal meridians m. This behavior can be explained
by comparing the bell vibrating in one of these modes to a
cylindrical shell closed at one end, which stretches as it
vibrates.?* Values of k, and k, for three bells are indicated
in Table I1.

IV. CONCLUSION

The vibration frequencies of flat and non-flat circular
plates can be fitted to the relationship f = c{m + bn)*. By
proper choice of ¢ it is possible to satisfy Chladni’s law
(b =2, k = 2) in flat plates over quite a wide range of fre-
quency. Nonflat plates require values of b and k that are
slightly different from two, however.

In cymbals of different sizes, the n = O groups of modes
fit curves having slopes of k, = 1.65 to 1.86 for low mode
numbers and k, = 1.43 to 1.56 for high mode numbers.
Rather limited data on modes having nodal circles suggest
that b may vary from 2 to 4. In handbells, the modes with-
out nodal circles have slopes which range from k; = 2.32 to
2.44 for low mode numbers and k, = 1.55 to 1.77 for high
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mode numbers. Thus there is some similarity with the be-
havior of the corresponding modes in cymbals.
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