Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

AIAA JOURNAL .
Vol. 54, No. 3, March 2016

Check for
updates

SU2: An Open-Source Suite for Multiphysics
Simulation and Design

Thomas D. Economon*
Stanford University, Stanford, California 94305
Francisco Palacios?
The Boeing Company, Long Beach, California 90808
and
Sean R. Copeland,? Trent W. Lukaczyk,# and Juan J. Alonso¥
Stanford University, Stanford, California 94305

DOI: 10.2514/1.J053813

This paper presents the main objectives and a description of the SU2 suite, including the novel software architecture
and open-source software engineering strategy. SU2 is a computational analysis and design package that has been
developed to solve multiphysics analysis and optimization tasks using unstructured mesh topologies. Its unique
architecture is well suited for extensibility to treat partial-differential-equation-based problems not initially envisioned.
The common framework adopted enables the rapid implementation of new physics packages that can be tightly coupled
to form a powerful ensemble of analysis tools to address complex problems facing many engineering communities. The
framework is demonstrated on a number, solving both the flow and adjoint systems of equations to provide a high-
fidelity predictive capability and sensitivity information that can be used for optimal shape design using a gradient-
based framework, goal-oriented adaptive mesh refinement, or uncertainty quantification.

Nomenclature _f = force vector on the surface
A¢ = Jacobian of the convective flux with respect to U I = identity matrix
AV = Jacobian of the viscous fluxes with respect to U J = cost function defined as an integral over §
B = column vector or matrix B, unless capitalized symbol J = scalar function defined at each point on §
clearly defined otherwise k = turbulent kinetic energy
B = (B, By) in two dimensions, or (B,, By, B;) in three N(@) = setof all neighboring nodes of node i
dimensions n = unit normal vector
BT = transpose operation on column vector or matrix B P = shear-stress transport turbulent kinetic
b = spatial vector b € R”", where n is the dimension of the energy production term
physical Cartesian space (in general, two or three) Pr, dynamic Prandtl number
Cp = coefficient of drag Pr, = turbulent Prandtl number
Cy = coefficient of lift p = static pressure
Cy, = pitching-moment coefficient 0 = vector of source terms
C, = coefficient of pressure q, = generic density source term
c = airfoil chord length 4k = generic density source term
Cp = specific heat at constant pressure . = generic momentum source term
= vk . . . R = as constant
D" = Jacobian of the viscous fluxes with respect to VU & . .
. R(U) = system of governing flow equations
dy = nearest wall distance
N Re = Reynolds number
d = force projection vector
. R; = system of governing equation residual at node i
E = total energy per unit mass . -
=~ S = solid wall flow domain boundary
Fi; = numerical convective flux between nodes i and j a .
=~ . . . ; S = Spalart—Allmaras turbulence production term
Fi; = numerical viscous fluxes between nodes i and j
i . T = temperature
F = convective flux) .
ok . t = time variable
F = viscous fluxes . .
U = vector of conservative variables
e w = vector of characteristic variables
Presented as Paper 2013-0287 at the 51st AIAA Aerospace Sciences W, = vector of positive characteristic variables
Meeting Including the New Horizons Forum and Aerospace Exposition, W = far-field characteristic variables
Sragewgle %z;l‘l‘as/Ft: Worth R_egl((i)n7),JT1X, 2()071—510 Janu?r()i/ 1%013; l;vls.celt\./ed ; r = flow domain boundary
eptember ; revision received 7 July ; accepted for publication _ e .
September 2015; published online 28 December 2015. Copyright © 2015 by Fo = fa{. flel? do".‘f"’}mlf’("tmdary Lo 1.4 for ai
T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. 4 - ra 10 ol specilic heats, equa t(,) : ,Or ar
Alonso. Published by the American Institute of Aeronautics and Astronautics, AS;; = 1nterfac§ area between npdes iand j
Inc., with permission. Copies of this paper may be made for personal or a(-) = first Varlatlop of a quantity)
internal use, on condition that the copier pay the $10.00 per-copy fee to the 0,() = normal gradient operator at a surface point, rng - V(-)
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; Hdyn = laminar dynamic viscosity
include the code 1533-385X/15 and $10.00 in correspondence with the CCC. Heur = turbulent eddy viscosity

*Postdoctoral Scholar, Department of Aeronautics and Astronautics. u'! = total viscosity as a sum of dynamic
Senior Member AIAA.
"Engineer, Advanced Concepts Group. Senior Member AIAA. 0”2 _ Z?éggf]tif;;}c;?g I?gjgtt;’lf d'yl(l;t+ H /“}f)r)+ (s /PP,
Ph.D. Candidate, Department of Aeronautics and Astronautics. Student H N Y dyn d tur t
Member AIAA. v = ﬂoyv veloglty vector
SProfessor, Department of Aeronautics and Astronautics. Associate Fellow 4 = fluid density
AIAA. T = pseudotime

http://dx.doi.org/10.2514/1.J053813
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J053813&domain=pdf&date_stamp=2015-12-29

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 829

strain rate tensor; [Vv + Vo7 — (2/3);(V -v)]

T =

@ = adjoint velocity vector

v = vector of adjoint variables

Q = flow domain

Q; = control volume surrounding node i

0] = shear-stress transport specific turbulent dissipation
(0] = fluid vorticity

. = vector inner product

X = vector cross product

® = vector outer product

V() = gradient operator

V-() = divergence operator

Vs(-) = tangential gradient operator at a surface

point; V(-) — 9, (-)ng

I. Introduction

HE SU2 software suite has been recently developed for the task

of solving partial differential equation (PDE) analyses and PDE-
constrained optimization problems on general unstructured meshes.
Although the framework is extensible to arbitrary sets of governing
equations for solving multiphysics analysis and design problems, the
core of the suite is a Reynolds-averaged Navier—Stokes (RANS)
solver capable of simulating the compressible, turbulent flows that
are representative of many problems in aerospace and mechanical
engineering. But, more importantly, through the use of an adjoint
method, SU2 is capable of providing gradient information that can be
used for optimal shape design, uncertainty quantification, and goal-
oriented adaptive mesh refinement. This gradient infor-
mation enables powerful analysis and design strategies for complex,
multiphysics engineering systems.

Previous work [1] has presented a detailed overview of the
objectives, implementation, and capabilities of the SU2 analysis and
optimization suite; and a follow-on effort [2] described a compre-
hensive verification and validation (V&V) process for the RANS
solver using both the Spalart—Allmaras (S-A) and Menter shear-stress
transport (SST) turbulence models. The test cases in the V&V set
spanned a wide range of flow regimes pertinent to applications of
broad interest. For these selected test cases, SU2 solutions were
shown to be in excellent agreement with both the available experi-
mental data and numerical simulation results from other well-
established computational tools, which demonstrated the credibility
of the solver for research and industrial applications.

Although it is possible to identify the key characteristics that
computational analysis and design suites must have to provide the
capabilities and efficiencies mentioned previously, one rarely has
the opportunity and the resources to create such environments from
the ground up. As a consequence, typical architectures for such envi-
ronments lack the necessary flexibility and sophistication to
overcome all of the challenges. Without a careful rethinking of the
organization of an entire software suite, engineers and computational
scientists are left with a collection of separate tools that they must
combine for their work, resulting in a slower pace of research and
innovation.

SU2, on the other hand, has been developed from scratch to
overcome most of these limitations. The suite is also released under a
nonviral open-source license and is freely available to the community
so that users and developers around the world can continue the V&V
process, contribute to the development of the source code, and further
improve the accuracy and capabilities. To overcome challenges and
develop a lasting infrastructure for future efforts, the basic
philosophy during the development of the SU2 framework has been
to ensure the following:

1) To encourage community involvement via an open-source
model, the SU2 suite is a tailor-made testbed for the advancement of
numerical methods and computational fluid dynamics for researchers
worldwide. Additionally, we seek to provide the global community
with a state-of-the-art analysis and design capability to address the
challenges facing the aerospace community.

2) For reusability and encapsulation, SU2 is architected with high-
level abstractions for the major code components (geometry, grid,

governing equations, numerical methods, etc.). These abstractions
promote code reusability and enable the rapid implementation of new
capabilities by combining classes.

3) For portability and ease of use, SU2 has been developed using
standard C++ as defined by the International Organization of
Standardization and relies solely on widely available, well-
supported, open-source software including Message Passing
Interface standard (MPI) implementations, mesh partitioning
packages, and popular scripting languages. As such, SU2 can be
executed on any computing platform for which a C++ compiler is
available.

4) For performance, the future of numerical simulation requires
efficient algorithms for massively parallel architectures. Though
some performance has been traded for flexibility within the class-
inheritance structures native to C++, we have developed and
implemented numerical algorithms and convergence acceleration
techniques that result in a scalable and modular tool for large-scale
simulations.

5) For many applications (optimization, response surface
formulations, and uncertainty quantification, among others), it is
important to obtain gradients of the outputs computed by SU2 to
variations of, potentially, very large numbers of input parameters. For
this reason, SU2 relies on adjoint solver implementations that can be
used to compute the necessary gradients. In addition, these adjoint
solutions can be used to drive functional-based mesh adaptation
techniques.

Using this philosophy, it is possible to assemble tightly coupled
physics packages relying on both finite volume and finite element
methods to perform complex, multiphysics simulations for
aeroelastic [3], aeroacoustic [4], and chemically reactive, non-
equilibrium hypersonics [5] problems, among others. A library of
available numerical schemes and linear solvers reduces development
time for new feature additions, and common solver structure and
parallelization approaches are shared by all members of the SU2
suite. It is important to highlight that the ability to easily integrate
these solvers ensures that new features or updated models can be
included without affecting the main infrastructure and with a
reasonably low degree of difficulty.

The contributions of this paper are as follows. First, the software
architecture itself is a primary contribution of this work due to its
novel class design, flexibility, and ease of use. It will be described,
and several specific examples will illustrate key abstractions. A
number of industry-relevant problems requiring high-fidelity tools
for analysis and design are used to demonstrate the tools in the
Results section (Sec. V). Second, important lessons learned about the
execution of an open-source package, including software engineer-
ing strategies that enable and sustain this type of open-source project,
will be detailed so that others may benefit from the model employed
for SU2.

The organization of this paper is as follows. Section II describes the
object-oriented class structure of SU2, the flexibility of the imple-
mentation, and several components of the open-source strategy.
Section III describes the set of RANS equations (including the S-A
and SST turbulence models) and the corresponding adjoint RANS
equations used in our work. Details of the numerical implementation
are provided in Sec. IV. Section V describes several industry-relevant
examples using the SU2 framework: a supersonic aircraft config-
uration, the DLR-F6 aircraft configuration, the National Renewable
Energy Laboratory (NREL) Phase VI wind turbine geometry, and the
RAM-C II hypersonic flight test vehicle. Finally, the conclusions are
summarized in Sec. VI.

II. Code Framework and Design

The SU2 software suite was conceived as a common infrastructure
for solving PDE-based problems on unstructured meshes. The full
suite is composed of compiled C++ executables and high-level
Python scripts that perform a wide range of tasks related to PDE
analysis and PDE-constrained optimization. A basic description of
the C++ core tools is included in the following in order to give an
overall perspective of the available capabilities. Each of the modules

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

830 ECONOMON ET AL.

can be executed individually (most notably, SU2_CFD for high-
fidelity PDE analysis), but the real power of the suite lies in the
coupling of the modules to perform complex activities, including
design optimization or adaptive grid refinement.

Most of the C++ class design in SU2 is shared by all of the core
modules (in particular, the geometry, integration, and output class
structures), and only specific numerical methods for the convective,
viscous, and source terms are reimplemented for different physical
models where necessary. There is no fundamental limitation on the
number of state variables or governing equations that can be solved
simultaneously in a coupled or segregated way (other than the
physical memory available on a given computer architecture), and the
more complicated algorithms and numerical methods (including
parallelization, multigrid, and linear solvers) have been implemented
in such a way that they can be applied without special consideration
during the implementation of a new physical model. We will illustrate
these key abstractions in SU2 by detailing a typical edge loop found
within the solver.

At the end of this section, we have included a discussion of the
critical components of our software engineering strategy for
sustaining and growing SU?2 as an open-source project. We present
this information with hope that it proves useful to those currently
pursuing open-source projects of their own or that it might inspire
others to release their projects as open source.

A. Software Components

The core tools of the SU2 suite are the C++ executables. A key
feature of these modules is that each has been designed for specific
functionality while leveraging the advantages of the modern
programming language, such as class inheritance and polymorphism.
This level of abstraction encourages code reuse and forms a well-
defined structure for quickly implementing new algorithms and
numerical methods within or on top of the existing framework.

Note that all of the modules share a common C++ class structure;
thus, classes and capabilities can be easily ported into other modules.
For example, all of the grid deformation capabilities can be integrated
directly into the computational fluid dynamics (CFD) solver (for
instance, this has been done for simulating unsteady flows on
dynamic meshes) or used separately as an independent code:
SU2_DEF. A brief description of each of the C++ core tools is
provided next. These modules are available at the time of writing, but
additional modules can be added or removed from the framework
with relative ease.

1) SU2_CFD solves direct, adjoint, and linearized (steady or
unsteady) problems for the Euler, Navier—Stokes, and Reynolds-
averaged Navier—Stokes nonequilibrium, free-surface, Poisson, heat,
wave, etc., equation sets. SU2_CFD can be run serially or in parallel
using a mesh partitioning approach (built around the ParMETIS [6]
software) and an implementation of the message-passing interface
standard. It uses either a finite volume method (FVM) or finite
element method with an edge-based data structure. Explicit and
implicit time integration methods are available with centered or
upwind spatial integration schemes. The software also has several
advanced features to improve robustness and convergence, including
residual smoothing, agglomeration multigrid, or preconditioners for
low-speed applications or the linear solvers. The capabilities of this
tool are the subject of much of this paper.

2) SU2_DEF (mesh deformation) computes the geometrical
deformation of surfaces within the computational mesh and the
surrounding nodes making up the volumetric grid. A number of
geometry parameterization techniques are currently available,
including free-form deformation (FFD) [7] in two dimensions and
and three dimensions, as well as several types of bump functions in
two dimensions, such as those of Hicks and Henne [8]. After
perturbing the geometry with a chosen parameterization, an approach
based on the linear elasticity equations [9] is used to deform the
surrounding volume mesh.

3) SU2_DOT (gradient projection) computes the partial derivative
of a functional with respect to the shape design variables from a
suitable surface geometry parameterization (FFD, bumps, etc.).

SU2_DOT uses the surface sensitivities at each mesh node on the
geometry provided by an adjoint solution from SU2_CFD and the
definition of the geometrical design variables to evaluate the deri-
vative of a particular functional (e.g., drag, lift, etc.) through a dot
product operation.

4) SU2_GEO (geometry definition and constraints) evaluate (or
constrain during optimization) a number of geometric quantities of
interest, such as volumes, section thicknesses, etc.

5) SU2_MSH (mesh adaptation) performs grid adaptation using
various techniques (including goal-oriented) based on the analysis of
a converged flow, adjoint, or linearized solution in order to
strategically refine the mesh about key flow features. SU2_MSH also
manages the creation of ghost cells for performing simulations with
periodic boundary conditions and outputs a new mesh containing the
proper communication structure between periodic faces. This
module must be run before SU2_CFD for any simulation that uses
periodic boundary conditions.

6) SU2_SOL (solution export) generates volume and surface
solution files on request in any available format. This module is
automatically called by parallel_computation.py after completing a
parallel calculation with SU2_CFD, but it can also be called
independently at any time to create a new set of solution files if given
amesh, configuration file, and a restart file containing the solution at
each node.

Apart from the core C++ tools, a Python framework has been
written around SU2 to enable vertical integration with optimizers and
to reduce the amount of user overhead required for setup. There are
five levels of components in the optimization control architecture,
and most rely on Python scripts to modify the configuration input,
execute lower-level components, and automatically postprocess any
resulting data. To simplify and shorten overhead time during problem
setup, all levels start from a common configuration file (in the same
format as that of the C++ modules), which is modified as needed
when passed to lower levels. Listed in order from lowest to highest,
these levels are as follows:

1) The first level is the core tools. These tools contain all of the SU2
binary executables, as described previously. As input, they take a
custom format, text-based configuration file. As output, they write
data such as integrated forces, moments, or other objectives to an
iteration history file: field data to files for plotting, or deformed or
adapted meshes in the native format, for instance.

2) The second level includes core tool pre- and postprocessing.
Any necessary preprocessing activities (preparing a restart or
launching of a parallel calculation, for example) and postprocess
solution file output (accomplished with SU2_SOL) are managed on
this level with Python for each execution of a core C++ tool. The
parallel_computation.py script, which will be described in the
following, serves as a clear example. However, a user can perform all
functions on this level manually using only the C++ modules (i.e.,
without Python).

3) The third level is sensitivity analysis. This level manages the
pre- and postprocessing needed for calculating performance
sensitivities with respect to a user-specified surface geometry para-
meterization (i.e., a set of design variables). Both adjoint and finite
differencing approaches have been implemented. For the adjoint
approach, direct and adjoint PDE solutions are computed (requiring
executions of SU2_CFD), and the resulting adjoint surface
sensitivities are projected into the design space during a post-
processing step (a single execution of SU2_DQOT). In the case of finite
differencing, multiple but independent evaluations of the direct
problem for a state corresponding to a perturbation in each of the
design variables is required before the performance sensitivities can
be calculated (one SU2_CFD execution per design variable).

4) The fourth level is design evaluation. For easier integration with
optimization packages, SU2 has a design management class that
wraps a black box around the previous components and takes only a
vector of design variables as input. In this view, the optimizer is
allowed to drive the design process by calling the wrapped SU2
functionality. To accomplish this, the management class interprets
special configuration file options for setting up the full design space.
When it receives a design state vector from the optimizer, it executes

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 831

I

SU2_CFD |

/

!

5

CConfig

L

COutput

v

[CMulLigridImcgration \

/

H Clntegration ‘

x

Children Classes

l CMultiGridGeometry l ‘ CPhysicalGeometry ‘ ‘ Children Classes I
| CDualGrid | CPrimalGria | | CsparseMatrix | | CVariable
| Children Classes | | Children Classes | Children Classes

A —_—

Notation: | A | e > Class B is a child class of class A

B Class B is instantiated by class A

Fig.1 Class hierarchy in SU2_CFD.

any surface geometry perturbations, mesh deformations, flow
solutions, and sensitivity analyses as needed, and then it finally
returns performance data (objective, any constraints, and possibly
sensitivities). As it operates, it archives restart and plot data in an
organized folder structure, which may be useful for secondary
analyses or debugging. Evaluations of multiple design requests can
be submitted in parallel if the resources are available.

5) The fifth level is design optimization. Single-objective
constrained design optimization is the highest level of architecture
thatis currently available. The primary optimization strategy for SU2
is gradient based and takes full advantage of the built-in adjoint
approach to sensitivity analysis. The default optimizer is the
sequential least squares programming optimizer found in the open-
source SciPy package,! though additional options are available and
can be easily interfaced with the design evaluation class.

Interfaces to the aforementioned levels can be scripted in Python to
couple the various software modules of SU2 and perform complex
analysis and design tasks. To expose the basic functionality of these
interfaces that manage typical design optimization problems, several
command line scripts are provided in the distribution. It is
straightforward for users and developers to build new scripts that
import the Python framework and complete new tasks not envisioned
by the authors. Brief descriptions of the most commonly used scripts
are provided here:

1) The parallel_computation.py script handles the setup and
execution of parallel CFD jobs on distributed memory architectures
with MPIL. The script executes SU2_CFD in parallel and calls
SU2_SOL to generate solution output upon completion of the
calculation.

2) The continuous_adjoint.py script automatically computes the
sensitivities of a functional with respect to design parameter
perturbations using the continuous adjoint method. The objective
function and design variables are specified in the common
configuration file. The SU2_CFD and SU2_DOT modules are called
to complete the task.

3) The finite_differences.py script automatically computes the
sensitivities of a functional with respect to design parameter
perturbations using a finite difference method. As with the
continuous_adjoint.py script, design variable information is read

Data available online at http://www.scipy.org [retrieved 2015].

from the configuration file, and SU2_CFD is called repeatedly to
calculate the appropriate gradient elements.

4) The shape_optimization.py script orchestrates all required SU2
modules to perform shape optimization. The choices for the objective
function, design variables, and additional module settings that define
the optimization problem are controlled through options in the shared
configuration file.

B. C++ Class Design

The object-oriented framework in SU2 makes it an ideal platform
for prototyping or researching new physical models, discretization
schemes, etc. Ultimately, this philosophy enables the extension of the
suite to a wide variety of PDE analysis and design problems. It also
allows a researcher to apply their own domain-specific knowledge to
problems of interest within SU2 while many unrelated but necessary
complexities are abstracted away. We will highlight several examples
of this flexibility. This furthers the goal of providing an open platform
to a global community in support of increased research and
innovation in the computational sciences.

The objective of this section is to introduce the C++ class structure
of SU2 at a high level along with specific examples that demonstrate
the architecture. The class descriptions that follow focus on the
structure within SU2_CFD (the main component of SU2), but many
of the classes are also used in the other modules. Maximizing the
flexibility of the code was a fundamental driver for the design of the
class architecture, and an overview of it is shown in Fig. 1.

As a starting point, the module SU2_CFD instantiates three basic
classes, namely, the following:

1) CConfig class reads and stores the problem configuration,
including all options and settings from the input file (a custom-format
ASCII file with extension. cfg). The option data are encapsulated
within the class with “getter” and “setter” methods for access. A
pointer to the CConfig object is passed to most routines in SU2 so that
the options are readily available.

2) COutput class manages the merging and writing of the outputs
for a simulation in a user-specified format (ParaView, Tecplot, CFD
General Notation System, comma-separated values, etc.). This
includes restart files in a native format, volume and surface solution
files, convergence history, a breakdown of forces, etc.

3) Clntegration class integrates any system of governing equations
to a solution by instantiating its child classes: CMultiGridIntegration

http://www.scipy.org
http://www.scipy.org
http://www.scipy.org
http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-000.jpg&w=349&h=263

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

832 ECONOMON ET AL.

and CSingleGridIntegration. The integration classes contain all of the
high-level loops for integration in space and time without
specialization to a particular PDE. For example, Clntegration
contains the spatial integration loop that defines the order of
execution for computing the convective, viscous, and source terms, as
well as a loop over all boundary conditions on a single grid level. As
an example for time integration, CMultiGridIntegration drives the
recursive multigrid algorithm and provides all of the necessary
restriction and prolongation routines across grid levels without regard
to the particular PDE being solved. It connects the CGeometry,
CSolver, and CNumerics subclasses; the latter two classes contain the
routines that define the terms within a particular set of equations and
corresponding numerical methods for solving them.

The core capabilities of the computational tool are embedded
within the CGeometry, CSolver, and CNumerics classes that manage
the geometry/grids, the main solver functionality (definition of the
various terms in a particular PDE), and the numerical methods,
respectively. In the next several subsections, these three classes will
be discussed.

1. CGeometry Class

This class reads and processes the input mesh file. Several input
formats are possible, including a custom native mesh format that
carries the “.su2” file extension. CGeometry has several child classes,
most notably the following:

1) CPhysicalGeometry Constructs the dual-mesh structure from
the original primal mesh provided to SU2. Note that the FVM
formulation in SU2 is vertex based and operates on the dual mesh
through an edge-based data structure. CPhysicalGeometry features
the routines necessary for reading grids in various formats:
partitioning grids, visualizing grids, checking cell quality, computing
wall distances, etc.

2) CMultiGridGeometry If multigrid is requested, this class
automatically creates consecutively coarser meshes from the original
input mesh using a control volume agglomeration procedure (one
instantiation per coarse grid level). These coarse grid levels contain
the same type of edge-based data structure as the fine grid, which
makes it possible to reuse the same edge loops that are defined only
once in the CSolver classes for computing terms in the PDE.

The CPrimalGrid and CDualGrid classes (as seen in Fig. 2) are
used for defining the geometrical characteristics of the primal and
dual grids. These objects are instantiated by CGeometry to store the
smallest geometric components from the meshes, i.e., the individual
points and edges making up the dual mesh or the individual triangles
and rectangles [two-dimensional (2-D)] or tetrahedra, hexahedra,
prisms, and pyramids [three-dimensional (3-D)] that compose the
primal mesh.

Although not shown here, additional geometric classes are
available to manage other operations related to the embedded
geometry and meshes. Routines for performing grid adaption,

including feature- and adjoint-based methods, are contained within
the CGridAdaptation class. All capabilities related to the movement
of grids as part of either shape design or calculations on dynamic
meshes can be found within the child classes of CGridMovement.
Here, all geometry parameterizations (design variable definitions) for
controlling boundary shapes can be found, along with a technique for
volume mesh deformation based on the linear elasticity equations.

2. CSolver Class

In this class, the solution procedure is defined. Each child class of
CSolver represents a solver for a particular set of governing
equations. These solver classes contain subroutines with instructions
for computing each spatial term of the PDE, e.g., loops over the mesh
edges to compute convective and viscous fluxes, loops over the mesh
nodes to compute source terms, and routines for imposing various
boundary condition types for the specific PDE. The CSolver class
also contains the details of how to form the particular solution update
in time when an explicit or implicit method is executed for the solver
by the Clntegration class.

One or more of these child classes will be instantiated, depending
on the desired physics, and several examples are the CEulerSolver
class for the Euler equations (compressible or incompressible), the
CTurbSolver class for a turbulence model, and the CAdjEulerSolver
for the Euler adjoint equations. The solver containers also lead to one
of the defining features of SU2: the ability to easily construct
multiphysics problems by simultaneously instantiating multiple
solvers representing different physics. For example, the mean flow
equations are easily coupled to the S-A turbulence model by
instantiating both the CNSSolver class and the CTurbSASolver class.
These two solver containers will control the solution of the different
PDEs while being integrated simultaneously, and the information
they contain can be freely passed back and forth. Alternatively, both
the Navier—Stokes and S-A equations could be combined within a
new CSolver class to form a tightly coupled approach.

Another example of this flexibility arises when solving the adjoint
equations. For instance, when solving the adjoint Euler equations,
both the CAdjEulerSolver and the CEulerSolver classes are
instantiated, as the adjoint equations require a copy of the flow
solution that will be read from a solution file and stored by the
CEulerSolver class. Furthermore, one could orchestrate a one-shot
approach by instantiating the CEulerSolver and CAdjEulerSolver
classes and integrating the two solvers simultaneously (or create a
new solver class altogether with these equation sets tightly coupled).

The solver classes instantiate a vector of CVariable objects for
storing unknowns and other variables pertinent to the PDE at each
mesh node. Several objects from the CNumerics class list will be
created in order to specify a spatial discretization of the governing
equations (to be discussed in the following). If necessary, container
classes for holding the matrices and vectors needed by linear solvers
will also be created. Detailed lists of all child classes found within

| Parent Class: CGeometry | l Parent Class: CPrimalGrid | | Parent Class: CDualGrid ‘
----- . l CBoundaryGeometry I » CHexahedron I i | CEdge ‘
..... » | CDomainGeometry | * CLine | ----- » | CPoint]
> | CMultiGridGeometry | """ > | CPyramid | """ > | CVertex ‘
=-» | CPeriodicGeometry | """ » | CRectangle |
L 'I CPhysicalGeometry | i+ | CTetrahedron I
...... . ‘ CTriangle I
i | CWedge \
* | CVertexMPI |

Fig. 2 Classes related to geometry processing.

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-001.jpg&w=400&h=172

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 833

‘ Parent Class: CSolver |

...... >

CEulerSolver ‘ > | CNSSolver |

------ > I CTurbSolver |-.-_-_-_---> CTurbS ASolver |

Y
------ > | CTNE2EulerSolver [CTurbSSTSolver |

----- > | CWaveSolver

Yo

""" d | CHeatSolver

|
|
CFEASolver |
|
|

""" > | CLevelSetSolver

Lt "‘l CAdjEulerSolver | ¢| CAdjNSSolver

- > | CAdjTurbSolver

-l

| CAdjTNE2EulerSolver

CAdjLevelSetSolver l
CLinEulerSolver |

| A

i

CPoissonSolver l

| Parent Class: CVariable |

i »I CEulerVariable [------- » | CNSVariable ‘

[

CTurbSAVariable [

CTurbVariable [‘.-;‘ o

i Y
...... > | CTNE2Variable [[CTurbSSTVariable ‘

: rl CWaveVariable |

CFEAVariable

%

|
CHeatVariable I
|

...... >

CLevelSetVariable

""" > | CAdjEulerVariable [;l CAdjNSVariable

...... >

CAdjTurbVariable

== | CAdjTNE2Variable

v

|
|
CAdjLevelSetVariable l
|

. | CLinEulerVariable

| "

CPoissonVariable [

Fig. 3 List of child classes for the CSolver and the CVariable classes.

CSolver and CVariable are given in Fig. 3. These key classes can be
briefly described as follows:

1) CVariable is used to store variables at every vertex in the grid,
such as the conservative variables (unknowns of the PDE).
Depending on the system of equations being solved, CVariable
instantiates a certain child class and stores a set of variables particular
to that problem at each grid node. For example, the CNSVariable
child class stores the variables for the Navier—Stokes equations,
which will include viscosity, whereas the CEulerVariable child class
does not need to store viscosity. A list of the currently available child
classes is given in Fig. 3.

2) CSysMatrix stores values for the Jacobians of fluxes and source
terms in a sparse matrix structure for implicit calculations in a block
compressed row format. It includes several preconditioning
techniques, such as the lower—upper symmetric Gauss—Seidel,
Jacobi, or line implicit preconditioning. These preconditioners can
also be applied as classical iterative smoothing techniques on
their own.

3) CSysVector holds and manipulates vectors needed by the linear
solvers, i.e., the solution and right-hand side (residual) vectors. This
class is also used to hold the residual vector for explicit calculations.

4) CSysSolve solves the linear system using the CSysMatrix
(Jacobian) and CSysVector (right-hand side and solution) objects as
input. This includes Krylov-based methods such as the generalized
minimal residual method (GMRES) and biconjugate gradient
stabilized.

3. CNumerics Class

This class contains many child classes that provide a wide range of
discretization techniques for convective fluxes, viscous fluxes, and
any source terms that might be present in a given PDE. For example,
if one is interested in solving the Navier—Stokes equations expressed
in a noninertial frame, CNumerics would call one child class
corresponding to the convective scheme (centered or upwind), one
corresponding to the viscous terms, and a third for the discretization
of the momentum source term that arises from the transformation of
the equations to a rotating reference frame.

Within the CNumerics classes, the general idea is to distill residual
calculations down to the operations needed to compute a flux across a
single edge between two nodes. This flux kernel will then be called
repeatedly for all edges in a mesh after loading the pertinent data for a
given edge and its endpoints (area normals, state variables, gradients,

etc.). These methods are also responsible for computing the flux
Jacobian when integrating the equations implicitly.

A defining attribute of the CNumerics class is its polymorphism:
each child class contains a routine named ComputeResidual that
contains its particular implementation. In this manner, many different
discretization schemes can be interchanged without modifying the
higher-level edge loop, which will be shown in a code example later
in this paper. Moreover, this abstraction makes it very easy for a
researcher to develop and prototype new discretization schemes by
focusing on the operations at the level of a single edge (similar to a
one-dimensional problem).

In practice, the workflow for a single iteration of an implicit
calculation proceeds as follows. Methods in the CNumerics classes
compute the flux contributions and Jacobians at each node using the
variables stored in the CVariable class. These flux and Jacobian
values are transferred back to the CSolver class, and the CSolver class
executed routines within CSysSolve (operating on CSysMatrix and
CSysVector) in order to solve the resulting linear system of equations
for the solution update. Figure 4 shows a list of the capabilities in the
CNumerics class that are currently available for the mean flow solver.

C. Demonstration of the Class Architecture

The flexible class structure is a unique and differentiating feature
that makes SU2 easily extensible to treat entirely new PDE systems or
coupled analyses of multiple physics. To take advantage of this, a
developer can build a new CSolver class by defining a state vector (of
any size) for their PDE, along with the loops that control the
computation of each term in the PDE and its appropriate boundary
conditions. A corresponding CVariable class that contains the state
vector at each mesh node, along with auxiliary data, should also be
created. CNumerics classes for the particular convective, viscous,
and source schemes can be added or existing implementations can be
repurposed from other solvers. Once these components are defined,
the functionality of the remaining classes (CGeometry, Clntegration,
COutput, CConfig, CSysSolve, CSysMatrix, CSysVector, etc.) can
be leveraged with little modification to complete the solver
framework.

To give a more concrete example of the class design in action, we
present an example of a typical edge loop from the CEulerSolver
class, as seen in Fig. 5. The loop depicts the process of computing
convective fluxes using a second-order upwind approach with

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-002.jpg&w=399&h=249

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

834 ECONOMON ET AL.

| Parent Class: CNumerics |

i~ | Roe Scheme

| Average Gradient

| o

Piecewise Constant Source |

;. | IST Scheme ’l Galerkin

TNE2 Source |

| Average Gradient Corrected l

»1 Gravity Source I

HLLC Scheme

fs

Lo [Template Viscous Terms]

Wind Gust Source |

fresde

Steger-Warming Scheme

|
|
t-.> [AUSM Scheme |
|
|
|

’ | Roe-Turkel for low Mach

| Lax-Friedrich Scheme l

T

Upwinding for Turb Scalar |

RS

Template Convective Terms |

o

Jouus

Turbulence Source |

-""“| Transition Source |

. : S
| J'\NIR}"I'I'II'I'IC'TIL' Source |

il :
] Rotating Frame Source |

e] Free Surface Source |

i ..»| Template Source Terms |

Fig. 4 List of child class capabilities found under the CNumerics parent class.

limiting (MUSCL). Several simplifications of the code have been
made to give a more streamlined example.

Before entering this routine within the CEulerSolver class, objects
have been instantiated for CGeometry (geometry), CVariable (node is
an array of CVariables), CNumerics (numerics), CSysVector
(LinSysRes), and CSysMatrix (Jacobian). It is important to note that
this edge loop could be executed in either 2-D or 3-D; on any grid
level during a multigrid calculation; and for any available gradient
calculation method, limiter, and upwind flux scheme. These
selections are made as part of a preprocessing given the options
specified in the configuration file.

The loop begins by identifying the two grid points associated with
the current edge from CGeometry and proceeds to access the values at
those nodes from the CVariable class necessary for computing the
flux and to store these data within the CNumerics class. Along the
way, a higher-order reconstruction with gradient limiting is per-
formed on the flow variables. Once all of the data are stored within the
CNumerics class, the ComputeResidual method is called, which will
execute the particular upwind flux [e.g., Roe, Harten—Lax—van Leer—
contact (HLLC), advection upstream splitting method (AUSM), etc.].
Finally, the resulting values of the convective residual and Jacobian
(for implicit calculations) will be stored within the CSysVector and
CSysMatrix classes, respectively, which will be used later to
complete the solution update for the current time step.

‘We believe that the class design results in a very approachable and
easy to modify codebase. This is of critical importance in an open-
source environment: new developers depend upon clear and readable
code to lower the barrier to entry and to ease the implementation of
additional features. As previously mentioned, the abstractions also
allow researchers to focus on isolated pieces of the code that fit within
their areas of expertise without needing to be familiar with the entire
codebase.

However, we note that this class design, and object-oriented codes
in general, can be susceptible to performance losses due to excessive
levels of indirection or the encapsulation of data within multiple
classes, which can lead to poor data locality (increased cache-miss
rate during loop traversal). The CVariable class represents an
example of this compromise between object-oriented design and
performance. More specifically, the original design of the CVariable
class results in an “array of structures,” where the quantities needed
for a single computation between two grid points may be stored far
away from each other in memory within separate CVariable objects.
One solution is to move to a “structure of arrays” approach where the
data within CVariable are transformed into a set of arrays that contain

each variable laid out in a contiguous fashion for all grid points
(similar to an allocation in the C language). This reduces the memory
access footprint and significantly improves the cache use efficiency.
The tradeoffs between performance and usability are always being
considered, and we are actively researching techniques for improving
the performance and scalability of the suite [10], especially on
emerging high-performance hardware architectures.

D. Open-Source Software Engineering

As an open-source package, SU2 is uniquely positioned to serve not
only as an example to computational scientists around the world but
also as a common baseline for future development by the community.
Instead of starting from scratch, any researcher can leverage the
platform as a testbed for work in their area of expertise. The current
model enables the leading experts across many technical areas,
anywhere in the world, to work together in creating new capabilities. A
number of examples of this type of collaboration already exist in areas
such as computational performance optimizations [10], nonideal
compressible flow effects [11], or discrete adjoints via algorithmic
differentiation [12]; and the list continues to grow. Furthermore, its
open-source nature allows for rapid and effective technology transfer
from these efforts back to the community at large.

Given these advantages, an open-source model can directly
increase the pace of innovation in the computational sciences.
However, an open model can also be susceptible to disarray or
fractured code developments (i.e., “spaghetti” code) without proper
coordination. In this section, we will briefly describe the salient
aspects of our software engineering strategy that have enabled
organized and sustainable development activities in an open-source
environment. Although many of these processes are standard
practices for code development, they are reported here for the benefit
of others in the community that may be considering placing their
tools in the open source.

Here, a number of our guiding principles for developing and
maintaining the SU2 suite in accord with the aforementioned goals
are offered:

1) The first principle is open access. This is perhaps the most
obvious, but also most important, aspect. Free access to the source
code is provided to anyone in the world, at any time, through a Web-
based platform.

2) The second principle is version control and collaboration.
Development of the code proceeds under a version control system
(such as the Git or Subversion version control systems), so all

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-003.jpg&w=400&h=236

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 835

Listing 1 Example of a typical edge loop in SU2 for computing an upwind flux.

for (iEdge = 0; iEdge < geometry->GetnEdge(); iEdge++) {

/*--- Get points and normal associated with this edge. ---*/
iPoint = geometry->edge[iEdge]->GetNode(0);
jPoint = geometry->edge[iEdge] ->GetNode(1);

numerics->SetNormal (geometry->edge [iEdge] ->GetNormal()) ;

/*--- Get primitive variables at points i & j. ---%/
V_i = node[iPoint]->GetPrimitive();

V_j = node[jPoint]->GetPrimitive();

/*--- Compute position vectors from points to mid-point of edge. ---%/

for (iDim = 0; iDim < nDim; iDim++) {

Vector_i[iDim] = 0.5%(geometry->node[jPoint]->GetCoord(iDim) - geometry->node[iPoint]->GetCoord(iDim));

Vector_j[iDim] = 0.5%(geometry->node[iPoint]->GetCoord(iDim) - geometry->node[jPoint]->GetCoord(iDim));

/*--- Get pre-computed gradients at points i & j. ---%/
Gradient_i = node[iPoint]->GetGradient_Primitive();

Gradient_j = node[jPoint]->GetGradient_Primitive();

/*--- Get pre-computed limiter values at points i & j. ---%/
Limiter_i = node[iPoint]->GetLimiter Primitive();

Limiter_j = node[jPoint]->GetLimiter Primitive();

for (iVar = 0; iVar < nPrimVarGrad; iVar++) {

/*--- Project gradient along the edge direction. ---*/

Project_Grad_i = 0.0; Project_Grad_j = 0.0;

for (iDim = 0; iDim < nDim; iDim++) {
Project_Grad_i += Vector_i[iDim]*Gradient_i[iVar] [iDim]
Project_Grad_j += Vector_j[iDim]+*Gradient_j[iVar] [iDim]

¥

/* High-order reconstruction using a MUSCL strategy. */

Primitive_i[iVar] = V_i[iVar] + Limiter_i[iVar]*Project_Grad_ i;

Primitive_j[iVar] = V_j[iVar] + Limiter_j[iVar]*Project_Grad_j;

/*--- Store the reconstructed primitive variables. ---*/

numerics->SetPrimitive(Primitive_i, Primitive_j);

/*--- Compute the residual with chosen convective scheme. ---*/

numerics->ComputeResidual (Res_Conv, Jacobian_i, Jacobian_j, config);

/%--- Update residual value. ---*/
LinSysRes. AddBlock(iPoint, Res_Conv);

LinSysRes.SubtractBlock(jPoint, Res_Conv);

/% Store Jacobians at i & j, if implicit. */
if (implicit) {
Jacobian.AddBlock(iPoint, iPoint, Jacobian_i);
Jacobian.AddBlock(iPoint, jPoint, Jacobian_j);
Jacobian.SubtractBlock(jPoint, iPoint, Jacobian_ i);

Jacobian.SubtractBlock(jPoint, jPoint, Jacobian_j);

Fig.5 Example of a typical edge loop in SU2 for computing an upwind flux.

changes to the codebase and their author are tracked. The branching
system provided by git enables parallel development lines so that
conflicts are avoided and new features can be easily folded into the
main repository (under supervision) when complete. Hosting the
code on an open Web-based platform allows anyone in the world to
submit code that can be considered for inclusion in the main
repository. A publicly visible list of issues, bugs, and feature requests
is maintained alongside the repository.

3) The third principle is continuous integration. Open-source tools
often carry a stigma of unreliability due to their open and quickly
evolving nature. This sentiment can be overcome by exercising
control over the process of incorporating new code changes and by
continuously subjecting the code to a rigorous series of regression
tests whenever changes in the repository are detected. These activities
are closely related to formal verification and validation activities,
which are critical in establishing the accuracy of the code and

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

836 ECONOMON ET AL.

building confidence in the code output. The regression test system is
publicly visible, and the test cases (configuration files and meshes)
are provided openly so that results can be reproduced at any time.
Many of the provided tests are industry-standard V&V cases.

4) The fourth principle is portability. A difficult build process can
quickly discourage adoption of the code by new users and developers.
We highly value portability and easy installation on many platforms.
By relying on standard C++ alone, we ensure that a basic version of
the code can always be compiled with only a C++ compiler and
widely available build tools (autoconf/automake). Philosophically,
we favor in-house solutions over third-party libraries or additional
dependencies when possible. However, we recognize that some users
or developers need specialized capabilities provided by external
libraries, and we can optionally include these packages in the build
process.

5) The fifth principle is documentation. Full documentation,
including a comprehensive set of tutorials, is provided on the Web.
The tutorials gradually build upon each other to expose the full set of
options and features in the code to the practitioner. The documen-
tation itself is also open (in a public wiki format) so that developers
can add new information or tutorials as the code evolves.

6) The sixth principle is community involvement. Interaction with
the community is absolutely essential for the growth and sustain-
ability of the project. The open-source community provides valuable
feedback on the code that directly results in improvements (e.g., the
build process, performance considerations, bugs, etc.) and helps
identify future development directions. We employ an email list for
announcements to users, an email list for discussion among devel-
opers, and a dedicated online forum where users and developers can
post and answer questions on the code.

At the time of writing, many of the aforementioned considerations
are managed through the GitHub ecosystem where the code is
currently hosted.= However, these ideas are independent of a partic-
ular software solution: many version control, code hosting, or
regression test systems are available for accomplishing these tasks.

III. Physical Modeling

The flexible class structure of SU2 has been designed to solve
PDEs that are defined on a domain Q C R3. The PDE system
resulting from physical modeling of a particular problem can be cast
in the following structure:

oUu
§+V~F"—V-(ﬂ”"F“k)=Q inQ, t>0 (1)

with appropriate boundary and temporal conditions that will be
problem dependent. In this general framework, U represents the
vector of state variables, F¢(U) are the convective fluxes, F**(U) are
the viscous fluxes, and Q(U) is a generic source term.

In this section, we will focus on the RANS and adjoint RANS
equations as implemented in SU2, and they will be described using
Eq. (1) as a baseline PDE. However, it is important to note that other
PDEs can be readily solved in the current version of SU2, including
the heat and wave equations; Poisson equation, the equations of linear
elasticity, and a two-temperature model for high-speed non-
equilibrium flows, to name a few. More detail on other physical
models available in SU2 can be found in previous work by Palacios
etal. [1].

A. Reynolds-Averaged Navier-Stokes Equations

We are concerned with the general scenario of time-accurate
viscous flow around aerodynamic bodies that is governed by the
compressible, unsteady Navier—Stokes equations. Consider the
equations in a domain Q C R? with a disconnected boundary that is
divided into a far-field componentI',, and an adiabatic wall boundary
S, as seen in Fig. 6. For instance, the surface S could represent the
outer mold line of an aerodynamic body. These conservation

**Data available online at https://github.com/su2code/SU2 [retrieved
2015].

Fig. 6 Notional schematic of the flow domain Q and the boundaries I,
and S, as well as the definition of the surface normals.

equations along with a generic source term @ can be expressed in
differential form as

RU)=%+V -F -V -@*F-0=0 inQ, >0

v=20 onsS,
0,T=0 ons,
W), =W, only,

@

where the conservative variables are given by U = {p, pv, pE}"; and
the convective fluxes, viscous fluxes, and source term are

pv
F¢ = pv®v+1:p , =1 7
pEv + pv Tov
qp
F? = S Q=1 4n 3
CPVT 4E

where p is the fluid density, v = {v;, v, v3}7 € R is the flow speed
in a Cartesian system of reference, E is the total energy per unit mass,
p is the static pressure, ¢, is the specific heat at constant pressure, T is
the temperature, and the viscous stress tensor can be written in vector
notation as

2=
=Vv+VvT—§I(V-v) 4)

|11

The second line of Eq. (2) represents the no-slip condition at a solid
wall, the third line represents an adiabatic condition at the wall, and
the final line represents a characteristic-based boundary condition at
the far field [13], with W being the characteristic variables.

Including the boundary conditions given in Eq. (2), the
compressible RANS solver in SU2 currently supports the following
boundary condition types: Euler (flow tangency) and symmetry wall,
no-slip wall (adiabatic and isothermal), far-field and near-field
boundaries, characteristic-based inlet boundaries (stagnation, mass
flow, or supersonic conditions prescribed), characteristic-based
outlet boundaries (back pressure prescribed), periodic boundaries,
nacelle inflow boundaries (fan face Mach number prescribed), and
nacelle exhaust boundaries (total nozzle temp and total nozzle
pressure prescribed).

The boundary conditions listed make SU?2 suitable for computing
both external and internal flows. SU2 is also capable of solving
unsteady flows on both rigidly transforming and dynamically
deforming meshes. For unsteady problems, the temporal conditions
will be problem dependent. For steady problems, we will use the
freestream fluid state as the initial condition for the mean flow, and
this is a typical practice in external aerodynamics.

Assuming a perfect gas with a ratio of specific heats y and gas
constant R, the pressure is determined from p = (y—1)p
[E—0.5(v - v)], the temperature is given by T = p/(pR), and

https://github.com/su2code/SU2
https://github.com/su2code/SU2

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 837

¢, = yR/(y — 1). Inaccord with the standard approach to turbulence
modeling based upon the Boussinesq hypothesis [14], which states
that the effect of turbulence can be represented as an increased
viscosity, the total viscosity is divided into a laminar pg,, and a
turbulent p,, component. To close the system of equations, the
dynamic viscosity pi4y, is assumed to satisfy Sutherland’s law [15] (a
function of temperature alone), the turbulent viscosity g, is
computed via a turbulence model, and

/"Ul = ﬂdyn + Hurs ."‘v2 = l;)di:_IZ + %:Z (5)
where Pr, and Pr, are the dynamic and turbulent Prandtl numbers,
respectively.

The turbulent viscosity is obtained from a suitable turbulence
model involving the flow state and a set of new variables. The Menter
shear-stress transport model and the Spalart—Allmaras model are two
of the most common and widely used turbulence models for the
analysis and design of engineering applications in turbulent flows.
Brief descriptions of the two models are given in the following.

1. Spalart-Allmaras Model

In the case of the one-equation Spalart—Allmaras [16] turbulence
model, the turbulent viscosity is computed as

3 ~
X v Hdyn
. U=
14

St p
(0)

Hur = paful’ fu

The new variable is obtained by solving a transport equation that
includes the following convective, viscous, and source terms:

Fe=v, ==Yy
(o3
AL 7\2 ¢ .
0 = cuSi—cnfu(y) +2IvoP)
Ky (o2

where the production term § is defined as
A)
S =lw|+ KTd%f v2

o =V X vis the fluid vorticity, d is the distance to the nearest wall,
and

X
fo=1-122—
N U+ 1/
The function f,, is computed as
1+ C6, 1/6
fo= g[—6 5]
8 + Cuw3
where g = r + ¢,(7% — r) and
U
=25
Sk*d

Finally, the set of closure constants for the model is given by

6=2/3, ¢y =01355, o, =0622, k=041,
l -
Cyl :c—bzl +Cb2, Cw220.3, Cw3:2, Cyl =7.1
K o

®

The physical meaning of the far-field boundary condition for the
turbulent viscosity is the imposition of some fraction of the laminar

viscosity at the far field. On viscous walls, U is set to zero,
corresponding to the absence of turbulent eddies very near to the wall.
The formulation presented here is the original S-A model without
corrections, but the S-A negative variant of the model [17] has been
recently made available in the code.

2. Menter Shear-Stress Transport Model

The Menter SST turbulence model [18] is a two-equation model
for the turbulent kinetic energy k and specific dissipation w that
consists of the blending of the traditional k- and k-e models. The
definition of the eddy viscosity, which includes the shear-stress
limiter, can be expressed as

pak

Hur = ©

max(a,w, SF,)

where § = /25;;S;;, and F), is the second blending function. The
convective, viscous, and source terms for the turbulent kinetic energy
are

F¢ = pkv,

F' = _(/’[dyn + ﬁkﬂtur)Vk’ Q =P _ﬂ*/}mk

(10)

where P is the production of turbulent kinetic energy. The convective,
viscous, and source terms for the specific dissipation are given by

Fe = pov, F' = _(/"dyn + Gm/’ltur)vw’
0="P-ppo+2%(1=F) 22 Vive (11)
v, 1)

where F; is the first blending function. The values for the constants
and the forms for the blending functions and auxiliary relations are
detailed in the paper by Menter [18].

B. Continuous Adjoint Navier-Stokes Equations

A typical aerodynamic shape optimization problem seeks the
minimization of a cost function J(S) (lift, drag, moment, etc.), as
chosen by the designer, with respect to changes in the shape of the
boundary S. For the present description, we will focus on integrated
forces and moments on the solid surface that depend on a scalar j
evaluated at each point on S. Other objectives are possible, such as
functions based on surface temperature or surface heat flux, for
instance.

We note that any changes to the shape of § will result in
perturbations in the fluid state U in the domain and that these
variations in the state are constrained to satisfy the RANS equations,
ie., R(U) =0 must be satisfied for any candidate shape of S.
Therefore, the optimal shape design problem can be formulated as a
PDE-constrained optimization problem:

minJ(8) = /S j(f. n)ds

subject to
R(U) =0 (12)

where f = (f}, f», f3) is the force on the surface (from fluid pressure
and viscous stresses), and n is the outward-pointing unit vector
normal to the surface S. We assume the surface is continuously
differentiable (C') and will parameterize the shape by an
infinitesimal deformation of size §S along the normal direction n
to the surface S. The new surface obtained after the deformation is
then given by S’ = {x + 6Sn,x € S}.

Using the continuous adjoint approach, the computation of the
objective function gradient with respect to perturbations of the
geometry will require the solution of the adjoint RANS equations
given by

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

838 ECONOMON ET AL.

— YW (A — kAT — V- (VT - u*D"™) ~W'% =0 inQ >0

9=d
an(l///lE) =0

where W are the adjoint variables, and we have introduced the
following Jacobian matrices from the linearization of the governing
equations (full form found within previous work by Bueno-Orovio
et al. [19]):

e e)
AC = (A, AS, AS), As =24
U(x,y.2)
k _ (avk Avk gok K _ OF*
AV = (AY, AV, A, Al =S
U(x,y,2)
Dy D D
Sk _ k k k K _ OFF
=|Dx Dy Dy |- Di=:Gn
k k vk Utxy2)
Dgx Dgy Dzz
ij=1..3, k=1, (14)

After satisfying the adjoint system, the final expression for the
functional variation will become a surface integral that contains terms
involving only the flow and adjoint variables multiplied by 4S:

oJ(S) = /(n 5 0,0 — pu"2c,Vsys - VsT)5S ds (15)
s
where Vg represents the tangential gradient operator on S, and

=4 2=
P :y“(Vq) + Vel —§1V . (p)

which depends on the gradient of the adjoint variables. This
computable formula is what we call the surface sensitivity, and it is
the key result of the continuous adjoint derivation. The surface
sensitivity provides a measure of the variation of the objective
function with respect to infinitesimal variations of the surface shape
in the direction of the local surface normal. This value is computed at
every surface node of the numerical grid with negligible compu-
tational cost. In this manner, the functional variation for an arbitrary
number of shape perturbations will be computable at the fixed cost of
solving the flow and adjoint PDE systems.

The ability to recover an analytic expression as a surface integral
for the variation of the functional is commonly referred to as a surface
formulation for computing gradients (with no dependence on volume
mesh sensitivities). After early work in the area of continuous
adjoints on unstructured meshes [20,21], this type of surface
formulation based on shape calculus was first demonstrated by
Castro et al. [22] for inviscid and laminar flows, and it was later
extended to turbulent flows using the S-A turbulence model [19].

Extensions and advances of this formulation form much of the
recent research activity within the SU2 suite. In particular, the
formulation has been extended to sonic boom minimization for
supersonic aircraft [23], aerodynamic design for unsteady problems
on dynamic meshes [24-26], mesh adaptation and design in
nonequilibrium hypersonic flows [5], and design for free-surface
flows [27,28]. Since debuting in the initial public release of SU2, the
continuous adjoint solver has been extensively used and rigorously
verified [29,30] for both inviscid and viscous problems across many
flow regimes. Finally, we note that, although the continuous formu-
lation has been the primary focus of adjoint research up to this point, a
discrete formulation via algorithmic differentiation has been
implemented, and its incorporation into SU2 is ongoing [12].

onS, (13)
onsS,

IV. Numerical Implementation in the SU2 Suite

The following sections contain an overview of the numerical
implementation strategies for solving PDEs in SU2. Both the flow
and adjoint problems are solved numerically on unstructured meshes
with an edge-based data structure. Following the method of lines, the
governing equations are discretized in space and time separately. This
decoupling of space and time allows for the selection of different
types of schemes for the spatial and temporal integration. In general,
spatial integration is performed using the finite volume method,
whereas integration in time is achieved through several available
explicit and implicit methods. For time-accurate calculations, a dual-
time-stepping approach is used.

A. Spatial Integration via the Finite Volume Method

PDEs in SU2 are discretized using a finite volume method [13,31—
38] with a standard edge-based structure on a dual grid with control
volumes constructed using a median-dual vertex-based scheme.
Median-dual control volumes are formed by connecting the
centroids, face, and edge midpoints of all cells sharing the particular
node. After integrating the governing equations over a control
volume and applying the divergence theorem, the semidiscretized,
integral form of a typical PDE (such as the RANS equations given
previously) is given by

U .

/—dQ+ § (F§; + FIHAS; — 019

o, Ot et : '
i JEN (i)

ou
:/ 2% 4Q + Ri(U) = 0 (16)
Q ot

where U is the vector of state variables, and R;(U) is the numerical
residual representing the integration of all spatial terms at node i. Fj;
and F }’;‘ are the numerical approximations of the convective and
viscous fluxes projected into the local normal direction, respectively;
and Q is a source term. AS;; is the area of the face associated with the
edge ij, |Q;| is the volume of the dual control volume, and V(i) is the
set of neighboring nodes to node i.

The convective and viscous fluxes are evaluated at the midpoint of
an edge. The numerical solver loops through all of the edges in the
primal mesh in order to calculate these fluxes and then integrates
them to evaluate the residual R;(U) at every node in the numerical
grid. The convective fluxes can be discretized using centered or
upwind schemes in SU2. A number of numerical schemes have been
implemented [Jameson—-Schmidt-Turkel (JST) [39], Roe [40],
AUSM [41], HLLC [38], and Roe—Turkel [42], to name a few), and
the code architecture allows for the rapid implementation of new
schemes. Limiters are available for use with higher-order recon-
structions for the upwind convective schemes. To evaluate the
viscous fluxes using a finite volume method, flow quantities and their
first derivatives are required at the faces of the control volumes. The
gradients of the flow variables are calculated using either a Green—
Gauss or weighted least-squares method at all grid nodes, and then
they are averaged to obtain the flow variable gradients at the cell
faces. Source terms are approximated at each node using piecewise-
constant reconstruction within each of the dual control volumes.

B. Time Integration

Equation (16) must be valid over the entire time interval, so one can
choose to evaluate R;(U) either at time ¢* (explicit methods) or #"*!
(implicit methods). Focusing on implicit integration (SU2 also has an
Euler explicit and a Runge—Kutta explicit method), we find that the

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 839

following linear system should be solved in order to find the solution
update (AU?) after linearizing the equations about the current state:

1] OR;(U")
0, +———| - AU} = —R;(U" 17
(At;’ t + an J l() ()

where AU = U™ — U? and, if a flux I<:,~j has a stencil of points
{i, j}, then contributions are made to the Jacobian at four points:

oF oF;;
OR _ OR . . (18)
ou JoU oF, OF,;
-5 v~

The SU2 framework includes the implementation of several linear
solvers for solving Eq. (17). Currently, the following two Krylov
subspace methods are available: the generalized minimal residual
method [43] and the biconjugate gradient stabilized method [44].

For unsteady flows, a dual-time-stepping strategy [45,46] has been
implemented to achieve high-order accuracy in time. In this method,
the unsteady problem is transformed into a series of steady problems
at each physical time step that can each be solved consecutively by
using all of the well-known convergence acceleration techniques for
steady problems. The current implementation of the dual-time-
stepping approach solves the following problem:

ou

—+ R (U)=0 (19)
or
with
3
R¥(U) = —U.
i(0) =50
+ ! R:(U) 2|Q|”U"+ ! " turt) (20)
QI A\ IN AR VN i

for second-order accuracy in time (backward difference formula),
where At is the physical time step, 7 is a fictitious time used to
converge the steady-state problem, R;(U) denotes the residual of the
governing equations, and U = U"*! once the steady problem is
satisfied. A first-order backward difference in time is also available.

C. Convergence Acceleration

Due to the nature of most iterative relaxation schemes, high-
frequency errors are usually well damped (local errors), but low-
frequency errors (global error spanning the larger solution domain)
are less damped by the action of iterative methods that have a stencil
with a local area of influence. To combat this, SU2 contains an
agglomeration multigrid implementation that generates effective
convergence at all length scales of a problem by employing a
sequence of grids of varying resolution (SU2 will automatically
generate the coarse grids from the provided fine grid at runtime). In
short, the goal is to accelerate the convergence of the numerical
solution of a set of equations by computing corrections to the fine-
grid solutions on coarser grids and applying this idea recursively
[47-501

Preconditioning is the application of a transformation to the
original system that makes it more suitable for numerical solution
[51]. In particular, Jacobi, lower—upper symmetric Gauss—Seidel,
and line implicit preconditioners have been implemented to improve
the convergence rate of the available linear solvers [48,52]. A Roe-
Turkel [42] preconditioner for low-Mach-number flows is also
available.

V. Results

In this section, we compute both the direct and adjoint solutions for
two separate full-aircraft configuration cases and a wind turbine
geometry. These simulations demonstrate the capability of SU2 to
solve industry-sized problems, using the container code structures to
store the flow, turbulence, and adjoint solutions simultaneously,
enabling high-fidelity analysis and design using a common code
infrastructure. We also show results for the RAM-C II hypersonic
flight-test vehicle to illustrate the flexibility of SU2 for rapidly
implementing additional physical models.

A. DLR-F6 Transonic Aircraft

Transonic flow over the DLR-F6 aircraft (wing/body configura-
tion) is computed with SU2. For the baseline geometry and case
definition, we have chosen the DLR-F6 configuration without a
fairing that was used in the 3rd CFD Drag Prediction Workshop
(Mach number 0.75, and Reynolds number 5E6). To match the
experimental lift coefficient of 0.498, a zero angle of attack (AOA)
was required in the numerical settings. It is important to remark that
the wind-tunnel experiments were performed at a Reynolds number
of 3E6 and an angle of attack of 0.49 deg.

A detailed description of the geometry and experimental results
can be found in the documentation produced by the 3rd CFD Drag
Prediction Workshop. X The original reference for the baseline DLR-
F6 geometry was by Brodersen and Stiirmer [53].

The mesh used in this study is a mixed-element grid composed of
8,773,810 total elements and 3,059,189 nodes (generated with the
ANSYS ICEM CFD Mesh Generation Software). The mesh is
composed of tetrahedra, prisms, and pyramids around a surface that
has been discretized using triangles (see Fig. 7 for a view of the
geometry and surface mesh). The far-field boundary is located
approximately 20 body lengths away from the aircraft, with a suitable
spacing in the boundary layer to allow for y* ~ 1.

A JST centered spatial discretization is used to calculate convective
fluxes. Turbulent variables for the S-A and SST models are convected
using a first-order scalar upwind method, and the viscous fluxes are
calculated using the corrected average-gradient method. Implicit, local
time stepping is used to converge the problem to the steady-state
solution, and the linear system is solved using the iterative GMRES
method with a maximum error tolerance of O(107°).

In this particular study, four representative sections of the wing
(y/b = 0.150, 0.150, 0.331, 0.409, 0.844) are presented in Fig. 8,
including experimental data from the S2MA wind tunnel at ONERA.
To obtain these results, two different sets of conditions have
been used:

1) The wind-tunnel lift coefficient C; = 0.5 is matched at
Reynolds number 5E6. In this case, the results are compared with
those obtained by the code Tau (DLR, German Aerospace Center)
with very good agreement. It is also important to highlight the small
differences introduced by the turbulence models (which are more
important in the inboard section close to a well-known recirculation
region in the wing/fuselage intersection).

L

Fig. 7 DLR-F6 geometry and surface mesh.

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-004.jpg&w=239&h=159

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

840 ECONOMON ET AL.

Su2 (S-A, C, = 0.5, Re = 5E6)

SuU2 (SST, C, = 0.5, Re = 5E6)

Tau code (C_= 0.5, Re = 5E6)

SU2 (S-A, AOA = 0.49, Re = 3E6)

! Test ONERA S2MA (AOA = 0.49, Re = 3E6)
i L= s e s

1

0 0.2 0.4 0.6 0.8
x/c

a) C",J distribution at wing section y/b = 0.150

SU2 (S-A, C_ = 0.5, Re = 5E6)
SU2 (SST, C, = 0.5, Re = 5E6)
SU2 (S-A, AOA = 0.49, Re = 3E6)

Test ONERA S2MA (AOA = 0.49, Re = 3E6)

0.5

1 1 1 1

1

05H

0.5

SU2 (S-A, C = 0.5, Re = 5E6)

- SU2 (SST, C_ = 0.5, Re = 5E6)

Tau code (C_= 0.5, Re = 5E6)

SU2 (S-A, AOA = 0.49, Re = 3E6)

Test ONERA S2MA (AOA = 0.49, Re = 3E6) |
= e e —

0.4 0.6 0.8 1
x/c

b) Cp distribution at wing section y/b = 0.331

0 02 0.4 0.6 08
x/c

c) Cp distribution at wing section y/b = 0.409

0.8
0.6
0.4
o 02
0
0.2
0.4 H
SU2 (S-A, C, = 0.5, Re = 5E6)
osll | — SU2 (S5T,C_=0.5, Re = 5E6)
: SU2 (S-A, AOA = 0.49, Re = 3E6)
08k O Test ONERA S2MA (AOA = 0.49, Re = 3E6) |
T o | I I I 1
0 0.2 04 0.6 0.8 1

x/c
d) Cp distribution at wing section y/b = 0.844

2) The conditions from the wind-tunnel experiment are matched.
In this case, the angle of attack is set to 0.49 deg with a Reynolds
number of 3E6. With this particular setting, despite the fact that the
lift coefficient is overpredicted (C; = 0.53), we obtain very good
agreement with the experimental data, except near the most outboard
section of the wing where there is a mismatch in the shock wave
location (probably due to the low resolution of the numerical grid).

This complex, full-aircraft configuration is a perfect example for
demonstrating the adjoint RANS solver that is integrated in SU2 for
obtaining the sensitivities needed for shape design. After solving the
RANS equations, the direct flow solution and the same computa-
tional mesh can be immediately reused as inputs for solving the
adjoint RANS equations in the solver (while taking advantage of
similar numerical methods and the same code structure). Although
using both less computational time and memory resources than in the
direct problem with the present continuous adjoint formulation, it is
possible to evaluate the surface sensitivity after solving the RANS
adjoint equations for a particular objective function.

The pressure distributions on the upper and lower surfaces and
the surface sensitivity (for the drag, lift, and pitching-moment
coefficients) are shown in Fig. 9. This sensitivity information reveals
the impact of a particular geometrical change on the selected
objective function and can be used for gradient-based shape optimi-

f'Data available online at http://aaac.larc.nasa.gov/tsab/ctdlarc/aiaa-dpw/
Workshop3/ [retrieved 2015].

Fig.8 C, distributions at C;, = 0.5, Re = 51726 (workshop), and AOA = 049, Re = 3E6 (wind-tunnel experiment), RANS simulations.

zation or directly by the designer to manually improve the shape of
the aircraft.

B. Lockheed Martin Lockheed Martin 1021 Supersonic Aircraft

Our second demonstration is the computation of supersonic flow
(viscous and inviscid) over the Lockheed Martin 1021 supersonic
aircraft concept. Aircraft geometry and flight conditions [54] used in
this simulation were specified in the 1st AIAA Sonic Boom
Prediction Workshop. £

A mixed-element grid composed of 5,730,841 total elements and
2,034,476 nodes is used for the inviscid simulation (M, = 1.6,
AOA = 2.1), and the grid provided by the workshop organizers
(13,737,358 total elements and 2,395,158 nodes) is used for the
RANS simulation (M, = 1.6, AOA = 2.1, Re /ft = 2.55¢6). Both
meshes are constructed from tetrahedral, prismatic, and pyramidal
elements atop a triangular surface mesh (shown in Fig. 10). The
volumetric domain is a priori adapted along the freestream Mach
lines for accurate shock capturing to ensure a well-resolved sonic
boom signature at the far field, which is located three body lengths
from the aircraft.

The validation of the CFD solution is performed via comparison
with experimental results. In Fig. 11, the pressure at the near field is
presented (h = 0.4998, h = 0.8077, and zero azimuth angle). There

#Data available online at http://lbpw.larc.nasa.gov/sbpwl/ [retrieved
2014].

http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/
http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/
http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/
http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/
http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/
http://lbpw.larc.nasa.gov/sbpw1/
http://lbpw.larc.nasa.gov/sbpw1/
http://lbpw.larc.nasa.gov/sbpw1/
http://lbpw.larc.nasa.gov/sbpw1/
http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-005.jpg&w=442&h=416

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 841

Y

L

Upper Surface

C,

! -0.119817
-0.2479

I -0.375983

-0.632149
= -0.760233
-0.888316
g -1.0164

-1.14448
-1.27256

Lower Surface

a) Cp contours

Y

L

Upper Surface y

G, sensitivity

0.014743

0.0118086

0.00887419

0.00593979

0.00300539

7.09848E-05
-0.00286342
-0.00579782
-0.00873222
X -0.0116666

Lower Surface

¢) Cp surface sensitivity contours

Upper Surface

C, sensitivity

0.0423545
| 0.0306824
0.0190103
0.00733815
-0.00433397
-0.0160061
v -0.0276782
3 -0.0393504
4 -0.0510225
A 4 -0.0626946

Lower Surface

b) C; surface sensitivity contours

¥

L.

Upper Surface

Cw sensitivity

00174372

0.0110148

0.00459246
-0.00182992
A% -0.0082523
A% 2 -0.0148747

\ -0.0210971
-0.0275194
-0.0339418
-0.0403642

Lower Surface A \

d) CM_,- surface sensitivity contours

Fig. 9 Pressure and surface sensitivity contours on the DLR-F6 aircraft geometry (lower and upper surfaces).

is an excellent agreement for the first two-thirds of the pressure
signature, but some small discrepancies appear at the end of the
signature. The end of the signature corresponds with the aft section of
the aircraft and is affected by the sting of the wind-tunnel model,
which was coarsely meshed in this simulation. A refinement of the
numerical grid in that location will likely improve the results. As
shown in [55], an excellent agreement with experimental data can be
also obtained using inviscid simulations.

With respect to the numerical methods, a Roe upwind spatial
discretization has been used to calculate convective fluxes, the
turbulent variable for the S-A model is convected using a first-order
scalar upwind method, and the viscous fluxes are calculated using the
corrected average-gradient method. Implicit, local time stepping is
used to converge the problem to the steady-state solution, and the
linear system is solved using the iterative GMRES method with a
maximum error tolerance of O(107°).

The results for the inviscid simulation (using a JST centered spatial
discretization) are presented in Fig. 12. In particular, the surface C,
contours and the adjoint-computed sensitivities of Cp, Cr, and Cyy,

are plotted. These sensitivity maps show the influence of local normal
geometry perturbations on the respective performance coefficients.
With this geometric sensitivity information, engineers can choose an
appropriate design variable parameterization and use gradient-based
optimization methods for optimal shape design.

C. National Renewable Energy Laboratory Phase VI Wind Turbine

The NREL Phase VI wind turbine geometry consists of two blades
with a radius of 5.029 m and a constant S809 airfoil section along the
entire span. This geometry has been used widely for computational
fluid dynamics validation using the data from the NREL Phase VI
Unsteady Aerodynamics Experiment [56]. The chosen test case for
the present study is sequence S with a7 m/s windspeed and 72 rpm.
The mixed-element computational mesh consists of 3.2 million
nodes and 7.9 million elements, with triangles on the surface of the
blade and prismatic elements in the boundary layer [57]. A layer of
pyramids allows for the transition to tetrahedral elements outside of
the boundary layer out to the far field.

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-006.jpg&w=500&h=492

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

842 ECONOMON ET AL.

a) View of the surface mesh

b) Mach contours in the symmetry plane

ﬁg. 10 Lockheed Martin 1021 computational grid and solution.

0.03f
0.025
0.02 _—
0015 F
E -
o 001fF
% F
& 0.005F
& - |
0=
-0.005 |-
- SU2 (RANS)
0.01f| © Experimental runs 939-964: ref #938
- |— — — Experimental runs 939-964
= mean - 1
-0.015 Fl— — = (E:perime?'ljtal runs 939-964
= (mean + 1 a)
-0.02 I I L 1 I I L 1 I L I
0 0.2 0.4 0.6

Distance along sensor (m), h = 0.4998

a) Near-field pressure (h = 0.4998, @ = 0 deg)

154
o
L[S
BAEAS RARES RARE REEE:

s SU2 (RANS)

- =] Experimental runs 829-854:

= ref #876

- |— — — Experimental runs 829-854

= (mean - 10)

|- |— — — Experimental runs 829-854

s (mean +10) R IR
0 0.2 0.4 0.6

Distance along sensor (m), h = 0.8077m
b) Near-field pressure (h = 0.8077, @ = 0 deg)

Fig. 11 Lockheed Martin 1021 pressure signature at the near field (® = 0 deg): RANS simulation.

The noninertial RANS equations with the standard S-A turbulence
model were chosen for analyzing the turbine. For validation purposes,
Fig. 13 gives C,, distributions at two radial stations as computed by
SU2 and compared to experiment, and Fig. 14 presents the C), contours
on the blade surface. Excellent agreement is seen overall, apart from
near the trailing edge of the blade where some discrepancies are found
(large spikes in C,, are also seen at the sharp trailing edge due to the
geometry/mesh). The surface sensitivity was also computed for a
torque objective function and can be seen in Fig. 14. It should be noted
that the most sensitive locations on the blade surface are outboard
locations along the span highlighted by the surface sensitivity
contours. More details on the noninertial formulation and shape design
examples (including the use of this geometry as a baseline) can be
found in previous work by Economon et al. [24,26].

D. Hypersonic Flight-Test Vehicle

As a demonstration of the flexibility in the SU2 framework,
hypersonic flow in thermochemical nonequilibrium is simulated for

the RAM-C 1II flight-test article [58]. Additional convection
equations and source terms are added to accommodate the new
physical modeling via a definition of the appropriate CSolver,
CVariable, and CNumerics child classes, whereas the code infra-
structure (including the linear solvers, pre- and postprocessors, and
MPI architecture) are all shared with the core software infrastructure.
This framework allows for rapid feature expansion to include a
variety of complex physical models with minimal development time,
and these new features are linked to the existing mesh-adaptation,
deformation, and gradient-projection modules, quickly providing a
variety of powerful analysis and design techniques to bring to bear on
multiphysics systems.

The RAM-C I flight-test article is a 9 deg sphere-cone geometry
with a nose radius of 1524 m and a total length of 1.295 m.
To simulate the hypersonic flight environment, a body-conformal
129 X 96 x 5 hexahedral mesh is extruded over a 10 deg sector of the
axisymmetric body. A rigid-rotator-harmonic-oscillator two-temper-
ature thermodynamic model is used, and the finite rate chemical

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-007.jpg&w=499&h=238
http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-008.jpg&w=499&h=228

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 843

L.

Upper Surface

Lower Surface

a) C,, contours

Upper Surface

Lower Surface

£001BS

¢) Cp surface sensitivity contours

Upper Surface

C, sensitivity
O 0GR
© DETBEOM

Lower Surface 001068

© M

&0 ITA0E

0 DdB106E
L0RATME |

b) €} surface sensitivity contours

Upper Surface

Lower Surface |
|

| B @ mormnee

| | o o1ame
| W owpanes

d) CMy surface sensitivity contours

?ig. 12 Pressure and surface sensitivity contours on the Lockheed Martin 1021 aircraft geometry (lower and upper surfaces): inviscid simulations.

i v NREL
— sm

3

Q
a)r/R =0.63 b) r/R = 0.95
Fig. 13 C, distributions at multiple radial blade stations compared with experimental data.
Upper Surface Upper Surface
P——
B
_=—— L —
Lower Surface Lower Surface
[™
Pressure Coefficient: -1 <0078 -0.56 -0.34 -0.12 0.1 Shape Sensataty (Torgue): 0008 0006 0.004 0002 0 0002
a) Surface contours of pressure coefficient b) Surface sensitivity contours for a torque objective function

Fig. 14 C, and surface sensitivity contours on the NREL Phase VI wind turbine blade.

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-009.jpg&w=499&h=267
http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-010.jpg&w=499&h=146

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

844 ECONOMON ET AL.

1 1 1 1 1 1 '} L 1 1 1 1 1 L L 'l
0 051 15 2 25 3 35 4 45 5 55 6 65 7 75 B
x/R

a) Mach number

4.5
4F ¥z
B ose
a5t o
R
I | o3s
2.5F o6
= b
> 2 o8

1 1 1 1 1 1 L 1 1 1 1 1 1 L

15 2 25 3 35 4 45 5 55 6 65 7 75 8
x/R

b) N, mass fraction

Fig. 15 Slices of the RAM-C II volumetric solution.

14000 T T T T T T T

12000

10000

8000

6000

Temperature (K)

4000

2000

0 n ri L L L L
-0.16 -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00
x/R

Fig. 16 Stagnation line temperature profiles.

model is used for a nonionizing N, — N gas mixture. A full
description of the physical modeling can be found in [5].

Slices of the volume solution for a M, = 16, P, = 4000 Pa,
T = T¥ = 254 K freestream are shown in Fig. 15, and stagnation
line temperature profiles can be found in Fig. 16. The strong,
detached bow shock leads to N, dissociation and thermodynamic
nonequilibrium in the shock layer. Vibrational relaxation and
nitrogen recombination occur as the gas expands around the vehicle
shoulder and near the cold-wall (1500 K) boundary condition.

VI. Conclusions

This paper has presented a detailed overview of the objectives,
software framework, modeling capabilities, and numerical
implementation of the SU2 analysis and optimization suite. The
suite can be used to analyze the behavior of problems governed by
arbitrary PDEs that are discretized on general, unstructured meshes.
Moreover, SU2 readily provides the sensitivity information that is
necessary for solving PDE-constrained optimization problems
(shape design), goal-oriented mesh adaptation, or uncertainty
quantification. The suite takes advantage of modern programming
techniques, resulting in a code that is portable, reusable, modular, and
freely available through an open-source license.

In addition to describing many of the details of the software suite,
this paper also discussed several recent examples of our work using
SU2 for flow and sensitivity analyses. The DLR-F6 and the Lockheed
Martin 1021 configurations are representative of the scale and
complexity of the cases found in the aerospace industry today. The
NREL Phase VI wind turbine and RAM-C 1II hypersonic flight test
vehicle test cases illustrate the flexibility of the suite for handling a
wide range of applications that may also require the implementation
of additional physical models. The flow analysis capabilities in SU2
have been rigorously verified and validated to ensure that accurate
high-fidelity performance predictions for complex configurations are

obtained. Furthermore, the solution of the corresponding adjoint
systems for these problems provides sensitivity information that can
be immediately used for shape optimization. The ability to efficiently
solve the flow and adjoint equations combined with the surrounding
infrastructure for automatic shape design make SU2 a uniquely
powerful software suite.

Lastly, it is important to highlight that SU2 is connected to a global
community of researchers and developers in the field of scientific
computing for engineering applications. The release of the software
under an open-source license has enabled engineers and scientists
from around the world to work from a common codebase and
provides worldwide access to industry-standard analysis tools.
Advances in CFD, shape design, and numerical methods can be
rapidly disseminated to a wide, knowledgeable user base in an
established, online community. Moreover, at the time of writing,
multiple institutions around the world are beginning to contribute
new capabilities to the source code, which is a trend that will continue
to be encouraged and supported in the future.

Acknowledgments

The authors are grateful to Antony Jameson, Enrique Zuazua,
Carlos Castro, Nicolas Gauger, Piero Colonna, Jason Hicken,
Karthik Duraisamy, Alberto Guardone, Matteo Pini, Michael R.
Colonno, Alfonso Bueno, Gérald Carrier, Ben Kirk, Justin Gray,
Travis Carrigan, Michael Buonanno, Aniket Aranake, Alejandro
Campos, Giulio Gori, Heather Kline, Amrita Lonkar, David
Manosalvas, Kedar Naik, Santiago Padrén, Thomas Taylor, Brendan
Tracey, Anil Variyar, Salvatore Vitale, and Andrew Wendorff for
helpful discussions and their efforts in the development and
validation of the code.

References

[1] Palacios, F., Colonno, M. R., Aranake, A. C., Campos, A., Copeland, S.

R., Economon, T. D., Lonkar, A. K., Lukaczyk, T. W., Taylor, T. W. R.,

and Alonso, J. J., “Stanford University Unstructured (SU?): An open-

Source Integrated Computational Environment for Multi-Physics

Simulation and Design,” AIAA Paper 2013-0287, 2013.

Palacios, F., Economon, T. D., Aranake, A. C., Copeland, S. R., Lonkar,

A. K., Lukaczyk, T. W., Manosalvas, D. E., Naik, K. R., Padron, A. S.,

Tracey, B., Variyar, A., and Alonso, J. J., “Stanford University

Unstructured (SU?): Open-Source Analysis and Design Technology for

Turbulent Flows,” AIAA Paper 2014-0243, 2014.

Colonno, M. R., Naik, K., Duraisamy, K., and Alonso, J. J., “An

Adjoint-Based Multidisciplinary Optimization Framework for Rotor-

craft Systems,” AIAA Paper 2012-5656, 2012.

[4] Economon, T. D., Palacios, F., and Alonso, J. J., “A Coupled-Adjoint
Method for Aerodynamic and Aeroacoustic Optimization,” AIAA
Paper 2012-5598, 2012.

[5] Copeland, S. R., Palacios, F., and Alonso, J. J., “Adjoint-Based
Aerothermodynamic Shape Design of Hypersonic Vehicles in Non-
Equilibrium Flows,” AIAA Paper 2014-0513, 2014.

[6] Karypis, G., Schloegel, K., and Kumar, V., “Parmetis: Parallel Graph
Partitioning and Sparse Matrix Ordering Library: Version 1.0,” Dept. of
Computer Science, Univ. of Minnesota, Minneapolis, MN, 1997.

2

—

3

[t}

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053813&iName=master.img-011.jpg&w=499&h=136

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

ECONOMON ET AL. 845

[7]1 Samareh,J. A., “Aerodynamic Shape Optimization Based on Free-Form
Deformation,” AIAA Paper 2004-4630, 2004.

’[8] Hicks, R. M., and Henne, P. A., “Wing Design by Numerical

Optimization,” Journal of Aircraft, Vol. 53, No. 12, 1978, pp. 407-412.

doi:10.2514/3.58379

Dwight, R. P., “Robust Mesh Deformation using the Linear Elasticity

Equations,” Proceedings of the Fourth International Conference on

Computational Fluid Dynamics, Springer, Berlin, July 2006, pp. 401—

406.

[10] Economon, T. D., Palacios, F., Alonso, J. J., Bansal, G., Mudigere, D.,
Deshpande, A., Heinecke, A., and Smelyanskiy, M., “Towards High-
Performance Optimizations of the Unstructured Open-Source SU2
Suite,” AIAA Paper 2015-1949, 2015.

[11] Vitale, S., Gori, G., Pini, M., Guardone, A., Economon, T. D., Palacios,
F, Alonso, J. J., and Colonna, P., “Extension of the SU2 Open Source
CFD Code to the Simulation of Turbulent Flows of Fuids Modelled with
Complex Thermophysical Laws,” AIAA Paper 2015-2760, 2015.

[12] Zhou, B. Y., Albring, T. A., Gauger, N. R., Economon, T. D., Palacios,
F., and Alonso, J. J., “A Discrete Adjoint Framework for Unsteady
Aerodynamic and Aeroacoustic Optimization,” AIAA Paper 2015-
3355, 2015.

[13] Hirsch, C., Numerical Computation of Internal and External Flows,
Wiley, New York, 1984, pp. 372-384.

[14] Wilcox, D., Turbulence Modeling for CFD, 2nd ed., DCW Industries,
Inc., La Cafiada, CA, 1998, pp. 53-59.

[15] White, F. M., Viscous Fluid Flow, McGraw—Hill, New York, 1974,
pp. 28-29.

[16] Spalart, P., and Allmaras, S., “A One-Equation Turbulence Model for
Aerodynamic Flows,” ATAA Paper 1992-0439, 1992.

[17] Allmaras, S. R., Johnson, F. T., and Spalart, P. R., “Modifications and
Clarifications for the Implementation of the Spalart—Allmaras
Turbulence Model,” The International Conference on Computational
Fluid Dynamics (ICCFD), ICCFD7 Paper 1902, 2012.

[9

—

»[18] Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for

Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994,
pp. 1598-1605.
doi:10.2514/3.12149

>[1 9] Bueno-Orovio, A., Castro, C., Palacios, F., and Zuazua, E., “Continuous

Adjoint Approach for the Spalart—Allmaras Model in Aerodynamic
Optimization,” AIAA Journal, Vol. 50, No. 3, 2012, pp. 631-646.
doi:10.2514/1.J051307

[20] Anderson, W. K., and Venkatakrishnan, V., “Aerodynamic Design
Optimization on Unstructured Grids with a Continuous Adjoint
Formulation,” AIAA Paper 1997-0643, 1997.

’[21] Jameson, A., and Kim, S., “Reduction of the Adjoint Gradient Formula

for Aerodynamic Shape Optimization Problems,” AIAA Journal,
Vol. 41, No. 11, 2003, pp. 2114-2129.
doi:10.2514/2.6830

>[22] Castro, C., Lozano, C., Palacios, F., and Zuazua, E., “Systematic

Continuous Adjoint Approach to Viscous Aerodynamic Design on
Unstructured Grids,” AIAA Journal, Vol. 45,No. 9,2007, pp. 2125-2139.
doi:10.2514/1.24859

[23] Palacios, F., Alonso, J. J., Colonno, M., Hicken, J., and Lukaczyk, T.,
“Adjoint-Based Method for Supersonic Aircraft Design Using
Equivalent Area Distributions,” AIAA Paper 2012-0269, 2012.

[24] Economon, T. D., Palacios, F., and Alonso, J. J., “Optimal Shape Design
for Open Rotor Blades,” AIAA Paper 2012-3018, 2012.

[25] Economon, T. D., Palacios, F, and Alonso, J. J., “Unsteady
Aerodynamic Design on Unstructured Meshes with Sliding Interfaces,”
AIAA Paper 2013-0632, 2013.

[26] Economon, T. D., Palacios, F., and Alonso, J. J., “AViscous Continuous
Adjoint Approach for the Design of Rotating Engineering
Applications,” AIAA Paper 2013-2580, 2013.

[27] Palacios, F., Alonso, J. J., and Jameson, A., “Optimal Design of Free-
Surface Interfaces Using a Level Set Methodology,” AIAA Paper 2012-
3341, 2012.

[28] Palacios, F., Alonso, J. J., and Jameson, A., “Design of Free-Surface
Interfaces Using RANS Equations,” AIAA Paper 2013-3110, 2013.

[29] Palacios, F., Economon, T. D., and Alonso, J. J., “Large-Scale Aircraft
Design Using SU2,” AIAA Paper 2015-1946, 2015.

’[30] Economon, T., Palacios, F., and Alonso, J., “Unsteady Continuous

Adjoint Approach for Aerodynamic Design on Dynamic Meshes,” AIAA
Journal, Vol. 53, No. 9, 2015, pp. 2437-2453,

[31] Barth, T. J., “Aspects of Unstructured Grids and Finite-Volume Solvers
for the Euler and Navier—Stokes Equations,” 25th Computational Fluid
Dynamics, AGARD, von Kdrman Inst. Lecture Series, March 1994.

[32] Quarteroni, A., and Valli, A., Numerical Approximation of Partial
Differential Equations, Vol. 23, Springer Series in Computational
Mathematics, Springer—Verlag, Berlin, 1997, pp. 501-508.

» (37

»[33] Jameson, A., “A Perspective on Computational Algorithms for

Aerodynamic Analysis and Design,” Progress in Aerospace Sciences,
Vol. 37, No. 2, 2001, pp. 197-243.
doi:10.1016/S0376-0421(01)00004-5

[34] LeVeque, R., Finite Volume Methods for Hyperbolic Problems,
Cambridge Univ. Press, New York, 2002, pp. 64-85.

[35] Wesseling, P., Principles of Computational Fluid Dynamics, Vol. 29,
Springer Series in Computational Mathematics, Springer—Verlag,
Berlin, 2000, pp. 81-110.

>[36] Jameson, A., “Analysis and Design of Numerical Schemes for Gas

Dynamics, 1: Artificial Diffusion, Upwind Biasing, Limiters and
Their Effect on Accuracy and Multigrid Convergence,” International
Journal of Computational Fluid Dynamics, Vol. 4, Nos. 3—4, 1995,
pp. 171-218.

doi:10.1080/10618569508904524

Jameson, A., “Analysis and Design of Numerical Schemes for Gas
Dynamics, 2: Artificial Diffusion and Discrete Shock Structure,”
International Journal of Computational Fluid Dynamics, Vol. 5,
Nos. 1-2, 1995, pp. 1-38.

doi:10.1080/10618569508940734

>[38] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid

Dynamics: A Practical Introduction, Springer—Verlag, New York, 1999,
pp. 573-580.

[39] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the
Euler Equations by Finite Volume Methods Using Runge-Kutta Time
Stepping Schemes,” AIAA Paper 1981-1259, 1981.

>[40] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and

Difference Schemes,” Journal of Computational Physics, Vol. 43, No. 2,
1981, pp. 357-372.
doi:10.1016/0021-9991(81)90128-5

’[41] Liou, M.-S., and Steffen, C. J., Jr., “A New Flux Splitting Scheme,”

Journal of Computational Physics, Vol. 107, No. 1, 1993, pp. 23—
39.
doi:10.1006/jcph.1993.1122

[42] Turkel, E., Vatsa, V. N., and Radespiel, R., “Preconditioning Methods
for Low-Speed Flows,” AIAA Paper 1996-2460, 1996.

’[43] Saad, Y., and Schultz, M. H., “GMRES: A Generalized Minimal

Residual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM
Journal on Scientific and Statistical Computing, Vol. 7, No. 3,
July 1986, pp. 856-869.

doi:10.1137/0907058

»[44] van der Vorst, H. A., “BI-CGSTAB: A Fast and Smoothly Converging

Variant of BI-CG for the Solution of Nonsymmetric Linear Systems,”
SIAM Journal on Scientific and Statistical Computing, Vol. 13, No. 2,
March 1992, pp. 631-644.

doi:10.1137/0913035

[45] Jameson, A., “Time Dependent Calculations Using Multigrid, with
Applications to Unsteady Flows Past Airfoils and Wings,” AIAA Paper
1991-1596, 1991.

[46] Jameson, A., and Schenectady, S., “An Assessment of Dual-Time
Stepping, Time Spectral and Artificial Compressibility Based
Numerical Algorithms for Unsteady Flow with Applications to
Flapping Wings,” AIAA Paper 2009-4273, 2009.

[47] Jameson, A., Martinelli, L., and Grasso, F., “A Multigrid Method for the
Navier-Stokes Equations,” AIAA Paper 1986-0208, 1986.

»[48] Mavriplis, D. J., “On Convergence Acceleration Techniques for

Unstructured Meshes,” Inst. for Computer Applications on Science and
Engineering, NASA Langley Research Center ICASE Rept. TR-98-44,
Hampton, VA, 1998.
[49] Mavriplis, D. J., “Multigrid Techniques for Unstructured Meshes,” Inst.
for Computer Applications on Science and Engineering, NASA Langley
Research Center TR-95-27, Hampton, VA, 1995.
Palacios, F., and Alonso, J. J., “New Convergence Acceleration
Techniques in the Joe Code,” Annual Research Briefs, Center for
Turbulence Research, Stanford Univ. and NASA Ames, 2011, pp. 297—
308.

[50

’[51] Pierce, N. A., and Giles, M. B., “Preconditioned Multigrid Met

hods for Compressible Flow Calculations on Stretched Meshes,”
Journal of Computational Physics, Vol. 136, No. 2, 1997, pp. 425—
445.

doi:10.1006/jcph.1997.5772

>[52] Soto, O., Lohner, R., and Camelli, F., “A Linelet Preconditioner

for Incompressible Flow Solvers,” International Journal of Numerical
Methods for Heat and Fluid Flow, Vol. 13, No. 1, 2003, pp. 133—
147.
doi:10.1108/09615530310456796

[53] Brodersen, O., and Stiirmer, A., “Drag Prediction of Engine-Airframe
Interference Effects Using Unstructured Navier—Stokes Calculations,”
ATAA Paper 2001-2414, 2001.

http://dx.doi.org/10.2514/3.58379
http://dx.doi.org/10.2514/3.58379
http://dx.doi.org/10.2514/3.58379
http://dx.doi.org/10.2514/3.12149
http://dx.doi.org/10.2514/3.12149
http://dx.doi.org/10.2514/3.12149
http://dx.doi.org/10.2514/1.J051307
http://dx.doi.org/10.2514/1.J051307
http://dx.doi.org/10.2514/1.J051307
http://dx.doi.org/10.2514/2.6830
http://dx.doi.org/10.2514/2.6830
http://dx.doi.org/10.2514/2.6830
http://dx.doi.org/10.2514/1.24859
http://dx.doi.org/10.2514/1.24859
http://dx.doi.org/10.2514/1.24859
http://dx.doi.org/10.1016/S0376-0421(01)00004-5
http://dx.doi.org/10.1016/S0376-0421(01)00004-5
http://dx.doi.org/10.1080/10618569508904524
http://dx.doi.org/10.1080/10618569508904524
http://dx.doi.org/10.1080/10618569508940734
http://dx.doi.org/10.1080/10618569508940734
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1006/jcph.1993.1122
http://dx.doi.org/10.1006/jcph.1993.1122
http://dx.doi.org/10.1006/jcph.1993.1122
http://dx.doi.org/10.1006/jcph.1993.1122
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1006/jcph.1997.5772
http://dx.doi.org/10.1006/jcph.1997.5772
http://dx.doi.org/10.1006/jcph.1997.5772
http://dx.doi.org/10.1006/jcph.1997.5772
http://dx.doi.org/10.1108/09615530310456796
http://dx.doi.org/10.1108/09615530310456796
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&system=10.2514%2F2.6830&citationId=p_21
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1080%2F10618569508940734&citationId=p_37
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&system=10.2514%2F1.24859&citationId=p_22
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&system=10.2514%2F1.J053763&citationId=p_30
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1007%2F978-3-662-03915-1&citationId=p_38
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1016%2F0021-9991%2881%2990128-5&citationId=p_40
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&system=10.2514%2F6.1998-2966&citationId=p_48
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1006%2Fjcph.1993.1122&citationId=p_41
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&system=10.2514%2F3.58379&citationId=p_8
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1016%2FS0376-0421%2801%2900004-5&citationId=p_33
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&system=10.2514%2F3.12149&citationId=p_18
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1006%2Fjcph.1997.5772&citationId=p_51
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1137%2F0907058&citationId=p_43
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&system=10.2514%2F1.J051307&citationId=p_19
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1108%2F09615530310456796&citationId=p_52
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1137%2F0913035&citationId=p_44
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F1.J053813&crossref=10.1080%2F10618569508904524&citationId=p_36

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

846 ECONOMON ET AL.

[54] Morgenstern, J. M., Buonanno, M., and Marconi, F., “Full
Configuration Low Boom Model and Grids for 2014 Sonic Boom
Prediction Workshop,” AIAA Paper 2013-647, 2013.

[55] Aftosmis, A. J., and Nemec, M., “Cart3-D Simulations for the First
AIAA Sonic Boom Prediction Workshop,” AIAA Paper 2014-0558,
2014.

[56] Simms, D. A., Schreck, S., Hand, M., and Fingersh, L. J,,
“NREL Unsteady Aerodynamics Experiment in the NASA-Ames
Wind Tunnel: A Comparison of Predictions to Measurements,” National
Renewable Energy Lab. TR NREL/TP-500-29494, Golden, CO,
June 2001.

[57] Potsdam, M. A., and Mavriplis, D. J., “Unstructured Mesh CFD
Aerodynamic Analysis of the NREL Phase VI Rotor,” AIAA Paper
2009-1221, 2009.

[58] Jones, W. L., and Cross, A. E., “Electrostatic Probe Measurements of
Plasma Parameters for Two Reentry Flight Experiments at 25,000 Feet
per Second,” NASA TR-TN-D-6617, 1972.

J. R. R. A. Martins
Associate Editor

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

This article has been cited by:

1.

Liming Chen, Haobo Qiu, Liang Gao, Chen Jiang, Zan Yang. 2019. A screening-based gradient-enhanced Kriging
modeling method for high-dimensional problems. Applied Mathematical Modelling 69, 15-31. [Crossref]

. Luca Pustina, Rauno Cavallaro, Giovanni Bernardini. 2019. NERONE: An Open-Source Based Tool for Aerodynamic

Transonic Optimization of Nonplanar Wings. Aerotecnica Missili & Spazio 53. . [Crossref]

.D. Thomas, M.L. Cerquaglia, R. Boman, T.D. Economon, J.J. Alonso, G. Dimitriadis, V.E. Terrapon. 2019. CUPyDO

- An integrated Python environment for coupled fluid-structure simulations. Advances in Engineering Software 128, 69-85.
[Crossref]

. Daniel J. Poole, Christian B. Allen. 2019. Constrained niching using differential evolution. Swarm and Evolutionary

Computation 44, 74-100. [Crossref]

5.Jian Yu, Jan S. Hesthaven. 2019. Flowfield Reconstruction Method Using Artificial Neural Network. AIAA Journal 57:2,

8.

10.

482-498. [Abstract] [Full Text] [PDF] [PDF Plus]

. Dominique Poirier, Jean-Gabriel Legoux, Phuong Vo, Bruno Blais, Jason D. Giallonardo, Peter G. Keech. 2019. Powder

Development and Qualification for High-Performance Cold Spray Copper Coatings on Steel Substrates. Journal of Thermal
Spray Technology 28:3, 444-459. [Crossref]

. Unver Kaynak, Onur Bas, Samet Caka Cakmakcioglu, Ismail Hakki Tuncer. Transition Modeling for Low to High Speed

Boundary Layer Flows with CFD Applications . [Crossref]

Alexandros Kontogiannis, Matthieu Parenteau, Eric Laurendeau. Viscous-Inviscid Analysis of Transonic Swept Wings
using 2.5D RANS and Parametric Shapes . [Citation] [PDF] [PDF Plus]

. Alexandre N. Marques, Rémi Lam, Anirban Chaudhuri, Max M. Opgenoord, Karen E. Willcox. A multifidelity method

for locating aeroelastic flutter boundaries . [Citation] [PDF] [PDF Plus]

Beckett Yx Zhou, Nicolas R. Gauger, Huadong Yao, Shia-Hui Peng, Lars Davidson. Towards Adjoint-based Broadband
Noise Minimization using Stochastic Noise Generation . [Citation] [PDF] [PDF Plus]

11. Jonathan R. Holland, James D. Baeder, Karthik Duraisamy. Towards Integrated Field Inversion and Machine Learning

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

With Embedded Neural Networks for RANS Modeling . [Citation] [PDF] [PDF Plus]

Mariano Sanchez Martinez, Johan Boutet, Xavier Amanodlese, Vincent Terrapon, Grigorios Dimitriadis. Computation of
Leishman-Beddoes model parameters using a combination of experiments and simulations . [Citation] [PDF] [PDF Plus]

Liang Sun, Trevor T. Robinson, C. Armstrong, Simao Marques, Weigang Yao. Surface Mesh Deformation in CAD-based
Shape Optimization . [Citation] [PDF] [PDF Plus]

Shashank Srivastava, Murali Damodaran, Boo Cheong Khoo. A Computational Framework for Assessment of Fuel Sloshing
Effects on Transonic Wing Flutter Characteristics . [Citation] [PDF] [PDF Plus]

Brian C. Munguia, Jayant Mukhopadhaya, Juan J. Alonso. Active Flow Control Optimization Using the Discrete Adjoint
Method . [Citation] [PDF] [PDF Plus]

Eduardo Molina, Beckett Yx Zhou, Juan J. Alonso, Marcello Righi, Roberto G. Silva. Flow and Noise Predictions Around
Tandem Cylinders using DDES approach with SU2 . [Citation] [PDF] [PDF Plus]

Charanya Venkatesan-Crome, Pedro Carrusca Gomes, Rafael Palacios. Optimal Compliant Airfoils Using Fully Non-Linear
FSI Models . [Citation] [PDF] [PDF Plus]

Gianluca Geraci, Friedrich Menhorn, Xun Huan, Cosmin Safta, Youssef Marzouk, Habib N. Najm, Michael S. Eldred.
Progress in Scramjet Design Optimization Under Uncertainty Using Simulations of the HIFiRE Configuration . [Citation]
[PDF] [PDF Plus]

Gianluca Geraci, Michael S. Eldred, Alex Gorodetsky, John Jakeman. Recent advancements in Multilevel-Multifidelity
techniques for forward UQ in the DARPA Sequoia project . [Citation] [PDF] [PDF Plus]

Sénke Klostermann, R. Lebrun. 140, 737. [Crossref]

.H. Giiner, D. Thomas, G. Dimitriadis, V.E. Terrapon. 2019. Unsteady aerodynamic modeling methodology based on

dynamic mode interpolation for transonic flutter calculations. Journal of Fluids and Structures 84, 218-232. [Crossref]

22.Jachun Lee, Joong Hun Bae, Kyoung Jin Jung. 2018. Modeling of Profile Error and Application to a Low Reynolds

23.

Number Airfoil. International Journal of Aeronautical and Space Sciences 19:4, 817-827. [Crossref]

H. Schmidt, S. Koh, A. Dafnis, K.-U. Schréder, W. Schréder. 2018. Accurate numerical simulation on the structural
response of the VEGA payload fairing using modal coupling approach. CEAS Space Journal 54. . [Crossref]

https://doi.org/10.1016/j.apm.2018.11.048
https://doi.org/10.1007/s42496-019-00007-4
https://doi.org/10.1016/j.advengsoft.2018.05.007
https://doi.org/10.1016/j.swevo.2018.11.004
https://doi.org/10.2514/1.J057108
http://arc.aiaa.org/doi/full/10.2514/1.J057108
http://arc.aiaa.org/doi/pdf/10.2514/1.J057108
http://arc.aiaa.org/doi/pdfplus/10.2514/1.J057108
https://doi.org/10.1007/s11666-019-00833-9
https://doi.org/10.5772/intechopen.83520
https://doi.org/10.2514/6.2019-2116
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-2116
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-2116
https://doi.org/10.2514/6.2019-0438
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-0438
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-0438
https://doi.org/10.2514/6.2019-0002
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-0002
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-0002
https://doi.org/10.2514/6.2019-1884
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-1884
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-1884
https://doi.org/10.2514/6.2019-1854
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-1854
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-1854
https://doi.org/10.2514/6.2019-2360
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-2360
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-2360
https://doi.org/10.2514/6.2019-1527
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-1527
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-1527
https://doi.org/10.2514/6.2019-0695
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-0695
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-0695
https://doi.org/10.2514/6.2019-0326
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-0326
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-0326
https://doi.org/10.2514/6.2019-1216
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-1216
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-1216
https://doi.org/10.2514/6.2019-0725
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-0725
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-0725
https://doi.org/10.2514/6.2019-0722
http://arc.aiaa.org/doi/pdf/10.2514/6.2019-0722
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2019-0722
https://doi.org/10.1007/978-3-319-77767-2_46
https://doi.org/10.1016/j.jfluidstructs.2018.11.002
https://doi.org/10.1007/s42405-018-0087-2
https://doi.org/10.1007/s12567-018-0225-5

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

Orest Mykhaskiv, Mladen Banovi¢, Salvatore Auriemma, Pavanakumar Mohanamuraly, Andrea Walther, Herve Legrand,
Jens-Dominik Miiller. 2018. NURBS-based and parametric-based shape optimization with differentiated CAD kernel.
Computer-Aided Design and Applications 15:6, 916-926. [Crossref]

M. Sagebaum, T. Albring, N. R. Gauger. 2018. Expression templates for primal value taping in the reverse mode of
algorithmic differentiation. Optimization Methods and Software 33:4-6, 1207-1231. [Crossref]

A. Rubino, M. Pini, P. Colonna, T. Albring, S. Nimmagadda, T. Economon, J. Alonso. 2018. Adjoint-based fluid dynamic
design optimization in quasi-periodic unsteady flow problems using a harmonic balance method. Journal of Computational
Physics 372, 220-235. [Crossref]

Samet Caka Cakmakcioglu, Onur Bas, Unver Kaynak. 2018. A correlation-based algebraic transition model. Proceedings of
the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232:21, 3915-3929. [Crossref]

Hai Fang, Chunlin Gong, Hua Su, Yunwei Zhang, Chunna Li, Andrea Da Ronch. 2018. A gradient-based uncertainty
optimization framework utilizing dimensional adaptive polynomial chaos expansion. Structural and Multidisciplinary
Optimization 91. . [Crossref]

Jing Wang, Fangfang Xie, Yao Zheng, Jifa Zhang, Bowei Yang, Tingwei Ji. 2018. Virtual Stackelberg game coupled with
the adjoint method for aerodynamic shape optimization. Engineering Optimization 50:10, 1733-1754. [Crossref]
Guangda Yang, Andrea Da Ronch, Jernej Drofelnik, Zheng-Tong Xie. 2018. Sensitivity assessment of optimal solution in
aerodynamic design optimisation using SU2. Aerospace Science and Technology 81, 362-374. [Crossref]

Boping Ma, Gang Wang, Jiong Ren, Zhengyin Ye, Zhijin Lei, Gecheng Zha. 2018. Near-Field Sonic-Boom Prediction
and Analysis with Hybrid Grid Navier-Stokes Solver. Journal of Aircraft 55:5, 1890-1904. [Abstract] [Full Text] [PDF]
[PDF Plus]

Akshay S. Deshpande, Jonathan Poggie. 2018. Flow Control of Swept Shock-Wave/Boundary-Layer Interaction Using
Plasma Actuators. Journal of Spacecraft and Rockets 55:5, 1198-1207. [Abstract] [Full Text] [PDF] [PDF Plus]

A. Rubino, M. Pini, M. Kosec, S. Vitale, P. Colonna. 2018. A look-up table method based on unstructured grids and its
application to non-ideal compressible fluid dynamic simulations. Journal of Computational Science 28, 70-77. [Crossref]

. David Rodriguez Gutiérrez, Jonathan Poggie. 2018. Effects of Power Deposition on the Aerodynamic Forces on a Slender

Body. AIAA Journal 56:7, 2911-2917. [Citation] [Full Text] [PDF] [PDF Plus]

Sebastien Defoort, Michaél Méheut, Bernard Paluch, Romain Liaboeuf, Raphaél Murray, Daniel C. Mincu, Jean-Michel
David. Conceptual design of disruptive aircraft configurations based on High-Fidelity OAD process . [Citation] [PDF]
[PDF Plus]

Daniel J. Poole, Christian B. Allen, T. Rendall. Identifying Multiple Optima in Aerodynamic Design Spaces . [Citation]
[PDF] [PDF Plus]

Ali Karakoc, Halil Kaya. A Multi-objective Multi-disciplinary Optimization Approach for NATO AVT 251 UCAV -
MULDICON . [Citation] [PDF] [PDF Plus]

Thomas D. Economon. Simulation and Adjoint-based Design for Variable Density Incompressible Flows with Heat
Transfer . [Citation] [PDF] [PDF Plus]

Gilberto G. Becker, Rodrigo Granzoto. DPW-6 and HiLiftPW-3 using the Stanford University Unstructured (SU2) .
[Citation] [PDF] [PDF Plus]

Gitsuzo d. Tagawa, Frangois Morency, Héloise Beaugendre. CFD study of airfoil lift reduction caused by ice roughness .
[Citation] [PDF] [PDF Plus]

Matthew O'Connell, Cameron Druyor, Kyle B. Thompson, Kevin Jacobson, William K. Anderson, Eric J. Nielsen, Jan-
Renee Carlson, Michael A. Park, William T. Jones, Robert Biedron, Elizabeth M. Lee-Rausch, Bil Kleb. Application of
the Dependency Inversion Principle to Multidisciplinary Software Development . [Citation] [PDF] [PDF Plus]

Ruben E. Perez, Asad Asghar. Numerical Study of the Effects of Leading Edge Tubercles on Transonic Performance of
Airfoils . [Citation] [PDF] [PDF Plus]

Akshay S. Deshpande, Jonathan Poggie. Effects of curvature in high-speed inlets . [Citation] [PDF] [PDF Plus]

Mengmeng Zhang, Aidan Jungo, Alessandro Gastaldi, Tomas Melin. 2018. Aircraft Geometry and Meshing with Common
Language Schema CPACS for Variable-Fidelity MDO Applications. Aerospace 5:2, 47. [Crossref]

F. Blondel, C. Galinos, U. Paulsen, P. Bozonnet, M. Cathelain, G. Ferrer, H.A. Madsen, G. Pirrung, F. Silvert. 2018.
Comparison of Aero-Elastic Simulations and Measurements Performed on NENUPHAR’s 600kW Vertical Axis Wind
Turbine: Impact of the Aerodynamic Modelling Methods. Journal of Physics: Conference Series 1037, 022010. [Crossref]

https://doi.org/10.1080/16864360.2018.1462881
https://doi.org/10.1080/10556788.2018.1471140
https://doi.org/10.1016/j.jcp.2018.06.023
https://doi.org/10.1177/0954406217743537
https://doi.org/10.1007/s00158-018-2123-z
https://doi.org/10.1080/0305215X.2017.1409349
https://doi.org/10.1016/j.ast.2018.08.012
https://doi.org/10.2514/1.C034659
http://arc.aiaa.org/doi/full/10.2514/1.C034659
http://arc.aiaa.org/doi/pdf/10.2514/1.C034659
http://arc.aiaa.org/doi/pdfplus/10.2514/1.C034659
https://doi.org/10.2514/1.A34114
http://arc.aiaa.org/doi/full/10.2514/1.A34114
http://arc.aiaa.org/doi/pdf/10.2514/1.A34114
http://arc.aiaa.org/doi/pdfplus/10.2514/1.A34114
https://doi.org/10.1016/j.jocs.2018.08.001
https://doi.org/10.2514/1.J057004
http://arc.aiaa.org/doi/full/10.2514/1.J057004
http://arc.aiaa.org/doi/pdf/10.2514/1.J057004
http://arc.aiaa.org/doi/pdfplus/10.2514/1.J057004
https://doi.org/10.2514/6.2018-3663
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-3663
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-3663
https://doi.org/10.2514/6.2018-3422
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-3422
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-3422
https://doi.org/10.2514/6.2018-3001
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-3001
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-3001
https://doi.org/10.2514/6.2018-3111
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-3111
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-3111
https://doi.org/10.2514/6.2018-2845
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-2845
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-2845
https://doi.org/10.2514/6.2018-3010
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-3010
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-3010
https://doi.org/10.2514/6.2018-3856
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-3856
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-3856
https://doi.org/10.2514/6.2018-3955
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-3955
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-3955
https://doi.org/10.2514/6.2018-3393
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-3393
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-3393
https://doi.org/10.3390/aerospace5020047
https://doi.org/10.1088/1742-6596/1037/2/022010

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

46. Christopher T. DeGroot. 2018. Automatic differentiation of a finite-volume-based transient heat conduction code for
sensitivity analysis. Numerical Heat Transfer, Part B: Fundamentals 73:5, 292-307. [Crossref]

47. Zachary]. Grey, Paul G. Constantine. 2018. Active Subspaces of Airfoil Shape Parameterizations. AI4A Journal 56:5,
2003-2017. [Abstract] [Full Text] [PDF] [PDF Plus]

48. Dheeraj Agarwal, Trevor T. Robinson, Cecil G. Armstrong, Simao Marques, Ilias Vasilopoulos, Marcus Meyer. 2018.
Parametric design velocity computation for CAD-based design optimization using adjoint methods. Engineering with
Computers 34:2, 225-239. [Crossref]

49. Andrea DA RONCH, Antonino VENTURA, Marcello RIGHI, Matteo FRANCIOLINI, Marco BERCI, Daniel
KHARLAMOV. 2018. Extension of analytical indicial aerodynamics to generic trapezoidal wings in subsonic flow. Chinese
Journal of Aeronautics 31:4, 617-631. [Crossref]

50. Kursad Melih Guleren, Seyfettin Turk, Osman Mirza Demircan, Oguzhan Demir. 2018. Numerical Analysis of the Cavity
Flow subjected to Passive Controls Techniques. JOP Conference Series: Materials Science and Engineering 326, 012015.
[Crossref]

51. R. Sanchez, T. Albring, R. Palacios, N. R. Gauger, T. D. Economon, J. J. Alonso. 2018. Coupled adjoint-based sensitivities
in large-displacement fluid-structure interaction using algorithmic difterentiation. International Journal for Numerical
Methods in Engineering 113:7, 1081-1107. [Crossref]

52. Vishal Srivastava, Karthik Duraisamy. Aerodynamic Design of Aircraft Engine Nozzles with Consideration of Model Form
Uncertainties . [Citation] [PDF] [PDF Plus]

53. Michael S. Eldred, Gianluca Geraci, Alex Gorodetsky, John Jakeman. Multilevel-Multidelity Approaches for Forward UQ
in the DARPA SEQUOIA project . [Citation] [PDF] [PDF Plus]

54. Sravya Nimmagadda, Thomas D. Economon, Juan]. Alonso, Carlos Silva, Beckett Yx Zhou, Tim Albring. Low-cost
unsteady discrete adjoints for aeroacoustic optimization using temporal and spatial coarsening techniques . [Citation]

[PDF] [PDF Plus]

55. Guangda Yang, Andrea Da Ronch. Aerodynamic Shape Optimisation of Benchmark Problems Using SU2 . [Citation]
[PDF] [PDF Plus]

56. Kevin Singh, Dimitris Drikakis, Michael Frank, Ioannis W. Kokkinakis, Juan J. Alonso, Thomas D. Economon, Edwin
T. van der Weide. Comparison of the Finite Volume and Discontinuous Galerkin schemes for the Double Vortex Pairing
Problem using the SU2 Software Suite . [Citation] [PDF] [PDF Plus]

57. Vangelis Skaperdas, Neil Ashton. Development of high-quality hybrid unstructured meshes for the GMGW-1 workshop
using ANSA . [Citation] [PDF] [PDF Plus]

58. M. Righi. Hybrid RANS-LES Turbulence Modelling in Aeroelastic Problems, Test Case 3 from the Second AIAA
Aeroelastic Prediction Workshop 405-415. [Crossref]

59.Jeftrey M. Hokanson, Paul G. Constantine. 2018. Data-Driven Polynomial Ridge Approximation Using Variable
Projection. SIAM Journal on Scientific Computing 40:3, A1566-A1589. [Crossref]

60. Salvatore Vitale, Tim A. Albring, Matteo Pini, Nicolas R. Gauger, Piero Colonna. 2017. Fully turbulent discrete adjoint
solver for non-ideal compressible flow applications. Journal of the Global Power and Propulsion Society 1, ZIFVOI. [Crossref]

61. H. L. Kline, J. J. Alonso. 2017. Adjoint of Generalized Outflow-Based Functionals Applied to Hypersonic Inlet Design.
AIAA Journal 55:11, 3903-3915. [Abstract] [Full Text] [PDF] [PDF Plus]

62. Paul G. Constantine, Armin Eftekhari, Jeffrey Hokanson, Rachel A. Ward. 2017. A near-stationary subspace for ridge
approximation. Computer Methods in Applied Mechanics and Engineering 326, 402-421. [Crossref]

63. Marcello Righi. 2017. Turbulence modelling techniques for aeroelastic problems: results and comments from the Second
AIAA Acroelastic Prediction Workshop. Aircraft Engineering and Aerospace Technology 89:5, 683-691. [Crossref]

64. Joshua A. Keep, Salvatore Vitale, Matteo Pini, Matteo Burigana. 2017. Preliminary verification of the open-source CFD
solver SU2 for radial-inflow turbine applications. Energy Procedia 129, 1071-1077. [Crossref]

65. A. Rubino, M. Pini, P. Colonna. 2017. Unsteady simulation of quasi-periodic flows in Organic Rankine Cycle cascades
using 2 Harmonic Balance method. Energy Procedia 129, 1101-1108. [Crossref]

66. A.J. Head, S. Iyer, C. de Servi, M. Pini. 2017. Towards the Validation of a CFD Solver for Non-ideal Compressible Flows.
Energy Procedia 129, 240-247. [Crossref]

67. Marco Berci, Marcello Righi. 2017. An enhanced analytical method for the subsonic indicial lift of two-dimensional
aerofoils — with numerical cross-validation. Aerospace Science and Technology 67, 354-365. [Crossref]

https://doi.org/10.1080/10407790.2018.1486648
https://doi.org/10.2514/1.J056054
http://arc.aiaa.org/doi/full/10.2514/1.J056054
http://arc.aiaa.org/doi/pdf/10.2514/1.J056054
http://arc.aiaa.org/doi/pdfplus/10.2514/1.J056054
https://doi.org/10.1007/s00366-017-0534-x
https://doi.org/10.1016/j.cja.2018.02.008
https://doi.org/10.1088/1757-899X/326/1/012015
https://doi.org/10.1002/nme.5700
https://doi.org/10.2514/6.2018-2175
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-2175
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-2175
https://doi.org/10.2514/6.2018-1179
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-1179
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-1179
https://doi.org/10.2514/6.2018-1911
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-1911
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-1911
https://doi.org/10.2514/6.2018-0412
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-0412
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-0412
https://doi.org/10.2514/6.2018-1833
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-1833
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-1833
https://doi.org/10.2514/6.2018-0660
http://arc.aiaa.org/doi/pdf/10.2514/6.2018-0660
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2018-0660
https://doi.org/10.1007/978-3-319-70031-1_34
https://doi.org/10.1137/17M1117690
https://doi.org/10.22261/JGPPS.Z1FVOI
https://doi.org/10.2514/1.J055863
http://arc.aiaa.org/doi/full/10.2514/1.J055863
http://arc.aiaa.org/doi/pdf/10.2514/1.J055863
http://arc.aiaa.org/doi/pdfplus/10.2514/1.J055863
https://doi.org/10.1016/j.cma.2017.07.038
https://doi.org/10.1108/AEAT-01-2017-0051
https://doi.org/10.1016/j.egypro.2017.09.130
https://doi.org/10.1016/j.egypro.2017.09.229
https://doi.org/10.1016/j.egypro.2017.09.149
https://doi.org/10.1016/j.ast.2017.03.004

Downloaded by UNIV. OF ARIZONA on February 20, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.J053813

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

3.

84.

85.

86.

Semih Akkurt, Mehmet Sahin. An Efficient Edge Based Data Structure Implementation for a Vertex Based Finite Volume
Method . [Citation] [PDF] [PDF Plus]

Dheeraj Agarwal, Simao Marques, Trevor T. Robinson, Cecil G. Armstrong, Philip Hewitt. Aerodynamic Shape
Optimization Using Feature based CAD Systems and Adjoint Methods . [Citation] [PDF] [PDF Plus]

Akshay Shrikant Deshpande, Jonathan Poggie. Supersonic Flow Control of Swept Shock Wave / Turbulent Boundary
Layer Interactions using Plasma Actuators . [Citation] [PDF] [PDF Plus]

Brian C. Munguia, Thomas D. Economon, Juan J. Alonso. A Discrete Adjoint Framework for Low-Boom Supersonic
Aircraft Shape Optimization . [Citation] [PDF] [PDF Plus]

Adam Donovan, Darcy L. Allison. Multidisciplinary Design Including Geometry-Enabled Wind Tunnel Fidelity Level
Analysis . [Citation] [PDF] [PDF Plus]

Eduardo Molina, Cleber Spode, Roberto G. Annes da Silva, David E. Manosalvas-Kjono, Sravya Nimmagadda, Thomas
D. Economon, Juan J. Alonso, Marcello Righi. Hybrid RANS/LES Calculations in SU2 . [Citation] [PDF] [PDF Plus]

David E. Manosalvas-Kjono, Thomas D. Economon, Carsten Othmer, Antony Jameson. Computations of Active Flow
Control for Heavy Vehicle Drag Reduction . [Citation] [PDF] [PDF Plus]

Thomas D. Economon, Juan J. Alonso, Tim A. Albring, Nicolas R. Gauger. Adjoint Formulation Investigations of
Benchmark Aerodynamic Design Cases in SU2 . [Citation] [PDF] [PDF Plus]

Yisheng Gao, Yizhao Wu, Jian Xia. 2017. Automatic differentiation based discrete adjoint method for aerodynamic design
optimization on unstructured meshes. Chinese Journal of Aeronautics 30:2, 611-627. [Crossref]

Benjamin Hinchliffe, Ning Qin. 2017. Using Surface Sensitivity from Mesh Adjoint for Transonic Wing Drag Reduction.
AIAA Journal 55:3, 818-831. [Abstract] [Full Text] [PDF] [PDF Plus]

Ruben Sanchez, Rafael Palacios, Thomas D. Economon, Juan J. Alonso, Tim Albring, Nicolas R. Gauger. Optimal
Actuation of Dielectric Membrane Wings using High-Fidelity Fluid-Structure Modelling . [Citation] [PDF] [PDF Plus]

Thomas K. West, Clyde Gumbert. Multifidelity, Multidisciplinary Uncertainty Quantification with Non-Intrusive
Polynomial Chaos . [Citation] [PDF] [PDF Plus]

Anil Variyar, Thomas D. Economon, Juan J. Alonso. Design and Optimization of Unconventional Aircraft Configurations
with Aeroelastic Constraints . [Citation] [PDF] [PDF Plus]

Marcello Righi, Andrea Da Ronch, Francesco Mazzacchi. Analysis of Resolved Turbulent Scales of Motion in Aeroelastic
Problems . [Citation] [PDF] [PDF Plus]

Gianluca Geraci, Michael S. Eldred, Gianluca Iaccarino. A multifidelity multilevel Monte Carlo method for uncertainty
propagation in aerospace applications . [Citation] [PDF] [PDF Plus]

David E. Manosalvas, Thomas D. Economon, Carsten Othmer, Antony Jameson. Computational Design of Drag
Diminishing Active Flow Control Systems for Heavy Vehicles . [Citation] [PDF] [PDF Plus]

Roberto A. Bunge, Abdul E. Alkurdi, Eyas Alfaris, Ilan Kroo. In-Flight Measurement of Wing Surface Pressures on a
Small-Scale UAV During Stall/Spin Maneuvers . [Citation] [PDF] [PDF Plus]

Sravya Nimmagadda, Thomas D. Economon, Juan J. Alonso, Carlos R. Ilario da Silva. Robust uniform time sampling
approach for the harmonic balance method . [Citation] [PDF] [PDF Plus]

Thomas D. Economon, Dheevatsa Mudigere, Gaurav Bansal, Alexander Heinecke, Francisco Palacios, Jongsoo Park,
Mikhail Smelyanskiy, Juan J. Alonso, Pradeep Dubey. 2016. Performance optimizations for scalable implicit RANS
calculations with SU2. Computers & Fluids 129, 146-158. [Crossref]

https://doi.org/10.2514/6.2017-3292
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-3292
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-3292
https://doi.org/10.2514/6.2017-3999
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-3999
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-3999
https://doi.org/10.2514/6.2017-3479
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-3479
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-3479
https://doi.org/10.2514/6.2017-3326
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-3326
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-3326
https://doi.org/10.2514/6.2017-3662
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-3662
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-3662
https://doi.org/10.2514/6.2017-4284
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-4284
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-4284
https://doi.org/10.2514/6.2017-3567
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-3567
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-3567
https://doi.org/10.2514/6.2017-4363
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-4363
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-4363
https://doi.org/10.1016/j.cja.2017.01.009
https://doi.org/10.2514/1.J055319
http://arc.aiaa.org/doi/full/10.2514/1.J055319
http://arc.aiaa.org/doi/pdf/10.2514/1.J055319
http://arc.aiaa.org/doi/pdfplus/10.2514/1.J055319
https://doi.org/10.2514/6.2017-0857
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-0857
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-0857
https://doi.org/10.2514/6.2017-1936
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-1936
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-1936
https://doi.org/10.2514/6.2017-0463
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-0463
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-0463
https://doi.org/10.2514/6.2017-0189
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-0189
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-0189
https://doi.org/10.2514/6.2017-1951
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-1951
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-1951
https://doi.org/10.2514/6.2016-4082
http://arc.aiaa.org/doi/pdf/10.2514/6.2016-4082
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2016-4082
https://doi.org/10.2514/6.2016-3652
http://arc.aiaa.org/doi/pdf/10.2514/6.2016-3652
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2016-3652
https://doi.org/10.2514/6.2016-3966
http://arc.aiaa.org/doi/pdf/10.2514/6.2016-3966
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2016-3966
https://doi.org/10.1016/j.compfluid.2016.02.003

