Advertisement

We'd like to understand how you use our websites in order to improve them. Register your interest.

Painlevé’s conjecture

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. I. Arnold,Dynamical Systems III, New York: Springer-Verlag, 1988.

  2. 2.

    H. Bruns, Über die Integrale des Vielkörper-Problems,Acta Math. 11 (1887), 25–96.

  3. 3.

    J. Chazy, Sur les singularités impossibles du problème desn corps,C. R. Hebdomadaires Séances Acad. Sci. Paris 170 (1920), 575–577.

  4. 4.

    F. N. Diacu, Regularization of partial collisions in the N-body problem,Diff. Integral Eq. 5 (1992), 103–136.

  5. 5.

    J. L. Gerver, A possible model for a singularity without j collisions in the five-body problem,J. Diff. Eq. 52 (1984), 76–90.

  6. 6.

    J. L. Gerver, The existence of pseudocollisions in the plane,J. Diff. Eq. 89 (1991), 1–68.

  7. 7.

    J. Mather and R. McGehee, Solutions of the collinear ! four-body problem which become unbounded in finite time,Dynamical Systems Theory and Applications (J. Moser, ed.), Berlin: Springer-Verlag, 1975, 573–589.

  8. 8.

    R. McGehee, Triple collision in the collinear three-body problem,Invent. Math. 27 (1974), 191–227.

  9. 9.

    R. McGehee, Triple collision in Newtonian gravitational systems,Dynamical Systems Theory and Applications (J. Moser, ed.), Berlin: Springer-Verlag, 1975, 550–572.

  10. 10.

    R. McGehee, Von Zeipel’s theorem on singularities in celestial mechanics,Expo. Math. 4 (1986), 335–345.

  11. 11.

    P. Painlevé,Leçons sur la théorie analytique des équations différentielles, Paris: Hermann, 1897.

  12. 12.

    Oeuvres de Paul Painlevé, Tome I, Paris Ed. Centr. Nat. Rech. Sci., 1972.

  13. 13.

    H. Poincaré, Sur le problème des trois corps et les équations de la dynamique,Acta Math. 13 (1890), 1–271.

  14. 14.

    H. Poincaré,Les nouvelles méthodes de la mécanique céleste, Paris: Gauthier-Villar et Fils, vol. I (1892), vol. II (1893), vol. III (1899).

  15. 15.

    D. G. Saari, Improbability of collisions in Newtonian gravitational systems,Trans. Amer. Math. Soc. 162 (1971), 267–271; 168 (1972), 521; 181 (1973), 351-368.

  16. 16.

    D. G. Saari, Singularities and collisions in Newtonian gravitational systems,Arch. Rational Mech. Anal. 49 (1973), 311–320.

  17. 17.

    D. G. Saari, Collisions are of first category,Proc. Amer. Math. Soc. 47 (1975), 442–445.

  18. 18.

    D. G. Saari, The manifold structure for collisions and for hyperbolic parabolic orbits in the n-body problem,J. Diff. Eq. 41 (1984), 27–43.

  19. 19.

    C. L. Siegel and J. K. Moser,Lectures on Celestial Mechanics, Berlin: Springer-Verlag, 1971.

  20. 20.

    H. J. Sperling, On the real singularities of the N-body problem,J. Reine Angew. Math. 245 (1970), 15–40.

  21. 21.

    V. Szebehely, Burrau’s problem of the three bodies,Proc. Nat. Acad. Sci. USA 58 (1967), 60–65.

  22. 22.

    J. Waldvogel, The close triple approach,Celestial Mech. 11 (1975), 429–432.

  23. 23.

    J. Waldvogel, The three-body problem near triple collision,Celestial Mech. 14 (1976), 287–300.

  24. 24.

    A. Wintner,The Analytical Foundations of Celestial Mechanics, Princeton, NJ: Princeton University Press, 1941.

  25. 25.

    Z. Xia, The existence of noncollision singularities in the N-body problem.Ann. Math, (in press).

  26. 26.

    H. von Zeipel, Sur les singularités du problème des corps,Arkiv för Mat. Astron. Fys. 4, (1908), 1–4.

Download references

Author information

Correspondence to Florin N. Diacu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diacu, F.N. Painlevé’s conjecture. The Mathematical Intelligencer 15, 6–12 (1993). https://doi.org/10.1007/BF03024186

Download citation

Keywords

  • Celestial Mechanic
  • Dynamical System Theory
  • Binary Collision
  • Triple Collision
  • Collision Singularity

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners in accordance with our Privacy Statement. You can manage your preferences in Manage Cookies.