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Abstract 

This is a review of the old electrodynamics which prevailed during the first half of the 165-year 
history of electromagnetism. Ampere’s principal achievement was the deduction of his empirical 
force law from experiments with several current balances. Faraday then discovered electro- 
magnetic induction. This prompted F. E. Neumann to  work out a quantitative explanation of in- 
duction based on Ampere’s force law. It involved the concept of the electrodynamic potential 
which, as we know now, is the same entity as magnetic energy. With the newtonian principle of 
virtual work, Neumann found his potential yielded the correct mechanical forces on metallic 
current circuits. Neumann’s theory contains a physical quantity which today is c d e d  the magnetic 
vector potential and treated as a mathematical contrivance. 

Neumann’s mutual inductance formula has become a powerful tool of inductance calculations. 
Maxwell made a major contribution to  the Ampere-Neumann electrodynamics by developing the 
mean-geometric-distance method for calculating the inductance of conductors of finite cross-sec- 
tions. This became particularly useful after Sommerfeld solved Neumann’s double integral for 
parallel, straight wires. Maxwell built all of Neumann’s mathematical theory into his field equa- 
tions but the lingo changed. Electrodynamic potential became kinetic energy of the field; con- 
ductor element interactions became flux linkage; and so on. Maxwell’s equations do not contain a 
magnetic force law. He believed both Ampere’s law and the law currently in use, which was first 
suggested by Grassmann in 1845, were compatible with field theory. Lorentz later found that  the 
motion of charges in vacuum obeyed only Grassmann’s law and not Ampere’s. From then onward 
the old electrodynamics fell into disuse and field theory has reigned supremely ever since. 

Recent developments have shown the conflict between Ampere’s and Grassmann’s law t o  be 
related to the natore,of the electric current. Conduction currents in metals obey Ampere’s law and 
convection currents in vacuum obey Grassmann’s law. Both laws agree on the reaction forces be- 
tween closed metallic circuits, because the relativistic contribution from the Grassmann law then 
integrates to  zero. This fact appears to  have mislead Lorentz in believing that  the drifting electron 
in vacuum is magnetically equivalent to  the current element of metals. 

An examination of the long debate concerning the validity of Newton’s third law of motion in 
electromagnetism proves the Ampere-Neumann electro-dynamics to  be valid for metallic circuits 
while the theory of special relativity and field momentum conservation are required for convecting 
charges in vacuum. This conclusion is strongly supported by experimental evidence. It demands a 
change in the concept of the metallic current element. 
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8.3 One of Hering’s longitudinal force experiments 

1. Introduction 

The re-discovery of longitudinal, mechanical forces of electromagnetic origin acting 
along current streamlines in metallic conductors [ 11 has created interest in the original 
electromagnetic theory founded by AMPERE in France and F. E. NEUMANN in Germany 
during the first half of the nineteenth century [2, 31. Relativistic electromagnetism has 
difficulties in explaining this type of experiment without contravening Newton’s third 
law [4] and momentum conservation [5] and thereby implying the possibility of hardly 
credible means of space propulsion. It is the freedom from these conflicts which provides 
the incentive for re-examining the old electrodynamics. 

The Ampere-Neumann theory is strictly limited to electric current phenomena occur- 
ring in metallic conductors. But in this restricted area it rests on a strong empirical 
basis which makes it virtually infallible. A child of newtonian mechanics, it shares with 
the latter theory the wide applicability to technology. Curiously, the restriction to 
metallic conductors now appears to open a door through which the old electrodynamics 
may be linked to modern solid state physics. I t  even holds out some hope for a deter- 
ministic quantum mechanics. The crucial new component in this undertaking is a better 
understanding of the nature of the current-element, Longitudinal mechanical forces are 
inconsistent with the hypothesis that the current-element is merely a moving electron. 
The basic element must also involve the metal ion and therefore the lattice of solid 
conductors. 

Ampere’s andNeumann’s original papershavenot been translated intoEnglish. Modern 
textbooks ignore the old electrodynamics. At least two or three generations of physicists 
and engineers have been educated without any knowledge of it. This paper has been 
written to provide a very abbreviated treatment of the theory while, a t  the same time, 
outlining its modern development. 
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2. Ampere’s Force Law 

In  1820 Ampere set out to create an electromagnetic theory in the newtonian tradition. 
For this he required a fundamental law of particle interaction. He suspected this would 
turn out to be an inverse square law, akin to those of Newton and Coulomb which - to 
use his own words in English translations [6] - “. . . opened a new highway into the 
sciences which have natural phenomena as their object of study”. 

However difficult it may appear today, the question of what constitutes the elemen- 
tary particle of electrodynamics apparently posed no problem to Ampere, nor to his 
contemporaries Biot and Savart. They concurrently plunged for the current-element. 
It is not certain who may have thought of this concept first. Ampere clearly recognized 
that, unlike the elementary particles of gravitation and electrostatics, which have the 
scalar magnitudes of mass or charge, the current-element would be a more complex 
entity, having a direction and a magnitude which is the product of length and current. 

On the basis of his first electrodynamic experiments showing the attraction and re- 
pulsion of straight and parallel current-carrying wires, Ampere was led to believe that 
the mechanical force AFm,, between two current-elements i,dn and i,dm was to be of 
the general form 

where rm,n is the distance between the elements and F a function of the three angles 
a, and E ,  representing the inclinations of the two elements to the distance vector while E 

is the inclination between the elements themselves. If F(a ,  ,B, E )  is positive, the force is 
negative which Ampere meant to stand for attraction whreas a positive force indicated 
repulsion. 

With respect to the proportionality of the elemental force to the lengths and currents 
of the two elements Ampere said: 

“First of all, it is evident that the mutual action of two elements of electric current is 
proportional to their lengths ; for assuming them to be devided into infinitesimal equal 
parts along their lengths, all attractions and repulsions of these parts can be regarded as 
directed along one and the same straight line, so that they necessarily add up. This action 
must also be proportional to the intensities of the two currents.” 

The inverse square factor ( l/rk,n) Ampere confirmed with his three-circle experiment 
shown in fig. 1. For the sake of clarity this diagram does not show the current leads to 
the three parallel and coaxial current circles which are arranged in vertical planes. Go- 
and-teturn leads were kept close together for minimum disturbance of the measured 
forces. The three circles were connected in series to ensure equal current intensity in all 
of them. Ampere’s method of compensating for the effect of the earth’s magnetic field 
has also been omitted in fig. 1. The radii of, and the distances between, the three circles 

Fig. 1. Ampere’s three-circle experiment 
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were chosen such that the geometric relationship of circle 1 to circle 2 was similar to the 
relationship of circle2 to circle 3. In  other words, the only difference between the 1-2 
and 2-3 combinations was the linear scale factor. Circles 1 and 3 were fixed to the 
laboratory frame, while circle 2 was held at  the level of the other two but with its insu- 
lator arm free to rotate about the vertical axis Y Y .  The experiment proved that, if the 
currents in 1 and 3 encircle the common axis X X  in the same direction, circle 2 will 
remain stationary, it being either attracted or repelled equally strongly by the two ad- 
jacent wire circles. When the currents in circle 2 flows in the opposite sense of the two 
other currents, the mutual forces were attractions. 

This experiment confirms that the reciprocal forces between two current loops are 
independent of the size of the loops. This must also be true for all elemental forces into 
which the total force may be divided. Hsnce the geometrical factor dm . dn/r&., of 
equ. (1) inust indeed be the dimmsionless number furnished by the inverse square law. 

Fig. 2. Angles in Ampere’s force formula 

Ampere’s most challenging task proved to be the determination of the angle function 
of equ. (1). The three angles are defined by fig. 2. On this diagram M and N are the 
locations of two unequal current-elements. The distance between them should be treated 
as a vector. It may be chosen to point from M to N or vica versa. The current-elements 
are also vectors pointing in the direction of current flow. The angle between i,dm and 
rm,n is a. Similarly, the angle between indn and rm,, is B and the inclination of the two 
elements toward each other is E. 

Each element combined with the distance vector lies in a different plane. These two 
planes intersect in rm,n. Of the two complimentary angles between the planes, y is that 
angle through which one plane would have to be turned in order to make the components 
of the current-elements which are perpendicular to rm,n point in the same direction. 

To see how Ampere determined B’(oc, p, E ) ,  we resolve the two current-elements of 
fig. 2 into their Cartesian components, as shown in fig. 3. These components are given by 

m(x) = i,dm cos a; 
n(x) = i,dn cos j3; 

m(y) = imam sin oc; 
n(y) = i,dn sin ,!? cos y ; 

m(z) = 0 ;  
(2) n ( z )  = i,dn sin /I sin y .  

Now each component of m interacts with each component of n, resulting in a total of six 
contributions to the elemental force between two current-elements. According to a rule 
first mentioned by Ampere, four of them are zero. Ampere explained the rule as follows: 

“An infinitely small portion of current exerts no action on another infinitely small 
portion of a current which is situated in a plane which passes through the midpoint 
and which is perpendicular to its direction. In  fact, the two halves of the first element 
produce equal actions on the second, the one attractive and the other repellent, because 
the current tends to approach the common perpendicular in one of these halves and to 
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move away from it in the other. These two equal forces form an angle which tends to 
two right angles according as the element tends to zero. Their resultant is therefore in- 
finitesimal in relation to these forces and in consequence it can be neglegted in the cal- 
culations.” 

Accordingly, the four vanishing force contributions of the element components in fig. 3 
are 

A F r n ( x ) , n ( y )  = d F r n ( x ) , n ( z )  = d p m ( y ) , n ( x )  = d F m ( y ) . n ( z )  = 0. (3) 

A corollary of Ampere’s rule is that the mechanical interaction of two current-ele- 
ments arises from two sets of parallel element components, one of them being the set 

Fig. 3. Resolved-component vector representation of the two general current elements 
of fig. 2 

which lies along the line connecting the elements, and the other is the set perpendicular 
to that line. Ampere then assumed that the two non-vanishing force contributions may 
be expressed by 

d F r n ( y ) , n ( g )  = - 4 ~ )  n(~)/ri,n (4) 

A F r n ( x ) , n ( x )  = --km(z) n ( z ) / r i , n  ( 5 )  

where k is a numerical constant and the element components are defined by equ. (2). 
With (4) and ( 5 ) ,  equ. (1) may now be written 

AF,,, = -irnin(dm . dnlri,,) (sin cz sin /3 cos y + k cos a cos /3). 

cos E = cos cz cos /3 + sin a sin /3 cos y 

(6) 

( 7 )  

Ampere then introduced the trigonometric equation 

which he proved with reference to a spherical triangle. But this relationship may also be 
derived from the direction cosines of the two general current-elements. These cosines are 

for imam: cos = cos a ;  cos 8r,rn sin n ;  cos 8z,rn = 0 ;  

for inan: cos Ox,, = cos /3; cos = sin /3 cos y ;  cos B z , ,  = sin /3 sin y .  

Equation ( 7 )  then follows from the rule 

C O S E  = c o s ~ , , , C O S ~ , , ,  +cosey,n8cosey,, + C O S ~ , , ~ C O S ~ , . , .  

AF,,, = --.i,i,(dm dn/r&,,) {cos E + ( k  - 1) cos a COB /I}. 

With equ. ( 7 )  the force formula may be transformed to  

(8) 
After this step Ampere converted the cosines to partial differentials of rm,, with re- 

spect to small displacements of the position M and N along the line of action. The partial 

5 Portschr. Phys. 34 (1986) 7 
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differentials are further defined by fig. 4. I n  the limit as the displacements tend to zero, 
and writing r for r,,,, we find that 

cos 01 = ar/am; cos p = -&/an. (9) 

r2 = (xm - 2,)' + (9, - ~ n ) ~  + ( zm  - zn?. (10) 

r(ar/am) = ( x m  - 2,) (azm/am) + (ytn - Y n )  (%n/am)  + (2, - z n )  (azrnlam,) (11) 

Furthermore, if the coordinates of M and N are x,, ym, z, and za, yn and z,, we have 

Differentiating this with respect to m results in 

i,dm 

4 

Fig. 4. Partial differentials of the  
distance vector with respect to  the 
displacement of M and N in the di- 
rection of the current elements 

\ 
\ 
\ 

and a second differentiation with respect to n results in 

But the right-hand side of equ. (12) consists of the negative products of the direction 
cosines of the two current-elements. Therefore 

cos E = -r(a2r/am an) - (&/am) (&/an). (13) 
Substituting equs. (9) and (13) into the force equation (8) transforms the latter to 

 LIB'^,^ = imi,(dm {r(a2r/am an) + k(ar/am) (&/an)}. (14) 
This may also be written 

L U ' ~ , ~  = imi,(dm dn/r2)  (1/+1) (a/&) (rk(ar/am)} 

m n  - - i i r-(k+l)(a/an) {rk(ar/am)} dm d7t. 

Ampere then invokes the result of another of his null-experiments to determine the 
value of k. The essential features of this experiment are shown in fig. 5. It will be referred 
to as Ampere's wire-arc experiment. It proves the mechanical force on a circular arc 
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section of a current-carrying circuit 1, due to a separate closed circuit 2 of any shape and 
disposition, to be entirely perpendicular to the arc. As shown in fig. 5, Ampere floated 
the arc section on two mercury throughs and left it free to rotate on the insulator arm OX 
about the pivot 0. As circuit 2 was brought up to it and moved around, the arc remained 
stationary. Prom this Ampere concluded that the tangential force on the wire arc was 
zero. 

Taking equ. (15) and substituting for ar/am from equ. (9) gives 

AF,,, = i,i,dm r-(k+11(8/an) (rk cos a )  d n .  (16) 

The component of this mutual force acts tangentially on i,dm is obtained by multi- 
plying equ. (16) by cos a. In order to agree with the wire arc experiment, this tangential 

' 2  
Fig. 5. Ampere's wire-arc experiment 

force, when integrated over all elements i,dn on circuit 2,  must come to zero. Hence 

1 AF,,, cos = i,i,dm $/ r-(2k+1) rk cos d: (a/&) ( rk  cos a)  d n  = 0. (17) 
2 2 

For integration by parts we let u dv = uv - $ v du 

u = T - ( * ~ +  

v = 0.5 rZk cos2 a; 

&/an = -(2k + 1) ,-2(k-+l)(a,/a,) 

dv = rk cos d: (a/&) ( r k  cos a) d n .  

Therefore 

COR a = 0.5i,i,dm(cos2 a/r}i. + (2k + 1) 1 (cos2 a/@) d r ) .  (18) 
> 2 

The limits n and n' of the first term are adjacent infinitely short elements on circuit 2 
and therefore the first term of equ. (18) vanishes. However, as Ampere did point out, 
many closGd circuits can be imaginedfor which theintegral in the second term of equ. (18) 
will not be zero. To comply with the wirearc experiment we must then have 

2k + 1 = 0 or k = -(1/2). (19) 



464 P. GRANEAU, Ampere-Neumann Electrodynamics 

Using this value of k in equ. (8 ) )  Ampere expressed his force law by 

AF,,, = -imin(dm . dn1rk.J (cos F - (312) cos 01 cos p } .  (20) 
This defined his electrodynamic unit of current in terms of a mechanical force. Later the 
electromagnetic unit of current (absolute ampere) was introduced. Its measure was given 
by 

1 absolute ampere = . 1 electrodynamic unit of current. 

This converted Ampere’s law to the modern form 

AF,,, = -imi,,(dm &Irk,,) ( 2  cos E - 3 cos 01 cos p ) .  (21) 
It gives the elemental force in dyn provided the currents are expressed in absolute 
ampere. 

Ampere successfully tested his law with many different experiments. In  160 years it 
has never been proved wrong when applied to metallic circuits, for which it was devised. 
This makes it an empirical law, like Newton’s law of gravitation. Ampere’s method of 
deriving it is only of academic interest. The proof of the law rests on a firm experimental 
basis. But it must be remembered that the empirical basis does not extend to currents 
outside metallic substances, e.g. in plasma and vacuum. 

One more of Ampere’s experiments should be mentioned because of the attention it 
received over the years. Before considering this we note that when two current-ele- 
inents lie on the same straight line and point in the same direction, we have cos E = cos OL 

= cos j3 = 1. The interaction force then is 

This is always positive and therefore represents repulsion. As a consequence of equ. (22) 
current-carrying wires should find themselves in tension and jet-reactions should arise 
a t  places where the current passes through a liquid-solid metal interface. Both these 
phenomena have been observed [l, 71. 

Ampere’ssketch of theapparatus with which hedemonstrated the action of longitudinal 
forces is shown in fig. 6. ABCD was a mercury-filled dish with the liquid metal being di- 
vided in two pools by the insulation barrier AC. Current leads m ans s dipped into the 
pools and a current source - which a t  Ampere’s time would have been a collection of 
galvanic cells - had to be connected to the terminals E and F. An insulated copper wire 
npqr with bare ends r and  n, in the shape of a hairpin, was floating on the mercury with 
the legs straddling the insulation barrier and the bend passing over it. 

Ampere found, as he expected, that when the current was turned on the hairpin would 
float away from the terminals toward C .  He ascribed this primarily to the longitudinal 
reaction forces between the current in the mercury portions of the circuit and the legs of 
the hairpin. 

Fig. 6. Ampere’s sketch of an experiment demonstrating the action of longitudinal 
forces 
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In  today’s electromagnetic theory the motion of the hairpin has to be attributed to 
the Lorentz force acting on the bend and reacting against the field [8]. The jets of mer- 
cury streaming away from the hairpin ends must then also be caused by Lorentz forces 
on the diverging current streamline pattern in the liquid metal reacting, not against the 
hairpin, but the magnetic field. The notion that the magnetic field - that is vacuum - 
can support large mechanical forces is in conflict with Newton’s third law which requires 
a force balance on elements of matter. With devices such as railguns (91 the vacuum 
would be required to sustain many tons of thrust. To believe this to be true manifests 
extraordinary faith in a man-made theory. 

YAPPAS [5] discovered another difficulty with the field theoretic explanation of 
Ampere’s hairpin experiment. He measured the momentuni imparted to the hairpin by 
a pulse of current. Then he calculated the energy that has to be placed in the field for 
‘non-material’ momentum conservation. It turned out to be much more energy than his 
battery could possibly have supplied. Furthermore, the current required to dispatch 
this energy from the circuit to the field should have destroyed the conductors, but they 
easily survived. 

3. Neumann’s Electrodynamic Potential and Virtual Work 

Twenty years elapsed between the conclusion of Ampere’s work and F. E. Neumann’s 
first memoir in 1845. In  the meantime FARADAY [lo] had discovered both electro- 
magnetic and electrostatic induction. In  searching for a quantitative explanation of 
electromagnetic induction in terms of Ampere’s force law, Neumann discovered the 
significance of a quantity which may be written 

P,,, = -(1/2) imin J (cos e/rm,n) dm d n .  
m n  

(23) 

This he called the electrodynamic potential of two circuits m and n carrying currents i, 
and in. The double integral involves each dm - d n  pair of elements twice while Ampere’s 
theory required them to interact only once. This is taken into account by the factor of 
UP). 

Neumann is best remembered by his mutual inductance formula 

m n  

which arises directly from the electrodynamic potential. I n  equ. (24) the (1/2) factor has 
been dropped but it must be remembered that element interactions must not be counted 
twice. Today virtually all precise inductance calculations are based on Neumann’s for- 
mula (24). I t  has been dealt into field theory by interpreting Mm,% as the magnetic flux 
linking the two closed curves. 

Comparing the electrodynamic potential (23) with Ampere’s force law (21) it will be 
seen that the dimensions of the potential are force x distance = work or energy. Any 
change in the currents or the relative position of the current-elements requires energy 
transfer. If the positions of the circuits change such that the potential increases, then 
work has to be done by a mechanical source and magnetic energy will be stored. Con- 
versely, if the potential is reduced, stored energy will be transformed to mechanical 
work or Joule heat or both. 

Energy as such was not considered in Neumann’s mathematical analysis. P,,, appears 
to be potential energy. Although both Ampere and Neumann used the term electric 
current, neither of them ascribed to it momentum, as Maxwell would do later. 
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Between his first and second paper [3] NEUMANN changed his mind about the sign of 
equ. (23). In  potential theory there have always existed difficulties in agreeing on a uni- 
versal sign convention. KELLOG [ll] points out that the most popular rule is to assign 
negative potential energy to elements of like sign which attract each other and positive 
potential energy to elements of like sign which rcpel each other. Gravitating particles 
are an example of the former class and electrical charges are an example of the latter. 
But current-elements of certain orientations repel each other and in other orientations 
the mutual force is attraction. Anyway, what is meant by negative potential energy? 
We cannot conceive of less than no energy. Hence positive and negative energy must 

m n n' m n' n 

I ' I  
I 1  
I 1  

I 
( b )  

Fig. 7. Electrodynamic potential of 
straight and parallel currents in wires 

be two kinds of energy, like positive and negative charge are two kinds of electricity. 
One kind of potential energy has to be associated with forces of attraction and the other 
with repulsion. 

To illucidate this point further, let us examine the particular case of two very long, 
parallel, straight wires m and n, as sketched in fig. 7. In  case (a) they carry currents in 
the same direction and we know from experience that they will then attract each other. 
I n  potential theory they will be associated with negative energy. Now assume an ex- 
ternally applied force F ,  tends to increase the distance of separation x and brings about 
the displacement ax by moving n to n'. This external force has to do work and expend an 
amount of energy equal to F ,  ax. At first it may be thought that this energy is being 
added to the stored potential (magnetic) energy. But this cannot be so because the 
magnitude of P,,, decreases when n is moved to n' as a result of the lengthening of rm,n 
of every relevant element pair contributing to equ. (23). Not only does the mechanical 
source sustaining .Fx supplyenergy, but the potential energy store also gives up energy. 
What absorbes these two streams of energy? As the currents are assumed to remain con- 
stant, no additional Joule heat will be dissipated in the wires. Therefore all this energy 
must flow to the two electrical current sources and relieve them from furnishing part of 
the Joule heat. 

In  the case of fig. (7b), where the currents flow in opposite directions and the conduc- 
tors repel each other, the displacement ax from n to n' again requires the supply of 
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energy by the mechanical source sustaining F,. However now the magnitude of the 
stored energy increases because r,,, of every relevant element pair becomes shorter. It 
is now possible that all the energx provided by the mechanical source is being stored as 
potential energy, and then the electric current sources may not be involved in the energy 
transactions. 

I t  was Neuniann who originated the virtual work concept when he related the 
reciprocal force of repulsion or attraction between two circuits m and n to the mutual 
potential Pm,n by 

(Fm,n)x == -aPm,niax (25) 
where x denotes a particular direction in which the virtual displacement ax takes place. 
Combining equs. (23), (24) and (25) we obtain the well-known formula 

(Frn,n)x i m i n  aMm,nlax. (26) 

Furthermore, when P,,, refers to the mutual energy stored between two parts of the 
same circuit, the circuit having a selfinductanceL and carrying the current i, we find 

(F,,,,), = i2 aL/ax. (27)  
For the proof that Neuniann’s electrodynamic potential follows directly from Ampere’s 

force law the reader is referred to Ref. [3] .  I t  would take up too much room to reproduce 
it here. 

Neumann’s virtual work principle also predicts that the closed circuits m and n, 
carrying currents i, and in,  will exert a mutual torque upon each other. If one of the 
circuits is given a virtual angular displacement 8!PZ about an arbitrarily chosen x-axis, 
the mutual torque opposing the displacement is 

(Trn,n)z = -aPrn.nlay.z = i m i n  aMm,nlaYz- (28) 

4. 

Keuniann started with the assumption that the induction of electromotive force (e.ii1.f.) 
is aninteraction between conductor elements. He realized that it could not be a mutual 
or reciprocal interaction like the one underlying Ampere’s force law because the ele- 
ment experiencing the induction niight not carry any current with which it could react 
back on the element which caused the induction. So he reasoned that only the fraction 
AF,,,/in of equ. (21) wouldbeactive in setting up ane.ni.f. in the element dn through the 
action of imam. He first considered the case of a niotionally induced e.m.f. as indicated in 
fig. 8. There the conductor element d n  moves with velocity v, along the direction x re- 

Neumann’s Law of Electromagnetic Induction 

im dm 

mpq . dn,e, 

;y. . . 
\ * L Fig. 8. Diagram for equation (29) 

\ 
\ 
I 
I 
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lative to the current-element i,dm. From the experimental facts provided by Faraday 
and others, Neuniann then found that it was AP,Ji, multiplied by the relative velocity 
component parallel to the line connecting the elements which determined the induced 
e.m.f. Ae, in the conductor element dn.  With Lenz’s law of the direction of induced 
e.m.f.’s he could write 

den = -(APm,,/in) v, cos (29) 

The angle Or,x is shown in fig. 8. Equation (29) is known as Neumann’s law of induction. 
If Ae, initiates an induced current in in dn, then the power flow to this element is Ae,i,. 

This quantity Neumann equated to the rate of change of the electrodynamic potential, 
obtaining the far more general law of induction 

Ae, = (l/in) ( a p t )  AP,,, . 

ar,,,/at = V~ cos el,, 

(30) 

(31) 

it can be shown easily that equ. (30) agrees with (29). 
When calculating Ae, not only for one inducing current-element i,dm but for all 

elements on a closed circuit, Neuniann was first to prove [3] that the angle function 
2 cos E - 3 cos cos B may be simply written cos E because the closed path integral of 
(cos E - 3 cos a eos j3)/rm,n is zero. Therefore, if the inducing elements will eventually be 
integrated around a closed filament of which i,&m is one element, the induced e.m.f. per 
unit length may be expresses as 

Since 

Ae,/dn = - (a/at)  ((i,dm cos &)/rrn,,). (32) 

Now the magnetic vector potential Am,n due to current-element i,dm a t  the position 
of dn  is 

A m s n  = iindmlrrn,n (33) 

But only the component Am,, COSE parallel to the element d n  is effective in inducing the 
e.m.f. a t  the location of dn.  Hence equ. (32) may be written 

Ae,/dn = -(aA,,,/at) cos E .  (34) 

This shows that the magnetic vector potential is an essential part of the Ampere-Neu- 
niann electrodynamics. 

When the two conductor elements dm and d n  belong to the same closed circuit we 
may speak of selfinduction. As the elements do not interact with themselves, the e.m.f. 
computation does then not involve closed path integrals. This means in selfinductance 
calculations we are not justified to reduce the angle function to cos E .  The most general 
form of equ. (32) for both mutual and selfinduction therefore is 

Ae,/dn = - (a /a t )  {(irndm/rm,,) (2 cos F - 3 cos a cos /I)} (35) 

and the most general expression for the induced e.m.f. per unit length in terms of the 
vector potential becomes 

Ae,/dn = - (aA,,,,/at) (2 cos E - 3 cos 01 cos B )  . (36) 

So long as the inducing circuit is a closed curve (mutual induction), any quantity may be 
added to the vector potential of equ. (33) which has a zero closed-path integral. This 
arbitrariness iinderlying gauge invariance may be eliminated by redefining the elemental 
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magnetic vector potential as follows 

An,m = (irn/rm,,,) {cos E - (3 cos a cos ,6/cos e)} dm 

= (in/~rn,n) {COS E - (3 cos 01 cos , ~ / C O S  E ) )  dn. 
( 3 7 )  

These last equations may be applied to any pair of conductor elements, in conjunction 
with equ. (34), regardless of whether they belong to separate closed circuits (mutual 
induction) or the same circuit (selfinduction). The rules of gaugeinvariance are then super- 
fluous. The three angles a,  ,6 and E are not independent of each other. One could be ex- 
pressed in terms of the other two. Retaining the three angles has the advantage that 
everyone appears in a cosine which niakes it unecessary to adhere to an angle sign con- 
vention. 

Finally it should be pointed out that the relationship between Neuniann’s electro- 
dynamic potential and the magnetic vector potential of a pair of metallic conductor 
elements is most clearly expressed by the dot products 

5. The Calculation of Inductances 

The lasting value of Neuniann’s theory has been that, with equ. (24), it provides the 
basic tool for inductance calculations relating to metallic circuits. Even though this 
formula refers explicitely to mutual inductances, it is equally useful for determining 
selfinductances. The latter parameters are commonly interpreted as being special cases 
of mutual inductance with primary and secondary circuit merged into one conductor. 
Both quantities have the same dimension which in electroniagnetic units is length. I t  is 
the natural dimension of mutual inductance which depends only on the length and dis- 
position of lines in space. I n  contrast to this all selfinductance formulas apply to three- 
dimensional conductors. The reason for this will be revealed shortly. 

MAXWELL [12] made an important contribution to the Ampere-Neuniann electro- 
dynamics by inventing the niean-geometric-distance method of inductance calculation 
which is embodied in the following analysis of selfinductance. Consider a wire loop as 
shown in fig. 9, part of which may take the form of a coil. The loop current is assumed to 

Filament m - 
-Fi lament n 

Wire cross-section 

Fig. 9. Wire loop connected in series with an externally generated e.m.f. 
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he due to an externally generated e.1n.f. E applied in series with the circuit. So long as 
no charge accumulation can occur in the circuit, i.e. when we are dealing with a metallic 
conductor, no restrictions need be placed upon the shape or size of the loop and its con- 
ductor cross-section, nor on the homogeneity of the material or the rate of change of 
the applied e.1n.f. 

If R is the series resistance of the loop and L its selfinductance, then the loop current i 
is determined by the well-known equation 

iR = E - (d/dt)  (Li). (39) 

Let us now look a t  any two closed filaments m and n passing through any wire cross- 
section. All filaments must be very thin tubes of flow filled with conducting matter. I n  
fig. 9 the filaments have square cross-sections, but other shapes could have been chosen 
provided they leave no empty space between filaments. According to the classical defi- 
nition of a tube of flow, its cross-sectional area may vary along its length, but each con- 
ductor section must carry the same current. The current i, flowing in filament m may be 
calculated from 

where Rm is the resistance of the m-th filament and in the current in the n-th filament, 
while M,,,, is the mutual inductance between the two general filaments. The summation 
in equ. (40) covers all possible positions n in the wire cross-section, including that position 
in which n coincides with m. This coincidence defines the selfinductance of an individual 
filament as 

L m  = M s i , m -  (41) 
Bearing in mind that 

1/R = 2 (l/R,); i = xi, = in (42) 
m m n 

equ. (40) can be solved for i,. Summing this solution for all filament currents in accord- 
ance with equ. (42) gives 

i = E (1IRrn) - (d/dt) C (1IRrn) 2 Jfm,nin- 
m m n 

Substitution of equ. (42) into (43) and multiplication by R results in 

iR = E - (d /d t )  C (RIB,) -Mm,nin}- 
{m 71 

A comparison of equ. (44) with (39) defines the selfinductance of the wire loop as 

L = C (RIRm) C J f m , n ( & n / i )  - 
m n 

(43) 

(44) 

(45) 

This is the most general and exact expression of selfinductance in terms of the filament 
self and mutual inductances of which the closed metallic circuit is composed. 

The expression for L takes on a more simple form when dealing with a wire of constant 
cross-section and uniform resistivity and the wire being very long compared to its cross- 
sectional dimension. All filaments arc then substantially of the same length and they 
may all be made to have the same cross-section. The resistance and current ratios in 
equ. (45) then depend merely on the total number of filaments. If this number is g we 
have 

(46) RIR, = i,li = 11s. 
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This argument also implies that the current distribution over the conductor section is 
constant which will be approximately true for sufficiently slow rates of change of the 
applied voltage. 

With equ. (46) the expression for the loop selfinductance reduces to 

In  this form L is seen to be the mean of all possible mutual inductance permutations of 
the g filaments, including a total of g combinations in which positions m and n coincide. 

MAXWELL [12] recognized that the mutual inductance of a pair of straight parallel 
lines is largely a function of the logarithm of the distance of separation d. For the pur- 
pose of mutual inductance calculations he further assumed that each conductor fila- 
ment of finite thickness could be represented by a line coinciding with the filament axis. 
Then the average value of all the mutual inductances of filaments making up a long 
straight conductor is determined by the average value of In d. Since there are d fila- 
ments involved we have to deal with g(g - 1)/2 different mutual inductances. A geo- 
metric-mean-distance (GMD) d‘ for all filament pair combinations may now be defined by 

In d‘ = [Z / (g(g - l)}] C In d .  
g(9-1)/2 

Once the GMD of the conductor cross-section has been found, it becomes possible to 
equate the selfinductance of this conductor - in accordance with equ. (47) - to the 
mutual inductance of a single pair of lines separated by d‘. Maxwell demonstrated how 
to compute the GMD of a variety of conductor cross-sections. Furthermore, his GMD 
technique may equally well be applied to deriving the mutual inductance of a pair of 
straight parallel conductors, each of them being subdivided into filaments. This latter 
computation requires the GMD of one conductor cross-section from the other. 

It is often forgotten that Maxwell’s GMD method, strictly speaking, applies only to 
very long straight conductors and even in this restricted case it involves SOMMERFELD’S 
approximation [13]. Sommerfeld was first to solve Neumann’s mutual inductance for- 
mula (24) for a pair of parallel, straight filaments of finite length L and spacing d. His 
result is 

Mm,, = 2 { L  In [(L + f m 2 ) / d ]  - fm + d } .  (49) 

When L is very much greater than d, equ. (49) simplifies to the approximation 

Mm,,,/(2L) N -1 + In (2L) - In d .  (50) 

Only in this last approximation is the filament mutual inductance per unit length pro- 
portional to In d, as assumed in Maxwell’s GMD method. 

We may represent the selfinductance of a conductor of g filaments by a g x g square 
mutual inductance matrix which has the filament selfinductances of equ. (41) as the 
elements of the principal diagonal. Equation (47) is the sum all the matrix elements 
divided by the number of matrix elements. The same result would be obtained if we took 
the sum of the mutual inductances of all filament pair combinations, instead of permuta- 
tions, added to them theelementsof the principaldiagonaland then divided byg(g + l ) / Z .  
Now equ. (48) can be thought of being based on a g x g niatrix of the logarithms of 
filament distances d. If we took filament pair combinations, instead of permutations, we 
would have to deal again with g(g + 1)/2 elements of thislatter matrix. But in equ. (48) 
the summation is over g(g - 1)/2 combinations, indicating that the diagonal elements 
of the matrix have been ignored. These elements would all be In (0) and therefore of 
indeterminate magnitude. In  this way Maxwell’s GMD method avoids facing the diffi- 
cult question of what is the magnitude of the selfinductance of an infinitely thin current 
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filament. The formulas which have been derived with the GMD method all suggest that 
it should be infinite which must be wrong for it would preclude the starting of any cur- 
rent in a metallic conductor. 

To resolve this problem within the framework of the Ampere-Neumann electrodyna- 
mics we ask the question: what is the mutual inductance of a pair of conductor elements? 
According to equ. (24) it should be - (dm.  dn/rm,n) cos E .  However this implies that 
sooner or later the term will be integrated around a closed loop. In  the case of the self- 
inductance of an  isolated closed filament - and adhering to the newtonian principle 
that elements of matter do not interact with themselves - there is no closed loop inte- 
gral involved. We therefore have to  express the mutual inductance of a pair of conductor 
elements by the most general expression 

= -(dm . dn/rmSn) (2 cos E - 3 COB o( cos p ) .  (51) 

By the same token, each pair of current-elements must be associated with an amount 
of stored niagnetic energy of 

 LIP^,^ = -iminAMm,n. (52) 

We could not imagine element pairs being associated with flux linkage and there is, 
therefore, no place for equ. (51) and (52) in electromagnetic field theory. But in the 
Ampere-Neumann electrodynamics which is built on the mechanical force between two 
current-elements it is natural and logical to associate mutual inductance and stored 
magnetic energy with element pairs. 

With equ. (51) the selfinductance L, of an  isolated filament of a total of x conductor 
elements takes the form 

The (112) factor allows for counting each element-pair contribution twice. The two gene- 
ral elements m and n must never be allowed to coincide which is being indicated by 
m $; n. No solutions of equ. (53) byopen-path integration have been found. Fortunately 
the computer makes it possible to solve the equation numerically. This latter technique 
was not available to Neurnann and Maxwell and most subsequenti nvestigators of induc- 
tance calculations. 

Fig. 10. Construction for calculating the selfinductance of a wire circle. 

= p ; & = + p = 2h = 2g ; = en 
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The computations for a filament circle of radius R may be carried out as follows. 
Divide the circle into ( z  + 1) equal elements of arc, as indicated in fig. 10. Take 
two general elements dm and dn positioned a t  m and n respectively and let these ele- 
ments successively occupy each possible arc position on the circle. All the contributions 
to the circle selfinductance may be tabulated on a ( z  + 1) X ( z  + 1) square matrix with 
zeros along the principal diagonal. The zeros acknowledge that individual conductor 
elements do not interact with themselves. To obtain L(circ1e) we must take the sum of 
half the off-diagonal elements. It will be recognized, furthermore, that the sum of each 
row of matrix elements is identical to the sum of any other row because of the symmetry 
of the circle. Hence &(circle) is given by half the row-sum of the mutual inductance 
matrix multiplied by the number of rows ( z  + 1). That is 

z 

&(circle) = (1/2) ( z  + 1) dm - d n  2; (3 cos a cos j3 - 2 cos &)/r,,,. 

3 cos a cos p = 3 COB2 (en/2) = i . q i  + cos 19,) (55) 
r$,n = 2R(1 - cos 19,) (56) 
dm = d n  = RdI9 = {2n/(z + 1)) R (57) 
8 = n d 8 .  (58) 

(54) 
n = l  

From the geometrical parameters noted on fig. 10 it follows that 

Finally, because of the symmetry of the circle, we need only sum half-way around it and 
then multiply the result by two. The expression to be evaluated by computer therefore is 

We are now faced with the decision of what the number z should be. To probe this ques- 
tion, equ. (59) was evaluated fo ra range 300 5 z 5 20,000. The results in terms of the 
dimensionless number L/R are listed on table 1 and plotted on fig. 11. A curve was fitted 
to the results by regression analysis. It was found to correspond closely to the logarith- 
mic relationship 

LIR = 13.56 + 12.63 In ( z  + l ) ,  (60) 

7.0 - 

6.5 - 
6.0 - 

L / R  

5.5 - 

5.0 - 

4 5 1 1  I 1 

0. 2 4 6 8 10 12 14 16 18 2 0  x l O 3  

L 

Fig. 11. Selfinductance per unit radius of a circular filament. Curve from equ. (60); 
points from equ. (59) 
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Logarithmic relationships are commonplace in inductance computations. Equation (600) 
tells us that z must not approach infinity as the Ampere-Neumann electrodynamics 
would then become absurd. In  any case, since we are dealing with matter interactions 
and matter is not infinitely divisible, it is only reasonable that the conductor element size 
should have a finite lower limit. Whilst equ. (60) demands only the length of the ele- 
ment to be finite, it would indeed be surprising if it could be infinitely thin. From what 
we know about the atomic structure of metals one would expect the length-to-width 
ratio of the ultimate conductor element to be of the order of one. 

In  contrast to this, Ampere and Neumann assumed the current-element to be in- 
finitely divisible. This is understandable because without the infinitesimal calculus they 
would have been unable to obtain useful quantitative results for mutual inductances 
where the minimum distance between element pairs is usually large compared to the 
conductor cross-section. That infinitely small conductor and current-elements are not 
admissible emerges only in the calculation of inductive and mechanical interactions be- 
tween elements of the same circuit where neighboring elements come as close together as 
the element size permits. This discovery had to wait until computer-aided finite ele- 
ment analysis became a reality. 

If we make dm and d n  equal to the atomic spacing, say 10 angstrom, then circles 
ranging in diameter from 1 mm to 1000 m would involve 106 to 10l2 elements. Equation 
(60) permits the calculation of the selfinductance per unit radius for these two large 
numbers of elements. The results are included in table 1 and it will be seen that the self- 
inductances derived in this way are not unreasonably large. This admits the possibility 
that the atom itself is the basic conductor and current-element. 

Inductance calculations should be as much affected by the lateral distance between 
neighboring conductor elements as by their longitudinal separation. The lateral spacing 
determines the number of filaments into which the conductor must be resolved. If the 
atom is the basic element, then longitudinal and lateral spacing will be about equal. The 
element shape would then be given by the lattice cell and, to a first approximation, could 
be taken to be a cube. 

In  electromagnetic units, the formula usually quoted for the selfinductance of a circle 
of radius R made of round wire of radius ‘a’ is 

LIR = 4n{ln (8Rja) - k }  (61) 

where the suggested values for the constant k range from 1.75 to 2.5. The uncertainty 
with regard to k indicates some difficulty in making equ. (61) to agree with experiment. 
If we take a square wire of a x a cross-section and resolve it into approximately cubic 
conductor elements we would have 

R/u  = (Z + 1)/(2n). (62) 

Substituting this into equ. (61) and solving for a range of z-values gave the results 
recorded in the last column of table 1. We find order of magnitude agreement with 
equs. (59) and (60). Since equ. (61) is not well confirmed by experiment, it seems cubic 
conductor elements in conjunction with equs. (59) and (60) represent an adequate first 
approximation - the single filament approximation - to the selfinductance of a wire 
circle. For greater accuracy the conductor has to be resolved into a number of parallel 
filaments. 

The foregoing procedure provides a method of calculating the selfinductance of rect- 
angular and other non-circular wire-loop or magnet-coil shapes for which there exist 
no reference formulas. In  every case it helps to set up the complete square matrix of 
motual inductances between all element pairs with zeros along the principal diagonal 
and use cubic elements throughout. 
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Table 1 
Selfinductance per unit radius of a circular filament 

z from equ. (59) from equ. (60) from equ. (61) 
R/u = ( Z  + 1)/2z 
k = 2  

300 
400 
500 
600 

1000 
2 000 
3 000 
5 000 
10,000 
15,000 
20,000 
108 
1012 

42.8 
44.6 
46.1 
47.2 
50.4 
54.8 
57.4 
60.6 
64.9 
67.5 
69.3 

42.8 49.6 
44.6 53.2 
46.0 56.0 
47.2 58.3 
50.4 64.7 
54.8 73.4 
57.3 78.5 
60.6 84.9 
64.9 93.6 
67.5 98.7 
69.3 102.4 
94.0 151.5 

181.3 325.1 

6. Computing Ampere Tension 

An infinitely long straight conductor could be, and has been, treated as a closed circuit. 
Yet it would be futile to analyze it because, even with finite size elements, the Ampere 
formula would give infinite tension at  every point. TO prove anything about Ampere 
tension, the investigation has to concern itself with closed solid metallic circuits of 
finite size. 

Consider the example illustrated by fig. 12 in which a square circuit carries a steady 
current i and is adequately cooled to ensure uniform constant temperature everywhere 
in the metal. Sides BC, CD and AD of the circuit are firmly embedded in a dielectric 
structure which is rigidly anchored to the laboratory frame. AB is a free length of wire 
resting against a wall meant to absorb the lateral force on AB. 

I , - - - . . . - -. - - . - -..._.____ z l  

Fig. 12. Square circuit with one free side 
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Let T,/i2 be the specific tension in atomic bonds across plane X intersecting wire A B .  
Each side of the square is assumed to be divided into z equal length elements thin enough 
so that the conductor may be treated as a single filament. The major contribution to T, 
will come from the respulsions exerted by the general elements m in A X  on the general 
elementsn in X B .  This will be given by equ. (22) .  As the equation is independent of the 
unit of length we may choose this to be 

dm = dn = 1 unit of length. (63) 
With the labelling of current-elements indicated on fig. 12, the distance between the 
two general elements may be written 

r,,,n = n - m. (64) 

T,/P = 2 C {l / (n  - W L ) ~ } .  (65) 

The specific tension contribution made by the m - n element combinations is 
X Z  

m = l  n = o + l  

This will be a maximum when x = 4 2 .  
Next we consider the interactions of current-elements in A B  with elements in sides 

BC and AD.  These interactions are all repulsions because the angle function of Ampere's 
force law is negative for all element pair combinations. Interactions between BC and B X ,  
on the one hand, and between A D  and A X ,  on the other, do not exert tension on the 
atomic bondsacross plane X .  But the repulsions between BC and A X ,  as well as between 
A D  and X B ,  add to T,. By resolving the latter repulsions along A B  we obtain the second 
contribution to the specific tension across plane X ,  that is 

1 z  z+1 7 

T,/i2 = 2 (3/r;,n) cosa a,  sin a, + C ,f (3/r;,,) cos2 a, sin a, (66) 
n=x+l p - 1  m=1 q=1 

where 
r&, = (n  - + ( p  - 0.5)2 (67) 

ri,m = ( z  - m + 0.5)2 + (p - 0.5)2 (68) 

cos 01, = (n - 0.5)/rp,,; sin a, = ( p  - O.5)/rp,, (69) 

COs 01, = (z - m + O.5)/rq,,; sin a, = (q - 0.5)/rq,,. (70) 

The 0.5 terms arise from the fact that the position of the current-element is a point half- 
way along its length. 

The third contribution ot T ,  derives from the interactions between A B  and CD. The 
angle function for this side pair has everywhere cos E = -1 and cos j3 = -cos a. 
Furthermore, since a varies from 45 to 135", 2 cos E - 3 GOS a cos j3 = -2 + 3 cos2 a. 
This is never positive and then, because of the negative sign in Ampere's force law, all 
interactions are again repulsions. 

It is convenient to split CD by the plane X (see fig. 12) with general element u on one 
side and w on the other. Symmetry ensures that every elemental repulsion with an up- 
ward longitudinal component is offset by a symmetrical interaction with a corresponding 
downward component. Therefore actions of XC on X B  do not contribute to T,. The same 
is true for actions of DX on A X .  But tensile forces will be produced in A B  by the actions 
of XC on A X  and by DX on X B .  They contribute 

2 2  

T3/ i2  = 2 2 ( -  l/r&) (-2 + 3 cos2 01") cos a" 
m = l  v=r+l 

Z X  

+ C 2 (-l/r:,u) (-2 + 3 cos2 0 1 ~ )  cos a, 
n = x + l  n=l  
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where rh,v = (v - m)2 + z2 (72) 

(73) 

(74) 

(75) 

Ti,, = ( n  - u ) ~  + z2 

cos 0 1 ~  = (v - m)/rm," 

cos 01, = (12 - u)/rm,u. 

The total specific tension in the wire AB may then be obtained by adding equs. (65), 
(66) arid (71). 

TJi2 = T,/ i2  + T2/i2 f T3/i2. (76) 

Figure 13 is a plot of the three tension components and their sum for z = 1000. 

\ 
/--- -- 
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i 'r 

Fig. 13. Specific tension in free side 
of square circuit 

I0 
' I  

Element number ( x )  

It can easily be shown that the computed tension increases with the number z of ele- 
rnentsinto which one side is divided. This appears to be an unsatisfactory outcome of the 
Ampere theory. As in the case of selfinductance, the difficulty can be overcome by 
making a reasonable assumption about the length-to-width ratio of the current-ele- 
ment. As a first step we calculate the most important tension contribution, given by 
equ. (65), for different values of z. Table 2 lists the results for z varying from 20 to 
200 and x = 212. A regression analysis performed on this data revealed a very close fit 
to 

Tl / i2  = 0.19 + In z .  (77) 

6 Portschr. Phys. 34 (1986) 7 
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Table 2 

Computer evaluation of equation (65) for z varying from 
20 to  200 and x = 212 

z TJi2 

20 
30 
40 
50 

60 
70 
80 
90 

100 

110 
120 
130 
140 
150 

160 
170 
180 
190 
200 

3.188 
3.593 
3.880 
4.103 

4.285 
4.396 
4.573 
4.691 
4.796 

4.891 
4.978 
5.058 
5.133 
5.202 

5.266 
5.327 
5.384 
5.438 
5.489 

It can be shown that the specific tension contributions T2/ i2  and T3/i2 obey similar log- 
arithmic laws. Hence T,/i2 will also be a logarithmic function of z. For z = 100 equ. (77) 
yields 7.098 as compared to 7.099 obtained by finite element analysis. Hence equ. (19) 
can be extrapolated confidently to much larger values of z. 

Because of equ. (77) and thelogarithmic approach to infinity of the Ampere tension, we 
find once more that the Ampere electrodynamics becomes absurd if the current-element is 
taken to be infinitely divisible. The same is actually true for an  electrodynamics based 
on the Lorentz force law. We really have no choice but to accept elements of finite size. 
Could the lower element size limit be set by the distance between neighboring atoms? In 
metal lattices this would be of the order of 10-7 cm. KO less than lo9 current-elements 
would be required if AB of fig. 12 were 100 cm long. Equation (77) then gives a specific 
tension of 20.91 which is only three times the tension obtained for z = 1000. I t  is not an 
unreasonable number and therefore lends some support to the idea that the atomic 
lattice cell is the basic current-element. 

Any reduction in current-element length from macroscopic to microscopic dimensions 
should be accompanied by a similar reduction in the size of the element cross-section. 
In  other words, the specific tension of 20.91 applies to a conductor of lo-’ cm diameter 
and one meter long. For conductors of larger diameters a bunch of parallel filaments 
have to be substituted, each being essentially a string of atoms. 

What will be the tension in two adjacent strings of atoms which share the current i? 
To obtain an answer consider the two square-section filaments of fig. 14. They have been 
subdivided into four portions a,  6 ,  c, and d. Each portion consists of z / 2  cubic current- 
elements with their vectors all pointing in the same direction. The shape of cubic ele- 
ments has been chosen for the convenience with which a solid conductor may be divided 
into cubic cells, and not because it is the actual shape of the atomic cell. Let us now 
determine TJi2 across the midplane of the filanimt combination when each filament 
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carries the current 42. The tensile force due to the interaction of portions a and b can 
be ralculated with equ. (77). An equal component will arise from the interaction of por- 
tions c and d. Let these two components be Ta,b and Tc,d, then 

Fig. 14. Tension across the perpendicular midplane 
of two parallel and straight filaments 

For the calculation of Ta,b and Tc,d which, because of symmetry, are equal to each other, 
we find from fig. 14 

Applying Ampere's law to filament portions a and d and resolving the elemental inter- 
action forces in the direction of the current, we obtain 

6* 
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Solving the simultaneous equations (79) to (82)  by computer and applying regression 
analysis to the results revealed the logarithmic relationship 

Ta,d = TC,* = (1/4) (-1.64 + In z )  i 2 .  (83) 

Hence the tension T1 across the niidplane of the filament combination is 

T ,  = 2Ta,, + 2T,,d = (-0.73 + In z )  i2 (84) 

which is smaller than the force given by equ. (77) .  This result demonstrates that the 
amperian tension is reduced when the current divides between adjacent filaments. It 
will be referred to as longitudinal force dilution, and it largely compensates for the appar- 
ent Ampere tension increase when the niacroscopic element size is reduced. 

7. Macroscopic Current-Element Analysis 

During the eighty years from 1820 to 1900, when the Ampere law was in wide usc, cur- 
rent-elements were treated as being infinitely divisible. The result was a continuum 
theory which led to singularities in the integration of tensile forces because r,,,, across 
the interface of conductor portions approached zero. This probably explains why so 
little was written in the nineteenth century about amperian tension in electric conductors. 

Large current-elements of a cross-section equal to the whole conductor section have 
often been successfully employed to calculate the reaction forces between two complete 
circuits which were separated by a t  lead ten current-element lengths. It therefore 
seemed worthwhile to investigate if single filament representations of practical conduc- 
tors can be helpful in estimating the magnitude of Bmpere tension. 

To do this a 100 x 40 cm rectangular circuit, made up of 0.25 inch diameter copper 
rod and two liquid mercury links, was set up in a vertical plane. As shown in fig. 15, 

I 

Fig. 15. Lift-force measurements on a 
rectangular circuit 
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the uppermost sideand three centimeter of each vertical leg were cut off and reconnected 
with liquid mercury contained in dielectric cups attached to the bottom portion of the 
circuit. The liquid metal gaps were less than one millimeter long. The electromagnetic 
lift force F1 on the upper portion of the circuit was measured with a beam balance. As 
the results plotted on fig. 15 indicate, the reaction force was found to be proportional 
to the square of the current, giving a specific force of Fl / i2  = 10.30. According to ac- 
cepted pinch force theory [la], the liquid mercury is responsible for a specific upward 
thrust of 1.00. Hence Ampere’s force law should account for 9.30 of the measured speci- 
fic force. 

In  the macroscopic current-element analysis of the lift force, the circuit was modelled 
as a single filament of one centimeter long elements, making perfect right-angled joints 
a t  each corner. Apart from computing the Ampere lift force, consisting partly of longi- 
tudinal components in the vertical legs and partly of transverse forces on the horizontal 
branch, the Lorentz force on the horizontal conductor was also computed with the same 
one centimeter long elements and the formula 

where 1,  is the unit distance vector drawn from dn to dm. The results were as follows 

Ampere : PJi2  = 11.20 (47 percent longitudinal) 
Lorentz : Fl/P = 11.24 (all transverse) 
Experiment: Fl / i2  = 9.30. 

Hence the single filament representation with current-elements of a length even 
greater than the conductor diameter gave a rough guide to the magnitude of the reaction 
forces between parts of the same circuit. In  the chosen example the Ampere law appeared 
to overestimate the actual lift force by 20 percent. Part of this discrepancy may have 
been due to experimental errors. 

The other interesting relevation was that, for the same element size, both Ampere’s 
and the Lorentz force theory predicted almost identical tension forces. But in Ampere’s 
electrodynamics 47 percent of the tension was due to longitudinal forces, while the LO- 
rentz force was of course entirely a transverse force which produced tension indirectly. 
This coincidence and the prominence given to rectangular circuits in the past has no 
doubt contributed to the belief that Ampere’s force law is not needed. 

How should one proceed from here? The founders of the Ampere-Neuniann electro- 
dynamics were masters of analysis, but obviously did not find an analytical solution for 
the directly induced conductor tension. Computer-aided finite element analysis was not 
available to scientists of the nineteenth and the first half of the twentieth century. This 
new tool has therefore been explored a little further. 

The macroscopic current-element has t o  be of a definite shape and the cube lies close 
a t  hand. Consider the a x a square-section conductor of length 1. If 1 > a, the important 
midplane tension is largely independent of any further increase in length. In  the case of 
fig. 13, where l/a = z = 1000. over eighty percent of the midplane tension is being con- 
tributed by the repulsion of in-line elements. Therefore, when dealing with very long 
straight conductors, we may also ignore the return circuit and remember that this will 
iinderestimate the Ampere tension. For z = 10,000 the speicfic midplane tension from 
equ. (77) comes to 9.40. This would apply, for example, to a 100 m long conductor of 
one square-centimeter cross-section. Assuming a current of 1000 A = 100 ab-amp, the 
single filament model predicts a tension of only 96 gram, or 0.096 kg/cm2 tensile stress. 
I t  would produce a negligible amount of strain in spite of the high continuous current 
density of 1000 A/cni2. Not surprisingly, Ampere tension almost had to go unnoticed 
in ordinary wires and cables used for the transmission and distribution of electrical 
energy. 
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The tensile stress would become more severe in fully loaded cryogenically cooled con- 
ductors. For instance, an alurniniuni conductor of one square-centimeter cross-section 
held a t  the temperature of liquid nitrogen could possibly carry 10,000 A continuously, 
when it would be subject to 9.6 kg/cm2 tensile stress. Even then the strain is quite 
modest . 

Ampere tension is likely to be of critical importance in superconductors. Type I1 
superconducting filaments embedded in a copper matrix and cooled with superfluid 
liquid helium can support current densities of the order of 100,000 A /cm2 over the com- 
bined copper and superconductor area. I n  the 100 in long, one square-centimeter con- 
ductor this would give rise to 960 kg/cm2 tensile stress which not only would produce 
noticeable strain but very likely change the superconducting properties of the rod, 
which are known to be strain sensitive. 

I I I 
i i  i 

I 1  
I I  

Fig. 16. Cubic 
I I I I  

element subdivision of a linear conductor 

The single filament representation of the linear conductor is the crudest model one 
can use. Finer subdivision of the conducting matter into smaller cubes should result in 
better approximations to the specific tension. Therefore, let every element of fig. 16 (a) 
be subdivided into eight smaller cubes, as shown by (b). This multiplies the computatio- 
nal work by a t  least a factor of 64. Angles a and j3 are then no longer zero for all relevant 
current-element combinations and equ. (82) has to be used in addition to (65). To obtain 
a quantitative indication of the force dilution resulting from filament subdivision we 
analyze a relatively short conductor of 2 ni length and 1 cm2 cross-section. The return 
circuit would make a significant contribution to the maximum tension in this short 
conductor but we will not compute this. The midplane tension due only to the straight 
portion was found to be 

Single filament, fig. 16 (a) : Tl/i2 = 5.49 
Four filaments, fig. 16(b):  
Nine filaments, fig. 16(c): 

Tl / i2  = 4.71 
TI/? = 4.55. 

This exaniple illustrates that the computed specific Ampere tension converges quite 
rapidly as the number of parallel filaments is increased. Hence only a modest degree of 
subdivision will give good approximations. Although the ultimate current-elenlent of 
the Ampere-Neumann electrodynamics is likely to be of atomic size, the usefulness of 
manageable calculations involving quite large macroscopic current-elements has hereby 
been demonstrated. Considerable liberties can be taken with the shape and size of 
macroscopic current-elements when computing forces between separate circuits. I t  will 
be realized, however, that the mutual force between two circuits does not involve Ampere 
tension. 
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8. The Experimental Evidence for Longitudinal Ampere Forces 

8.1 Ampere’s hairpin experiment 

Were it not for the longitudinal forces, the Ampere-Neumann electrodynamics would 
largely be history. It would add nothing to the development of modern physics and new 
technology that could not be provided by relativistic electromagnetism. Experiments 
purporting to show the existence of longitudinal Anipere forces have been known for 
160 years and fuelled a certain amount of controversy. Many a heated argument could 
have been avoided had it always been recognized that the validity of the early electro- 
dynamics is confined to metallic conductors. The conduction electron travelling through 
the metallic lattice appears to be subject to a more complex force system than the free 
electron travelling through vacuuni. For this reason Lorentz was compelled to drop 
Ampere’s force law when he tried to explain the dynamics of isolated electric charges in 
vacuum tubes. He found it necessary to substitute GRASSMANN’S law [16] which later 
became known as the Lorentz force law. 

Long before Lorentz made the change, Ampere himself appears to have been under 
some pressure to provide an explicit demonstration of longitudinal forces. He had taken 
the view that his empirical law was the generalization of many experimental results, 
collected mainly by himself, which all implied the existence of longitudinal forces and no 
explicit demonstration was necessary. However when Ampere visited the Swiss scientist 
de LaRive, both men performed a famous test, which here is called Ampere’s hairpin 
experiment, to distinguish it from his many other demonstrations. Ampere’s sketch of 
the apparatus which was used in Geneva is reproduced in fig. 6. Figure 17 shows the 
circuit arrangement with which the author in 1981 performed the hairpin experiment 
a t  MIT. 
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With reference to fig. 17, cdefg is an insulated copper hairpin with bare ends floating 
on two liquid mercury channels a6 and a’b’. When more than 200 A of current is passed 
around this circuit the hairpin moves to the end of the channels bb’. According to Am- 
pere’s law the motive force in this experiment is being provided by the repulsion be- 
tween the hairpin leg cd and the mercury portion ac and, equally, between the leg gf 
and the mercury section a’g. 

A new observation was made a t  MIT which was not reported by Ampere and de LaRive, 
nor by anyone else who repeated their experiment. When the forward motion of the 
hairpin was blocked by placing an obstacle in the way of the hairpin bend, strong jets of 
liquid mercury could be seen to emanate from the hairpin ends c and g. The turbulence 
in the liquid gave the distinct impression that the hairpin was subject to jet-propulsion 
[l]. The area of strongest turbulence was quite narrowly confined to the hairpin ends 
and it did not extend outward to the region where the current streamline patternin the 
mercury must have shown the greatest divergence. 

It was further noticed that some turbulence occurred in the liquid mercury near its 
interface with the one-half inch square fixed copper bars a t  a and a’. The overall tur- 
bulence in the liquid mercury sections could be increased, a t  constant current, by moving 
the hairpin closer to the copper bars. 

To investigate the interaction of oppositely directed jets a t  the ends of a liquid metal 
section a little further, a separate experiment was performed. Two lengths of 0.5 x0.5 
inch square copper bars were cemented into the same trough with a butt gap of 1/8th 
inch between them. The gap was filled with liquid mercury. When current was passed 
across the gap a limited amount of turbulence could be seen in the liquid. Above 900 A 
the liquid metal would actually bulge upward with depressions in the liquid level near 
the copper faces. With a frirther increase in current up to approximately 1000 A, the 
liquid mercury would be thrown upward and ejected out of the open channel. As the 
temperature rise of the copper conductors was less than 100°C, the ejection of the mer- 
cury was likely to be the result of strong longitudinal repulsion from the two copper 
bars. 

Ampere’s critics of recent times have held that the motive force on the hairpin was 
the Lorentz force on the bend e (fig. 17) passing over the dielectric barrier between the 
two mercury troughs. HILLAS’ argument is typical in this respect [8] .  This transverse 
force on the hairpin bend is also predicted by Ampere’s formula. But in the Ampere 
electrodynamics it is cancelled by longitudinal reaction forces in the hairpin legs and 
therefore unable to accelerate the hairpin with respect to the mercury on which it floats. 
The magnetic field a t  the bend is primarily due to the current in the hairpin legs. One 
might expect that the reaction to the Lorentz driving force should also reside in the 
hairpin legs. This is, however, impossible because the Lorentz force on the legs is every- 
where perpendicular to the direction of relative motion. 

Could the Lorentz reaction force reside in the power supply branch of the circuit? 
For the sake of simplicity, let this branch be a short connection between t and t‘ of 
fig. 17. I t  is easily shown that the Lorentz repulsion between the short sides of a long 
rectangular circuit is very small compared with the total Lorentz force on each of the 
short sides. I t  therefore follows that most of the reaction force to the Lorentz force on 
the hairpin bend - which according to Ampere’s critics is responsible for the hairpin 
motion - must reside outside the conducting matter which forms the closed hairpin 
circuit. 

This reaction force difficulty was actually overcome by the special theory of relativity 
which associates momentum with the magnetic energy stored and travelling in the 
electromagnetic field. I t  is claimed that changes in this momentum can support niecha- 
nical reaction forces in vacuum. A clear exposition of this mechanism was provided by 
CULLWICK [15]. Paradoxically, it tries to preserve the validity of Newton’s third law in 
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relativity theory which was meant to supersede the newtonian dynamics. In  connection 
with this it is too often forgotten that all three of Newton’s laws refer to forces on matter. 
Vacuum forces are therefore meaningless in a world based on Newton’s laws. Hence 
forces said to be associated with the change of field-energy momentum do not contri- 
bute to the force balance required by Newton’s third law. 

Quite recently PAPPAS [5] performed a new version of Ampere’s hairpin experiment. 
This is illustrated by fig. 18. A rather large metal hairpin was suspended horizontally 
from the laboratory ceiling to constitute an impulse pendulum. The pendulum communi- 
cated with the current leads of a battery through two mercury cups. When the circuit 

Pig. 18. Pappas’ impulse pendulum experiment. BCDE is the copper hairpin and B and 
E are the mercury cups 

was closed the electromagnetic forces imparted an impulse to the pendulum and made it 
swing away from the static mercury cups, thereby interrupting the current. The ampli- 
tude of the swing and the time it took to reverse its motion was measured by Pappas and 
used to calculate the mechanical momentum that was imparted to the hairpin. 

In  order to conserve momentum, on the relativistic basis, a certain amount of mag- 
netic energy had to have been deposited in the field and accelerated to the velocity of 
light. Pappas calculated the energy required for this purpose and compared it with the 
energy stored in his battery. He found that it was much more energy than his battery 
could have supplied. Besides, the current required to radiate so much energy into the 
field in a brief moment would have melted the conductors of his circuit. This appears 
to have been the first time that relativistic momentum conservation was tested with 
a metallic circuit. The result casts serious doubts on the hypothesis that the field, i.e. 
vacuum, can support mechanical forces that are very much greater than radiation 
pressure. 

Pappas demonstrated another interesting fact. When the current leads from the 
battery to the mercury cups are tilted, each in its own vertical plane, the momentum 
imparted to the hairpin was changed. He argued correctly that the Lorentz force on the 
hairpin bend should be essentially independent of the angle of tilt of the current leads. 
Therefore it could not have been this Lorentz force which was responsible for the hair- 
pin acceleration, as claimed by Ampere’s critics. 

Pappas was satisfied that his findings were compatible with Ampere’s force law. A 
significant aspect of the tilt experiment is that it disproves the Lorentz force explanation 
even when it is accepted that relativistic electromagnetism does not comply with New- 
ton’s third law. 

A few more words need be said about amperian jet-propulsion or the repulsion of liquid 
from solid current-elements in the direction of current flow. Accepting the view ex- 
pressed by HILLAS [8 ]  that the motion of the liquid behind the hairpin ends is not the 
cause of the hairpin motion, there remain discrepancies between the calculable distri- 
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bution of Lorentz forces on the diverging current streamline pattern and the observed 
behavior of the liquid metal. The jets are far too concentrated spatially to provide hope 
that they may comply with the Lorentz force pattern. More serious is the fact that the 
jet action does not disappear when the current streamlines in the liquid metal are forced 
to remain straight and parallel. This is the case in a conductor of uniform cross-section 
arranged horizontally in a dielectric trough with part of the solid metal being replaced 
by liquid mercury. The Lorentz forces should then pinch the conductor. But since it is 
incompressible, they cannot give rise to flow turbulence. Yet experiment with a con- 
ductor arrangement of this kind clearly indicates liquid turbulence, longitudinal flow, 
and finally the lateral expulsion of liquid as if two jets were colliding. 

MAXWELL 1121 discussed Ampere’s hairpin experiment in his Treatise. He did not 
perform the experiment himself and was not aware of the jet phenomena. It was his 
opinion that the experiment was compatible with both Ampere’s and the Lorentz force 
laws. The latter he knew as GRASSMaNN’s formula [16] which had been first published 
in 1845. Maxwell argued that both laws predict the same forces for closed circuits. He 
did not realize that this is true only for the mutual force between two separate circuits 
and not for the reaction force between two parts of the same circuit. 

A t  times the question has been asked: could the hairpin propulsion be due to local 
heating at  the solid-liquid interfaces. When two dry solid conductor surfaces are brought 
together, the electric current is known to flow through a few contact points. The high 
resistance of the narrow contact necks causes sufficient Joule heating for the contact 
points to melt and spot weld together. No evidence has been provided which shows that 
the contact point mechanism is also active a t  a liquid-solid conductor interface. Without 
it the heat generated a t  the interface is quite small and certainly incapable of producing 
relative motion. Any chance of contact point formation was eliminated in an experi- 
ment carried out by TAIT 1181. He used a ‘liquid mercury hairpin’ contained in a glass 
tube and found that it was propelled just the same as a copper hairpin with bimetallic 
interfaces. As CLEVELAND [17] and others have shown, force measurements on rect- 
angular circuits involving copper-mercury interfaces are in reasonable agreement with 
both the old and the new electrodynamics, leaving no room for a third theory based on 
heat propulsion. 

The evidence gathered over the years with the hairpin experiment appears to be over- 
whelmingly in favor of Ampere’s force law. In  160 years no experiment has come to 
light which disproves any of the predictions of Ampere’s formula for metallic circuits. Of 
quite a number of positive longitudinal force experiments recorded in the scientific 
literature, we will mention only three more. One was devised by F. E. Neumann, 
another by Hering became the operating principle of the first magnet-less electromagne- 
tic liquid metal pump, and the last one demonstrates the action of Ampere tension in 
solid wires. 

8.2. 

The existence of longitudinal forces was fully accepted during most of the nineteenth 
century. Neumann had a classroom experiment with which he demonstrated them routine- 
ly to his students. Figure 19 is a diagram of his demonstration as recorded by his pupil 
VONDERMUEHLL 1191. 

A ,  B and C are mercury throughs and D and E are copper wire bridges from A to B 
and from B to C. When current is passed along the troughs, the two pieces of wire niove 
away from each other. They must therefore be subject to repulsion. This experiment has 
a t  times be critized because of the small hooks at  the ends of the wires which dip into 
the liquid metal. Transverse forces on these short vertical sections could contribute to, 

Neumann’s demonstration of longitudinal forces 
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or cause, the wire repulsion. To clarify this issue the author analyzed the conductor run 
ABCDEFGHKL of fig.20 with both the Ampere and the Lorentz force laws. The 
broken lines AB, EF, and K L  of this diagram represent liquid mercury connections 
while the solid lines are the two wire bridges of Neumann's experiment. For the purpose 
of the finite element analysis, the horizontal portions of the wire bridges were divided into 
200 current-elements and the vertical dips into four elements. The analysis did not 
cover the return circuit which is known to have little influence on the longitudinal re- 
pulsion between the two wires. 

F Y r e * * 3 G  

Fig. 19. Neumann's diagram of a demonstration of longitudinal forces 

C D G  

A ----_ nr--+--- 
B E F  K L 

Pig. 20. Liquid conductor portions with solid wire bridges. Liquid portions: AR = K L  
= 200 elements. Solid portions: BC = DE = FG = H K  = 4 elements. 
CD = GH = 200elements 

Table 3 

Finite element computations for Neumann's experiment. 
Crassmann Formula 
Horizontal force (in dyn for 1 &.-amp.) on:  

FG GH H K  F G H R  
I 

Due t o  A B  
BC 
CD 
DE 
EF 
FG 
GH 
H K  
K L  

Total 

Due to  A B  
BC 
CD 
DE 
EF 
FG 
GH 
HK 
K L  

Total 

+53.30 x lo-' 
-255.98 X lo-' 
-1531.1 X 
1-6390.4 x 
1-2.9477 
0 

--b 
+74.986 x 

-U 

Ampere Formula 
1132.71 x lo-' 

-4.589 x lW3 
+12.762 x 
+3.9795 
0 
0 
0 
+224.93 x lo-' 

-511.87 x lo-' 
+219.68 x 
+132.71 x 
+1.0055 

1-1.8594 
0 
0 
0 
-2.771 3 

-4.689 x 10-3 

-10.28 X lo-' 
+79.011 x 
+44.241 x lo-' 
-255.98 x 
-35.991 x 
+ b  
+a 
0 
-2.9493 

2.95 x 

-30.855 X lo-' 
+158.02 x lo-' 
+132.71 x 
-511.87 x 
-107.96 x lo-' 
0 
0 
0 
-3.9840 

+0.3112 
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Table 3 lists the results of these calculations. Both formulas are seen to predict a 
horizontal repulsion force on the bridge FGHK. The Ampere repulsion is more than one 
hundred times as large as the Lorentz repulsion. Furthermore, the absolute value of the 
Lorentz force for currents up to 500 A is so small that it would hardly be capable of over- 
coming the strong adhesion of copper to liquid mercury. In  the description of Neu- 
mann’s experiment no information is given of the wire diameter or the current inagnitu- 
de. It is unlikely that Neumann could have passed more than 500 A around the circuit. 
For this upper current bound the horizontal Lorentz force on FGHK would only be 
7.38 dyn. The Ampere formula, on the other hand, predicts as much as 0.8 gram. From 
this evidence alone one would have to conclude that Neumann’s experiment favors 
Ampere’s law over the Lorentz force law. 

Fig. 21. Rod positions on liquid mercury surface before and after the passage of 
450 A of current 

k 

To eliminate the vertical hooks on the wire bridges, the author devised a modified 
version of Neumann’s test for longitudinal forces. The apparatus consisted of a straight- 
through liquid mercury trough of 30.5 cm length and 1.27 x 1.27 cm square c‘ross-sec- 
tion. The liquid conductor was continued in both directions with 30.5 cm long copper 
bars. The aircuit was closed by a remote return conductor trough a 500 A dc current 
supply. Two insulated copper rods AB and CD, as shown in fig. 21, of 5 cm length and 
0.3 cni diameter with bare end faces were laid end-to-end on the mercury surface in 
the middle of the trough. 

When a current of 450 A was made to flow along the trough, the rods would sub- 
merge and separate axially. As soon as the current was switched off, 10-20 seconds 
later, the rods would surface, being separated by the distance x shown in fig. 21. Be- 
cause of the 50: 1 resistivity ratio of mercury to copper, the rods carry a substantial 
fraction of the current in their section of the trough. As discussed elsewhere [l], the 
attraction between the parallel rod and mercury currents urges the rods toward the center 
of the trough section and is therefore responsible for their submersion. The distance of 
separation was of the order of 2.5 cm. We now consider the longitudinal forces that could 
have caused the rod separation. 

Since the copper rods were coated with nlagnet wire insulation, but for the end faces, 
the current in them must have been directed axiallyand allLorentz forces acting directly 
on the copper rods would have been normal to  the direction of relative motion. With no 
liquid metal a t  the B-C interface of the two touching rods, the pinch thrust a t  faces A 
and D should have pushed the rods together. In  the more likely event of liquid metal 
filling a short gap between B and C,  the pinch thrust on these faces should have counter- 
acted that a t  A and D. Either way, the pinch forces in the mercury could not explain 
the separation of the rods. The Lorentz forces on the diverging current streamlines in the 
mercury (see fig. 21) could conceiveably cause mercury circulation near A and D. But 
no such circulation could take place in the very short B-C gap because there the stream- 
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lines are diverging by a negligible amount. Hence the initial separation of the rods, if a t  
all attributable to magnetohydrodynamic actions, would have had to be caused by the 
circulations a t  A and D pulling the rods apart. This appears to be a far-fetched expla- 
nation. 

Over the years there have been suggestions that heat generated a t  the solid-liquid 
contact faces could set up propulsion forces. This was investigated by TAIT [18] in 
connection with the hairpin experiment. He obtained a negative result. But even if a 
thermal propulsion mechanism did exist, it should result in symmetrically disposed 
opposing forces on all rod ends and therefore be unable to produce relative motion be- 
tween the rods. Furthermore, if for some unknown reason the thermal propulsion forces 

Fig. 22. Specific rod separation 
OO 1 10 ,>> 20 30 40 50 mm forces as a function of z 

were not equal and opposite, the motion of the rods should not stop until they strike the 
end of the trough. There appears to exist no plausible explanation why the intensity 
of the thermal action should relent as the rods separate. 

Figure 22 is a plot of the specific Ampere repulsion force (F/i2) acting between the 
rods as a function of the distance of separation x. The points on this graph were cal- 
culated with finite current-element analysis in which the rods were replaced by single 
filaments of elements, the element length being equal to the rod diameter. According 
to this graph the rods should strongly repel each other while they are in contact and 
the repulsion force should fall off quite sharply with the distance of separation. For 
450 A = 45 absolute ampere, the maximum repulsion comes to 7.5 gram. This decreases 
to one grain a t  x = 2.5 cm which could well be the adhesion drag resisting motion of 
the rods through the liquid mercury. Hence the Ampere force law provides a natural 
explanation of the observed phenomenon. 
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8.3. 

A t  the turn of the century Carl Hering designed, built and operated furnaces in which 
liquid metal was heated by the passage of large currents through molten pools. In  the 
course of this work he was the first to discover the electromagnetic pinch effect. He also 
observed what he called stretch effects which were in fact the result of longitudinal 
Ampere forces. I n  his widely quoted paper [20] of 1923 he writes, as follows, about the 
technological applications of these effects. 
“By passing currents, especially a t  high current densities, through such very mobile 
conductors as mercury or molten metals in some types of electric furnaces, the writer 
many years ago noticed the existence of some heretofore unrecognized electromagnetic 
forces which tended to move the conductors, and being mobile liquids they responded 
much more readily to such forces than solid conductors do. Some of these new forces 
were very formidable, for like most of such forces, they presumably increase with the 
square of the current. The writer then made use of them in electric furnaces (to pump 
liquid metal), many of which are in daily use, these new forces being the absolutely 
essential factor, showing their industrial importance.” 

In  this quotation Hering referred to the invention of the first electromagnetic liquid 
metal pump. As the metal was driven by longitudinal forces, the Hering pump did not 
require external magnet coils. The present generation of electromagnetic pumps has 
been designed on the basis of transverse Lorentz forces and must, therefore, rely on ex- 
ternal magnets. 

I n  discussing his experiments, Hering made no distinction between the Ampere-Neu- 
mann electrodynamics and modern field theory. This led to much confusion and detrac- 
ted from what might otherwise have become a strong case for the Ampere theory. 

The most decisive of Hering’s many longitudinal force experiments is illustrated in 
fig. 23. There ABCDEFGH is a rectangular circuit standing in a vertical plane and 
having a power supply connected in the AH branch. The current i leaving the supply is 
split a t  C,  with i, passing along the vertical branch CG and i, completing the journey 
around the large rectangle. Three mercury cups B,  C and D make it possible for the 
horizontal conductor section BD to move along its length. The vertical branch CG dips 
into the cup C and it restrained from moving with the cup. The weight of the horizontal 
section BD, including that of the mercury cup C, is taken up by two long insulating 
filaments attached to the laboratory ceiling. With this suspension, a longitudinal force 
of a few gram can easily move BCD along its length. 

One of Hering’s longitudinal force experiments 
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Fig. 23. One of Hering’s many longitudinal force experiments 
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When a current of several hundred ampere is switched on, the mobile horizontal 
conductor section BCD moves vigorously in the direction from D to B. Figure 24 serves 
to explain how longitudinal Ampere forces account for the observed relative motion. 
We consider the three current-elements i, - dm, i, . dn and i - do. The interaction of 
elements dm and do results in the mutual force of repulsion OF,,, which has a component 
in the direction of the observed relative motion. The interaction of elements dm and d n  
results in the attraction 13Fm,, which also has a component in the direction of rela- 
tive motion. In  fact every combination of one element on the vertical branch CG and 
one on the horizontal portion BCD contributes a longitudinal force component acting 
from D toward B. These are the dominant Ampere forces which fully explain the re- 
sult of Hering’s experiment. 

Additional longitudinal repulsion forces arise across the two mercury cups B and D. 
They do not cancel each other because i is greater than i,. The net force from these two 
sources actually opposes the relative motion once the ends of BD have passed the mid- 

G 

, 
i,dn 

Fig. 24. Dominant Ampere forces in Hering’s experiment 

points in the mercury cups B and D. A further set of disturbing forces in cups B and D 
are the pinch forces which exert opposing thrusts on the ends of the movable conductor. 
Since i > i,, the net longitudinal force due to pinch is opposing the relative motion and 
could not be the cause of it. 

Finally we must examine theeffect of the transverse forces on the short vertical hooks 
dipping into the liquid mercury at B and D. Because of the inequality of the currents at 
the two ends of the movable conductor, the combined transverse forces on the hooks 
should have a resultant in the direction of the observed motion. This type of positive 
disturbing force has already been investigated in connection with Neumann’s longi- 
tudinal force experiment and in particular with the help of fig. 20. I t  was then found that 
the longitudinal Ampere force was more than one hundred times as large as the distur- 
bing Lorentz force. Furthermore, for currents up to 500 A the absolute value of the net 
force on the hooks was so small that it could not have overcome the strong adhesion of 
copper to liquid mercury. 

The Hering experiment, therefore, furnishes further evidence for the existence of 
longitudinal Ampere forces. As a matter of interest it may be pointed out that the sum of 
the transverse components AIi’m,o and AF,,, on the element dm is equal to the longitudi- 
nal force exerted on elements do and dn .  This illustrates how the Ampere forces comply 
with Newton’s third law. On the other hand, the Lotentz force on element dm would have 
to have its reaction force in the field. 



492 P. GRANEAU, Ampere-Neumann Electrodynamics 

8.4. Wire fragmentation experiments 

I n  the past 160 years almost all experimental evidence for non-lorentzian forces has 
been collected with circuits containing some liquid metal. The liquid portions permitted 
the measurement of forces with balances, or the observation of relative motion, while the 
current was generally less than 1000 A. Very much higher currents are required to 
establish the existence of Ampere tension in solid conductors. Currents of the order of 
100 kA have been employed in exploding wire experiments. I t  therefore seemed worth- 
while to search the literature of wire explosions for any indication of Ampere tension. 

From the point of view of the Ampere electrodynamics one would expect straight 
and curved wire sections to rupture somewhere along their lengths before any melting 
can take place. An air arc should immediately bridge the fracture gap so that tension 
would continue to exist and cause further breaks in the hot metal of rapidly rising tem- 
perature. Finally the sum of the voltage drops along the series-connected bridging arcs 
should severely limit, if not extinguish, the current. Premature current extinction has 
indeed been observed by many investigators of exploding wire phenomena. 

However it is usually found that, after a brief current pause, an overall arc of modest 
voltage drop will strike, discharging the remainder of the energy stored in capacitors and 
evaporating the test wire. If during the current pause the ignition of an overall arc 
could be prevented, by using a very long wire, the surviving wire fragments should 
show signs of tensile fracture which would demonstrate the effect of tensile forces of 
electromagnetic origin. The major difficulty of designing an experiment of this kind 
was to ensure that the wire fragments had time to separate before the longitudinal force 
disappeared or the wire melted. 

While pondering this problem the author found Nasilowski’s paper [21] describing an 
experiment in which, quite unintentionally, the wire explosion was permanently arrested 
a t  precisely the correct moment. The experiment produced the wire fragmentation ex- 
pected from the Ampere electrodynamics. Two new features of Nasilowski’s wire ex- 
plosions were longer wires and longer current pulses than normally employed in this 
research. 

NASILOWSKI [21] shows six photographs. Two of them depict a collection of frag- 
ments of his 1 mm diameter, 1.5 m long copper wire. The diameter of the fragments 
looks the same as that of the original wire and the fracture faces are nearly perpendicular 
to the wire axis. The length of the fragments varies between 3 and 10 mm. The other four 
photographs are of metallurgical sections through some fragments, in the longitudinal 
direction, to reveal the internal grain structure and visible signs of crack initiation. 

BAXTER [22] has measured the temperature distribution along fuse wires subjected to 
current pulses. Except for end-effects, he found that the wire temperature rose uni- 
formly over the wire length right up to the melting point. Nasilowski’s work confirmed 
that melting also occurred uniformly along the wire, with the boundary between the 
molten and the solid phase being a cylindrical surface moving radially inward. Hence 
wire fragmentation could not be the result of preferred melting a t  some locations along 
the wire. 

The metallurgical evidence indicated that in some of Nasilowski’s experiments frac- 
ture had taken place without any change in the grain structure throughout the body of 
the wire and therefore without any prior melting. But the electric arc bridging the gap 
between adjacent fragments, subsequent to fracture, produced a small amount of freshly 
molten material which adhered to the fracture faces and was recognizable by its den- 
dritic structure. Nasilowski’s metallurgical tests clearly indicated that the wire had 
parted in the solid state under the action of tension. 

The author repeated Nasilowski’s experiment in modified form a t  the Massachusetts 
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Institute of Technology [23]. Aluminium wires of 99 percent purity and 1.2 mm dia- 
meter were subjected to current pulses of 5000 to 7000 A amplitude. The current was 
derived from a high-voltage capacitor bank and passed through an inductor to allow it 
to ring down a t  2000 Hz over a period of five to ten milliseconds. When the capacitor 
bank was charged to 60 kV, the discharge current would decay approximately exponen- 
tially, as shown in the oscillogram of fig. 25(a), without breaking the wire. I t  has been 
estimated that the 60 kV discharge was accompanied by a wire temperature rise of 
several hundred degrees centigrade which resulted in a thermal extension of the order of 
one percent. 

By subsequent increases of the discharge voltage in steps of 2 kV, a pulse current 
level wasreached a t  which the wire broke in one or more places. The hot fragments 

Fig. 25. Discharge current oscillograms; y = 3 kA/cm, z = 1 ms/cm. 
(a) At 60 kV. (b) At 68 kV 

would fall to the floor and be distorted on impact. When repeating the test with a new 
wire and 2 kV additional voltage, the wire would break into a greater number of pieces. 
At the 66 and 68 kV levels a one meter long wire would fragment into 20-30 pieces. 
Finally, a t  70 kV, the test wire would show clear signs of melting which obliterated much 
of the tensile break evidence. The oscillogram of fig. 25(b) indicates discharge current 
limiting and quenching due to the many arcs across fracture gaps. 

The strongest indication of Ampere tension was obtained with straight one meter long 
wires mounted vertically, as shown in fig. 26. The wires were held in position with 
cotton threads, leaving 1 em long arc-gaps in air between the wire ends and two terini- 
nations of the capacitor-inductor series circuit. When the discharge circuit was closed 
with a mechanical switch, the two one-centimeter arc-gaps would break down, allowing 
the current pulse to flow through the test wire. The purpose of the arc-gaps was to allow 

7 Fortsrhr. Phys. 34 (1986) 7 
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distortion-free thermal expansion and disconnect the wire mechanically from the fixed 
discharge circuit. 

Figure 27(a) shows a collection of aluminium wire fragments produced by these ex- 
periments. Their distortion was caused by impact on the laboratory floor while they 
were hot. Photograph (b) clearly depicts transverse fractures which were spot-welded 
together again by arcing across the fracture gaps. Figure 27(c) is an optical micrograph 
of one fragment end, illustrating the brittle nature of the fracture. The last photograph 
(d) of a fracture face was taken by scanning electron microscopy. Similar micrographs 
of greater magnification revealed micron-deep melting of the fracture surface, consistent 
with arcing across the fracture gap. 

orc g a p  - 

100 cm 

I c m  - 1 
1.2 m m  DIA I- 

Provided the wire is treated as a bundle of filaments, the transverse pinch force may 
be calculated with Ampere’s or the Lorentz force law. Pinch forces are potentially able 
to extrude soft wire. But NORTHRUP’S analysis [14] shows that the extrusion force is 
less than one-tenth of the magnitude of the Ampere tension. For this reason, and even 
more because no significant diameter reduction has been observed near the fracture 
faces, it seems certain that pinch-off was not the cause of wire fragmentation. 

Considerable thought has been given to the possibility of the wire fractures being the 
result of travelling stress waves or thermal shock. The velocity of sound in the conductor 
metals is of the order of 5000 m/s. Hence a stress wave could travel the length of the 
wires used by Nasilowski and the author in 0.1 to 0.3 ms. Tensile stress magnification by 
multiple reflections from the wire ends or anchors is therefore not out of the question. 
Nasilowski employed a unidirectional current pulse. The radial pinch force was not re- 
moved from his wire until the current ceased to flow. Only after the end of the pulse 
could travelling stress waves have created excessive tension. But with the aid of voltage 
drop measurements Nasilowski found that the wire broke well before the end of his 20 ms 
pulse. This was further confirmed by the formation of arcs across the fracture gaps. 
Hence Nasilowski’s resultscannot be explained with travelling stress waves. This cannot 
be said with the same degree of certainty of the MIT experiments. 

A dynamic thermal shock model has been examined. Consider a straight aluminium 
wire of one meter length. When heated close to the melting point its length will increase 
approximately 1.4 cm. During the pulse period each end of the wire would be displaced 
by 0.7 em. If the pulse lasts for for 5 ms, as in the shortest of the MIT experiments, the 
last centimeher on either end of the wire would attain an average velocity of 140 m/s. 
For a wire of 1.2 mm diameter, the mass per centimeter comes to 0.03 g ,  giving a kinetic 
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Fig. 27. Fragments of a 1.2 mm diameter aluminium wire. 
(a) Collection of fragments from several experiments. 
(b) Fragments reconnected by arc spot welding. 
(c) Optical micrograph of fracture face. 
(d) Scanning electron micrograph of fracture face 
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energy of the last centimeter of 300 erg. Allowing for only ten percente longation of hot 
aluminium before fracture, the average tensile force required to absorh the kinetic 
energy comes to only 3 g, which is negligible. 

9. Recent Developments 

9.1. Experimental 

One of the most important new experimental developments in support of the Ampere- 
Neumann theory has been PAPPA’S electrodynamic impulse pendulum [ S ]  depicted by 
fig. 18. Using a vertical, parallel filament suspension, the technique has been refined 
and made fully quantitative in the author’s laboratory a t  the Massachusetts Institute of 
Technology [24]. Perhaps the most significant modification from Pappas’ procedure was 
the substitution of a high-voltage capacitor bank for the battery current source. The 
discharge of high-voltage capacitors made it possible to arc across short gaps in air. 
This avoided the practical difficulties with mercury cups. 

The energy stored in the capacitors before the discharge was known accurately. 
Depending on experimental circumstances. it turned out that this energy supplied by the 
capacitors to a pendulum experiment fell short, by factors ranging from 1000 to 2000, of 
providing the amount of field energy required for relativistic momentum conservation. 
There can, therefore, be no doubt left that reaction forces in the field (vacuum) counter- 
acting Lorentz forces on metallic conductors simply do not exist. If Newton’s third law is 
to be obeyed, the reaction forces have to reside in the metallic lattice of the conductors 
which carry the current responsible for the observable electrodynamic phenomena. 
Only the Ampere electrodynamics furnishes a credible model of the newtonian reaction 
mechanism. 

Another discovery made with the electrodynamic impulse pendulum was that the 
momentum imparted to the hairpin conductor of fig. 18 was much smaller than expected 
from the Lorentz and Ampere formulas. Eventually it was realized that the discrepancy 
was caused by the elastic deformation of the rails behind the pendulum. The rails buckled 
under the influence of the longitudinal recoil forces. I n  deflecting sideways they were able 
to store elastic energy which would otherwise have been converted to kinetic pendulum 
energy. Stiffening the rail structure did increase the pendulum momentum for the same 
current pulse. This provided further confirmation of the validity of the Ampere electro- 
dynamics. Recoil buckling of the rails has practical consequences for the design of railgun 
accelerators [9]. 

It is of course of great interest to learn whether the Ampere-Neumann electrodynamics 
applies to superconductors and also semiconductors and plasmas. All we know with 
ertainty today is that it does not hold for convecting charges in vacuum. It would seem 
reasonable to expect the amperian current element to contain the conduction electron 
and the associated positive atomic ion. Electronic conduction through a positive ion 
space charge in superconductors, semicondutors and plasma seems to have the ingre- 
dients required for the Ampere force mechanism to operate. 

At  the time of writing two types of superconductivity experiments are being planned. 
One will search for Ampere tension. The other arises from the following consideration 
[25]. Neumann’s electrodynamic potential energy is equivalent to the magnetic energy 
stored in the field. From the Meissner effect we know that superconductors will expel 
magnetic flux, and with it the magnetic energy, from their interior regions. One would 
also expect Neumann’spotential energy to be expelled from the inside of superconductors. 
Now we can think of regions where the magnetic vector potential is curl-free, as for 
example outside a very long solenoid. If a superconductor it placed in such a region it 
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could not experience the normal Meissner effect because the magnetic field inside it is in 
any case zero. However, if the magnetic energy is the kind of potential energy prescribed 
by Neumann’s theory, we may still find that persistent supercurrents are set up in the 
surface of the superconductor in order to eliminate stored magnetic energy inside the 
body. This question will be put to a test in the second superconductivity experiment. 

The first evidence of the existence of longitudinal Ampere forces in plasmas hzs been 
obtained with a series of experiments [26] involving underwater arcs. It is generally 
believed that the shockwave produced by an arc in water is the result of the sudden 
creation of high-pressure steam in the arc column. Lorentz forces acting on the arc are 
either too small to cause the shock or they are actually containment forces opposing the 
explosion. Without any knowledge of longitudinal Ampere forces, which are capable of 
promoting an explosion, investigators had little choice but to conclude underwater arc 
explosions were thermodynamic in nature. 

I n  the reporeted experiments I261 nine joules of energy stored in capacitors was 
repeatedly discharged through a small volume (e 3 om3) of water. Any individual dis- 
charge would either ignite an arc and cause an explosion or, with saltwater, it would 
merely give rise to electrolytic conduction (convection current) without in any way pro- 
ducing a visible disturbance of the water. It seems unlikely that in one case the nine 
joules of energy were capable of fuelling a thermodynamic explosion, while in the other 
they were impotent to do so. A more likely explanation of the experimental findings is 
that Ampere forces in the arc plasma were the cause of the explosion and that these for- 
ces are absent in convection currents. 

9.2. Theoretical 

Perhaps the most illuminating theoretical development of recent years has been the 
demonstration [29] that both Ampere’s and Grassinann’s (or Lorentz’s) force law are 
compatible with Neumann’s virtual work formula (25) when, and only when, the reaction 
force betwe& two closed circuits is being calculated. I n  this particular case the relati- 
vistic force contributions from Grassniann’s law integrate to zero and the remainder is 
equal to the prediction made by the Ampere law. This can be shown as follows. 

Referring to fig. 2, the force AF,,, on element i,,,dm due to element i,dn in currently 
taught relativistic electromagnetism is given by equ. (85). This is not a symmetrical 
force formula and therefore AF, acting on i,dn will differ from dF,. The two unsymme- 
trical forces niay be written 

where l,,m is unit vector along r,,,,n drawn toward dm. I t  will be realized that equ. (86) 
is expressed in fundamental electroniagnetic units where the currents must be inserted 
in absolute ampere to give the force in dyne. 

The triple vector product of (86) may he expanded to 

AFm = d n ( l / r i , , )  i,i,,dm cos oc, - l r , 7n( l / r i ,Tz )  i,i,dmdn cos E 

AF,  = drn(l/r:,,) i,i,dn cos a, - l r , n ( l / r k , n )  i,i,dmdn cos E .  

In fig. 2 the angles a, and a, are 

;xm = n - a; a, = /!I. 
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Equations (86) and (87) were first suggested by GRASSMANN [16] in 1845. Maxwell re- 
ferred to them as Grassmann’s force law. Fifty years later Lorentz incorporated them 
in what today is being called the Lorentz force. 

When imam belongs to a closed circuit m and in to another closed circuit n, the net 
reaction force between the two circuits is either an attraction (negative) or repulsion 
(positive) force given by 

Fm,n = -imin s $ (cos dmdn. 
m n  

That the last equation follows from (87) was proved by WHITTAKER [30] and others. 
It indicated that the first term of equ. (87) vanishes under the integrations. Precisely 
this term, which does not stand for attraction or repulsion, has been responsible for the 
disagreement of Grassmann’s law with Newton’s third law of motion. The second term 
of equ. (87) is a newtonian term which is also contained in the Ampere force law. There- 
fore, when computing merely the reaction force between two closed metallic circuits, 
the Lorentz force sheds its relativistic trimmings and predicts the the same force as the 
Ampere formula. 

In  the calculation of reaction forces between parts of an isolated circuit not all inte- 
grals are closed-path integrals and the contributions from the relativistic component of 
equ. (87) do not add up to zero. It is precisely in those situations that we find disagree- 
ment between the Ampere electrodynamics and relativistic electromagnetism. This 
explains why Lorentz force calculations agree with Neumann’s virtual work formula 
(26), involving the mutual inductance between two circuits, but they generally disagree 
with equ. (27) containing the selfinductance. 

While trying to understand how the old electrodynamics could succeed where the 
Lorentz force seems to have failed, one inevitably has to take a closer look at the micro- 
scopic nature of the electric current and particularly a t  the metallic current element. 
Ampere treated this element like a piece of metal or wire. His electrodynamics forces 
were supposed to act directly on the material and not the “electric fluid” passing through 
the wire. The current strength was related to the fluid motion, but the quantitative 
laws of force and induction of the Ampere-Neumann electrodynamics did not involve the 
velocity of charges. 

WEBER [27] proposed the first change in the current element model of metals. He 
considered each element to consist of a mobile positive and negative charge drifting 
past each other in opposite directions. By postulating mutual forces between charges 
which were functions of charge velocities he was able to build up an electrodynamics in 
complete agreement with the laws of Ampere and Neumann. Weber’s force formula 
incorporates the Coulomb force, as Lorentz’s formula would do later. It also contained a 
constant which was equal to the velocity of light. Weber argued the forces on the charges 
were passed on to the metal but failed to explain how, at  the same time, the charges could 
move freely through the conductor. This inconsistency and the subsequent discovery of 
the immobility of the lattice ion made Weber’s current element untenable. 

However, the association of the current element strengths with charge velocities 
has survived. Lorentz found that the convection current element in vacuum was simply 
the electric charge multiplied by its velocity. He further argued, by analogy, that the 
metallic current element is the conduction electron multiplied by its average drift 
velocity. A force on this lorentzian current element can become a body force when the 
conduction electron runs up against the potential barrier of the metal surface. Yet 
Lorentz’s current elenient cannot explain the existence of Ampere tension along the 
streamlines of current flow where the conduction electron would not encounter potential 
barriers. Ampere tension inevitably requires further changes in the metallic current 
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element model. Some mechanical link between the conduction electron and the parent 
lattice ion has to come into play. 

Nearly twenty years ago [28] it was realized that Neumann’s electrodynamic poten- 
tial requires the existence of mutual torques between current element pairs. This seemed 
incompatible with Lorentz’s drifting electron element. A t  the time, the conclusion 
was drawn that the metallic current element was likely to involve an  oriented electron- 
phonon interaction, reminiscent of the interaction responsible for creating Cooper pairs 
of electrons in superconductors. In  all probability, the electron of the current element 
would be the conduction electron which should be almost - but not entirely - free to 
roam through the nietal lattice. Some attractive interaction of this electron with the 
parent atom would give rise to an electrostatic dipole pivoted on the lattice site. I t  
would then be the direction of the dipole, rather than any charge velocity, which deter- 
mines the direction of the current element. If this rationale should turn out to have any 
validity, the metal atom itself would also be the current element. Quite different 
arguments concerned with the size of current elements [7] led to the same conclusion. 

Pivoted dipole elements [25] would exist in a metal even when there is no current 
flowing through it. Analyzing [28] the collective behavior of such elements, in response 
to Neumann mutual torques, revealed that, when left to themselves, they would all try 
to counteralign each other and thereby create perfect disorder. A certain degree of order 
would be established by forced and induced current flow. Both these phenomena would 
have to be accompanied by the turning of atomic current elements about their nuclear 
pivots. Diamagnetism could be explained on the same basis. An intriguing side issue 
is that the dipoles representing two electrons pivoted on the same nucleus would counter- 
align themselves very strongly which is equivalent to the spin-up and spin-down mag- 
netic pairing of electrons. 

This section attempted to sketch some of the current ideas which may, or may not, 
help to establish a new model of the metallic current element consistent with all experi- 
mental facts. The melting pot of new ideas should sooner or later bring forth experi- 
ments testing the validity of the pivoted dipole model. 

10. Discussion 

Few, if any, textbooks on electromagnetism now in print contain an historically correct 
description of the work of the famous French scientist A. M. Ampere and the first Ger- 
man theoretical physicist F. E. Neumann. Ampere’s name is wrongly associated with a 
circuital law connecting the magnetic field around a conductor with the current passing 
through it. The magnetic field is the antithesis of Ampere’s action-at-a-distance electro- 
dynamics. The magnetic force law expounded in our textbooks was first proposed by 
GRASSMANN El61 who intended it to supersede Ampere’s law, yet we find that Grass- 
mann’s law is often attributed to Ampere. Neumann is correctly remembered by his 
mutual inductance formula, but his mathematical theory of electromagnetic induction, 
so well described by Maxwell, is now embodied in what is generally called Faraday’s 
law of induction. Much of the confusion may have arisen because the important papers 
by Ampere and Neumann were never translated into English. I t  is hoped that this review 
will remedy some of the historical distortions. 

Ampere’s force law, equ. (21), is an empirical law. No experiment with metallic 
conductors is known which does not comply with this law. Ampere’s method of deducing 
his law has occasionally been criticized. Like the scaffolding of a building, the method of 
deduction of an empirical law may safely be discarded without in any way impairing the 
value of the edifice is has helped to erect. 
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The current element invented by Ampere was an element of matter. In  1820 he still 
treated matter as an infinitely divisible continuum. With our knowledge of the atomic 
structure of conductor metals we should not be surprised to find that infinite divisibility 
leads to absurd results and integration singularities. Ampere had little choice, for without 
the integration over infinitely small elements his force law would not have yielded 
quantitative results. Today the computer enables us to use finite-size elements. What 
first appeared to be a numerical approximation to reality is now becoming more real 
than the idealistic matter and current continuum. 

Few scientists of this century know that Neumann derived the laws of electromagnetic 
induction directly from Ampere’s force formula, and that Maxwell incorporated Neu- 
mann’s work in its entirity into the field theory. Concepts changed names, but the niathe- 
matics has remained the same. Neumann’E electrodynamic potential became Maxwell’s 
kinetic energy of the field and is now simply called magnetic energy. The inductive 
interaction of conductor elements in Neumann’s mutual inductance became flux 
linkage. This latter linkage cannot be applied to a pair of conductor elements. Therein 
lies the reason why closed circuits became so important. They concealed the relativistic 
nature of Grassmann’s law and its conflict with newtonian physics. 

The huge success of Maxwell’s field theory rests on the concept of electromagnetic 
radiation, of which the Ampere-Neumann electrodynamics gave no hint. Maxwell’s 
notions brought optics into the sphere of electromagnetism and sprouted the hardly 
believable technologies of wireless communication, radio, radar, television, and so on. 
When Lorentz added Grassmann’s force law to field theory, to make sense of the motion 
of charges in vacuum, electromagnetism seemed complete but for a few flaws which were 
immediately eradicated by Einstein’s special theory of relativity. For the last eighty 
years this monumental abstract creation of man has remained unchanged. During the 
second half of the twentieth century most physicists have considered it unnecessary to 
keep a critical eye on it. 

I n  the last resort science depends on total honesty. The sobering experimental facts 
concerning energy in the near-field [5, 311 and forces along current streamlines in 
metals [l, 71 will, a t  the very least, require some adjustment in field theory, or they 
could become the pebble releasing an avalanche of change in centuries to come. 

11. References 

[1] P. GRANEAU, Nature 295, 311 (1982). 
[2] A. M. AMPERE, Theorie mathematique des phenomenes electro-dynamiques, Albert Blanchard, 

[3] F. E. NEUMANN, Ostwald’s Klassiker No. 10 (1845); Ostwald’s Klassiker No. 36 (1847). 
[4] I. A. ROBERTSON, Philosophical Magazine 36,32 (1945). 
[5] P. T. PAPPAS, Nuovo Cimento 76 B, 189 (1983). 
[6] R. A. R. TRICKER, Early electrodynamics, Pergamon Press, Oxford, 1965. 
171 P. GRANEAU, IEEE Transaction MAG-20, 444 (1984). 
[8] A. M. HILLAS, Nature 302, 271 (1983). 
[9] P. GRANEAU, J. appl. Phys. 53, 6648 (1982). 

Paris, 1958. 

[lo] M. FARADAY, Experimental researches in electricity, Vol. 1, London, 1884. 
[ill 0. D. KELLOG, Foundations of potential theory, Dover, New York, 1953, p. 53. 
[12] J. C. MAXWELL, A treatise on electricity and magnetism, Oxford University Press, London, 

[13] A. SOMMERFELD, Electrodynamics, Academic Press, New York, 1952, p. 107. 
[14] E. F. NORTHRUP, Phys. Rev. 24,474 (1907). 
[15] E. G. CULLWICK, Electromagnetism and rdativity, Longmanns, London, 1957, p, 227. 
[16] H. 0. GRASSMANN, Poggendorf’s Annalen der Physik und Chemie 64, 1 (1845). 
[17] F. I?. CLEVELAND, Phil. Mag. 26, 416 (1936). 
[18] P. G. TAIT, Phil. Mag. 21 319 (1861). 

1892, Vol. 2, p. 324. 



Fortschr. Phys. 84 (1986) 7 601 

[19] F. E. NEUMANN, Vorleaurungen iiber elektrische Strome, Teubner, Leipzig, 1884. 
[20] C. HERINQ, Journal of the Franklin Institute 194, 611 (1921). 
[21] J. NASILOWSKI, Exploding wires, Plenum Press, New York, 1964, Vol. 3, p. 295. 
[22] H. W. BAXTER, Electric fuses, Arnold, London, 1950. 
[23] P. GRANEAU, Phys. Letters 97 A, 263 (1983). 
[24] P. GRANEAU, P. N. GRANEAU, Nuovo Cimento 7 D, 31 (1986). 
[26] P. GRANEAU, Ampere-Neumctnn electrodynamios of metals, Hadronio Press, Nonantum 

[26] P. GRANEAU, P. NS GRANEAU, Appl. Phys. Letters 46,488 (1986). 
[27] W. WEBER, Wilhetm Webers Werbe, Springer, Berlin, 1893. 
[28] P. GRANEAU, Internat. J. Eleotronios 20, 361 (1960). 
[29] P. GRANEAU, Nuovo Cimento 78 B, 213 (1983). 
[30] E. WHITTAKER, A history of the theories of the uether and electricity, Nelson, London, 1961, Vol. 1, 

[31] M. M. NOVAK, Fortschr. Phys. 28, 285 (1980). 

RIA 02196 USA, 1986. 

p. 87. 

8 Fortaclu. Phys. a4 (ie86) 7 




