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Introduction

We begin with a few remarks on the scope of these lecture notes. The
purpose is to give an elementary introduction to similarity methods for
partial differential equations for those who have had little or no experience
with these techniques. The emphasis will be on motivation and practical
calculations involving several simple examples. From time-to-time we will
allude to the differential-geometric structure which underlies these con-
cepts; for, what we are really talking about is the invariance of a partial
differential equation under the action of a local, Lie group of
transformations. However, a deep understanding of these general concepts
is not a prerequisite for being able to apply similarity methods to a
given system.

The first lecture is mostly an introductory lecture on the nature of
self-similar solutions. The second lecture discusses dimensional analysis
and the Buckingham Pi Theorem and how dimensional arguments lead in a
natural way to similarity solutions. The third and fourth lectures
develop the concept of invariance under a group of transformations and,
given the group, show how solutions can be constructed. In the fifth and
sixth lectures we show how the invariance group can be calculated. The
final lecture deals with a detailed physical example taken from the area

of detonation physics.



LECTURE 1

SIMILARITY METHODS

1. The Problem

The problem that we address in this set of lecture notes is one of
finding so-called self-similar (or similarity) solutions to one or more
partial differential equations with boundary or initial conditions given.
To fix the idea, let us consider a single partial differential equation

(PDE)

H(x,t,u,ut,ux,...) = 0.

where x and t are the independent variables (we think of them as representing

space and time) and u = u(x,t) is the unknown function. Subscripts denote

partial derivatives, i.e.,

u = du u = du u = —EEE- and so on
T X’ tx  3xot’ ’

In general, x and t range over some domain D in space and time where the
solution is desired. In addition, there may be auxiliary conditions which

must be satisfied of the form

B(x,t,u,ux,ut,...) =0,

holding on some set of points w(t,x) = 0 consisting of the boundary of D.
(See Figure 1). By a solution we mean a function u = u(t,x} which satisfies
the PDE and auxiliary conditions identically. An auxiliary condition given

at time t = 0 is called an initial condition; conditions given on the other



boundaries of D are called boundary conditions. The problem of determining
a function u(x,t), (x,t) e D, which satisfies the differential equation and

initial conditions is called an initial-value problem. If the auxiliary

conditions are boundary conditions, then it is a boundary value problem.

If both initial and boundary conditions are specified, then we have an

initial-boundary-value problem, or a mixed problem.

w(t,x) =0

Figure 1. Schematic of the spacetime region D and the

boundary w(t,x) = 0.

There are several techniques for solving problems of these types. We
list some of the most familiar:

1. Separation of variables or the eigenfunction expansion method.

2. Transform Methods (Laplace transforms, Fourier transforms, ...)

3. Numerical or computer Methods.

4. Perturbation and Asymptotic Methods.

5. Similarity Methods.



The point of these lectures is to discuss the last of these methods, the
similarity methods. These methods, in theory, are exact in that they yield
analytic solutions. In practice, however, real problems often require
approximate methods after the similarity method is used to simplify the

problem.

2. The Nature of Similary Solutions

Similarity solutions are special kinds of solutions which possess a
type of invariance under certain transformations (e.g. translations, rota-
tions, or stretchings). This means that the self-similar motion of a
system is one in which the dependent variables or parameters which charac-
terize the system vary in such a way that, as time evolves, the spatial
variation of these parameters remains geometrically similar. The scale
which characterizes the spatial variation may change with time according to
specified rules. The accompanying Figure 2 illustrates typical snapshots
of the spatial distribution of a solution u(x,t,), u(x,tl) and u(x,tz).

All of these graphs are similar and are related by a transformation called

a similarity transformation.

u ¢

u(x,t2)

\ u(x,tl)

u(x,to)

» X

r

Figure 2. Time snapshots of a similarity solution.



3. Physical Meaning

Nature exhibits certain symmetries and the mathematical equations which
model nature often exhibit these same symmetries. The symmetries in a
system give rise to transformations which leave the system invariant. For
example, a system with rotational symmetry may be expected to be invariant
under rotations. It is the invariance of the equations under these
symmetry transformations that cause similarity solutions to exist.

Although the differential equations which govern the motion of a
system may possess these invariant properties, arbitrary initial or boundary
conditions may not. This is why self-similar solutions do not exist for
some problems with general auxiliary conditions; too much has been specified
and, as a result, the symmetry has been lost. One is often satisfied,
therefore, with a self-similar solution to a problem in which the initial
conditions are ignored. Hence, similarity solutions are solutions which
hold after the system has evolved for such a time that the initial conditions
no longer affect the motion. In this way, similarity solutions are not
unlike intermediate asymptotic solutions or long-time solutions to differential

equations.

4. The Value of Similarity Solutions

Similarity methods have been developed in great detail in many branches
of physics and engineering. Their development in hydrodynamics has been
particularly intense and rewarding. In some of the most important problems
in gas dynamics the study of the self-similar solutions has enabled researchers
to reach important conclusions concerning more general types of motion and

establish the governing laws in many cases of practical interest. These



methods have been used in shock wave and detonation physics, in problems
involving explosions, blast waves and the escape of explosion products,
just to mention a few. Of equal importance is the sobering fact that the
similarity method is the only analytic tool available for some problems.
Even though we may not be able to solve the real problem that we wish, a
similarity solution of a simpler problem with some conditions relaxed not
only can indicate facts relevant to the original problem but can also be
useful in itself in providing, for example, an analytic check for computer

solutions or other approximate methods.

5. The Determination of Similarity Solutions

The analytic conditions that a self-similar solution exist for a given
system lead to the definition of a new independent variable, called the
similarity variable, which is a function of the independent variables t
and x (refer to the notation in Paragraph 1). With the introduction of
this new variable a significant simplification occurs in that the partial
differential equation reduces to an ordinary differential equation. The
solution of the ordinary differential equation then provides the self-
similar solution or self-similar motions of the system. In general, for
equations with several independent variables the number of independent
variables is reduced (usually by one) in the case of self-similar motion.
This is the fact that makes similarity methods useful to those seeking
analytic solutions to partial differential equations. To illustrate how

this simplification takes place, let us consider two examples.



1 : =
Example 1. (Burger's Equation) u, + uux vuxx.

Let us attempt to find for this nonlinear equation a traveling wave

solution of the form u(x,t) = f(x-ct).

£ (x) f(x-ct)

v
kS

Figure 2. Traveling wave profile snapshots at t = 0 and t = tO.

Then

u, = -cf!' (x-ct), u = f'(x-ct), u = f'"'(x-ct).

Substituting into the PDE gives
-cf'(s) + £(s)f'(s) = vf"(s), s = x-ct.

This represents a second order ordinary differential equation (ODE). Thus,
introducing a new independent variable s into the problem leads to an ODE

in this new variable for the wave profile f(s).

Example 2. Let us consider two equations in the two unknowns

u = u(x,y), v = v(x,y), namely



Let s = x/y and assume that u = f(s) and v = g(s).

Then u, fr(s)(1/y), u, f'(S)(-X/YZ)

g' (s) (-x/y°)

<
1

= g'(s)(1/y), vy

Substituting into the system of PDEs gives a system of ODEs for f(s)

and g(s), namely

or
szf' +sg' =0 —szg' + sfg = 0.

One can solve this system as follows. Dividing the second equation by

s and adding yields
2
s f'(s) + f(s)f'(s) = 0,
or
2
f'(s) (s™ + f(s)) = 0.

Hence f(s) = constant (which is not an interesting solution), or f(s) = —52.
In this latter case, g(s) = 253/3, which i1s found from either one of the

preceeding equations involving f and g. Therefore, we have a solution
2,2 3,..3
ulx,y) = -x"/y", v(x,y) = 2x7/3y

to the original problem. Again, introduction of the new independent
variable s, called a similarity variable, allowed a substantial simplifi-

cation of our original problem, and we were able to obtain a solution



LECTURE 2
SIMILARITY SOLUTIONS VIA

DIMENSIONAL ANALYSIS

1. Dimensional Analysis

The classical method of determining similarity solutions was developed
in the 1940's by several investigators using arguments based on dimensional
analysis; much of the work was done in the areas of gas dynamics and fluid
mechanics.

Dimensional analysis can be described briefly as follows. Physical
laws should be independent of the units used to express the variables.
Dimensional analysis is the study of the restrictions and consequences
that arise as a result of this independence to both the equations and
their solutions. It leads to self-similar solutions because this
"invariance under units' assumption.

The Buckingham Pi Theorem, which is the cornerstone of the theory,
gives an explicit statement of some of these restrictions. Suppose there

is a relationship between the variables a a of the form

12355

f(al,az,...am) =0 (1)

This equation may, for example, represent a physical law. Now, let

21,...,2 be fundamental dimensions (n < m), e.g. length time, mass, and
n

so on, and suppose

a,. o a .
[ai] = % [} e 2



where [ai] denotes the dimensions of a,. Then Buckingham's Pi Theorem

asserts that there are m-r dimensionless quantities ﬂl,...,ﬂm r which

can be formed using a Sa and, moreover, the physical law (1) is

1°°°

equivalent to an equation of the form

F( 1) =0,

¥l ™ cee
1°°2° m-r

only in terms of the dimensionless variables. Here r is the rank of the
matrix (aij), which is called the dimension matrix.

The following example illustrates how this theorem can be used to
discover interesting relations among the variables in a heat conduction

problem,

Examgle

At time t = 0 an amount of enery e, concentrated at a point in space,
is allowed to diffuse outward. If r denotes the radial distance from
the source and t is time, the problem is to determine the temperature
u = u(r,t) as a function of r and t.

We might conjecture that a relation of the form
g(t,r,u,e,k,c) = 0

exists, where k is the diffussivity and c is the heat capacity. Letting

the fundamental units be

T(time) , & (length) , T (temperature) , E (energy),

- 10 -



we have:

[t] =T el = E
[r] = 2 k] = 2277}
ful = 1 [c] = ET-IR_S.

Recall that k = thermal conductivity/(density x specific heat) and

c density x specific heat. Here, m = 6 (the number of variables), and

n = 4 (number of independent fundamental units.

So, we form the dimension matrix

t T u e k c
T 1 0 0 0 -1 0
[ 0 1 0 0 2 -3
T 0 0 1 0 0 -1
E 0 0 0 1 0 1

Clearly the rank of this matrix is r = 4. Hence there are 6-4, or two
dimensionless quantities which can be formed among t, r, u, e, k, and c.
To find them we proceed as follows:

If 7 is dimensionless, then

1=1[x]=1[¢t 1 T 2 u 5 e k c

Hence

- 11 -



1 5
az + 2a5 - 306 =0
g = A = 0
a, * ag = 0

There are two linearly independent solutions since the rank of this

homogeneous system in six independent variables is four. One solution is

= -1/2, a, =1, a, =a, =0, a_ = -1/2, a, = 0.

@ 2 5 6

1

Another solution is

3/2, a, =0, a, =1, a, = -1, a

2 = 3/2, a =1,

6

Q
1}

which gives

E)
|

_ uc 3/2
— (k)

So, by the Pi theorem, the physical law g(t,r,u,e,k,c) = 0 is equivalent

to

F(ﬂl,ﬂz) = 0,

or

ﬂ2 = f(nl),

- 12 -



or u = Sty ey, (2)
¢ vkt

This gives a variable s, the similarity variable, which we define as

s = r//kt.

To determine the unknown function f we substitute eqn. (2) into the

spherically symmetric heat equation

k 3 .2 _
U -7 3r (T =0,
T
or
2k _
u, - kurr - u s 0. (3)

Now, the similarity law (2) gives

2.-3 3 e ,-3/2.-5/2

e - -
< k "t "rf'(s) - 5 < k f(s),

[

It

1
N

u = %k_zt_zf'(s),

and

u - g_k-S/Zt-S/Z

T c £1(s).

Substitution into Equation (3) yields an ordinary differential equation

for f(s), namely

f(s) = 0.

NS IR&

£1(s) + 2 £1(s) + 3 £ (s) +
A solution of this equation is

f(s) = A exp(-52/4).




Hence, a self-similar solution is given by

2
u(r,t) = A% (kt)‘s/ze_r /4kt

2. A Boundary Value Problem

Consider now the following problem which consists of the spherically

symmetric heat equation subject to initial and boundary conditions:

ok 2
ut 2 or
T

u(r,0) =0, r > r*

u(e,t) =0, t >0
r*
2
4rc J r u(r,0)dr = e.
0

(rzur) =0, t>0, r>r*>0

The last condition expresses the fact that at t = 0 the energy e is

concentrated inside a spherical ball of radius r*, which is small. Our

solution above clearly satisfies

lim u(r,t) =0, t > 0
>

lim u(r,t) = 0, r > r*.
t->0

The constant A can be evaluated as follows.

is always the same,

47c [ rzu(r,t)dr = e,
0

or

a0

c

2
amc f r2 AS (44)73/2g T /4K 4 .

0

- 14 -

Since the amount of heat energy



Letting s = r//kt, we obtain

® 2
4mA J s27s /4

0

ds = 1.

/2

The value of the integral is easily seen to be 2V7, and so A = 1/81r3 and

2
u(r,t) = 12;123375- exp(-r /4kt).

Hence, we have succeeded in solving an initial-boundary-value problem using

dimensional analysis. The Buckingham Pi Theorem allowed us to determine
the proper form of the similarity variable s and the self-similar form of

the solution.

3. Interpretation of the Solution

In Fig. 1 we have sketched the similarity curves s = r//kt = constant,
which represent a family of parabolas in rt-space. Figure 2 shows snap-
shots of the temperature profiles at times to and t- We observe, consis-
tent with our earlier remark, that as time evolves the spatial variation

of the dependent variable is geometrically similar. Figure 3 shows the

basic form of the self-similar solutions, f(s) = exp(-52/4). We notice

tA S = constant

Figure 1. Similarity curves s = constants.

- 15 -



that the solution u(r,t) is of the form

u(r,t) = (time dependent scaling)-f(s).

Hence, the time snapshots are formed by taking f(s) and stretching it

according to the scaling factor.

v
N

Figure 2. Snapshots at times to and tl with tO <Yy

/f(s) = exp(-s2/4)

v

Figure 3. Basic similarity profile.

- 16 -



4, Exercises
A. Consider a point explosion where at t = 0 there is an amount of

energy E released into surrounding air of pressure P , density

0’
Po? and ratio of specific heats vy.

r = r(t) is the radius of the wave

s \\\ front at time t. Using time, length,
r 4
Eg ; and force as fundamental units,
N g . . . .
- derive, using dimensional arguments,

the equation

p r3
5,..2 0

Assuming that P, = 0, obtain the classic formula

0

r= (DY 5 e
0

for the radius of the blast wave, where f is some function of y.

B. A flyer of mass per unit area M_ sits upon an explosive of mass

f

per unit area Me which is backed by a tamper of essentially infinite

v mass. When the explosive detonates,

f
? the flyer is driven off at velocity
flyer —

Ve If Eg is the Gurney energy

explosive —— (joules/kg) of the explosive, that

is, the energy available in the

tamper explosive to do work on the flyer,

show that dimensional analysis methods

give the relation

- 17 -



Mg
Vf=/|¥f(ﬂz),

if the fundamental units are time, length, and mass. (Using conservation

of energy and momentum it can be shown that the true relationship is

M
_ f L 1,-1/2
Ve T VZEg (ﬁ; + 3 .

5. Bibliographic Remarks

An extremely readable account of dimensional analysis and additional
exercises can be found in C. C. Lin and L. A. Segel (see references).

G. Birkhoff's book Hydrodynamics provides an in-depth study of dimensional

methods and a proof of the Pi Theorem. In a recent work, Curtis, Logan,
and Parker have given a purely linear algebra version of the theorem;

additional references can be found there.
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LECTURE 3

GROUP THEORETIC METHODS

1. Introduction

The central idea behind group theoretic methods for finding self-

similar solutions is this:

1. Determine a local, Lie group of transformations under which the
problem (PDEs, BCs, ICs) is invariant.

2. From the group determine a new coordinate system (canonical
coordinates) which simplifies the problem in that one fewer
independent variable is required.

3. Solve the problem in this new coordinate system.

We begin with an example which illustrates the type of transformations

we consider as well as what we mean by invariance. We use the so-called

method of stretchings, where we assume particular transformations.

Example (Heat equation) uo-u o= 0

We attempt to find a transformation (stretching group)

under which the equation is invariant. Here, ¢ is a parameter and o and B

are numbers which are to be calculated. Let us compute the transformed

equation:
u _ 9u _ dudt, du3dx _ -a
ﬁ B‘E at 31_'. ax B'E t
9u _ du _ dudt  dudx _ -B
X 9% ot 9% X % X



t XX t Xx
If we pick 8 = 1 and o = 2, then

-2
U- - u-- = € (ut-uxx).

whenever u = u(x,t) is a solution to u -uw o= 0, then u(x,t) is a
solution to GE - aii = 0. We say in this case that the PDE is invariant

under the given transformation.

2. The General Concept

Consider a PDE
H(t,x,u,ux,ut) = 0.

The type of transformations we consider is a family of transformations from
txu - space to txu - space indexed by a small parameter e. We assume that
the set of these transformations form a group under composition. That is, we
assume closure (locally, for small €), associativity, identity, and

inverse. Suppose the transformations are given by the formulas:

- 20 -



t = ¢(t)x’uje)
x = lP(t,X,U,EJ (4)
u = Q(t,x,u,e)

where ¢ ¥, and Q are sufficiently differentiable for our needs. We assume
for € = €y = 0 we get the identity transformation t = t, X = X, u = u.
Such a one-parameter group of transformations is called a local, Lie group

of transformations.

tcose - xsine

Examgle t

X = t sine + xcose

=
1}

u + ¢,

Geometrically this is a rotation of angle e in tx-space and a translation by
€ in u space. We can view this in two ways; both are helpful. First, we
can regard it as a coordinate transformation, or a change of coordinates txu
to txu. Second, we can view it as a point transformation which moves points
(t,x,u) to (t,x,u) in the coordinate system txu. (See figures 1 and 2)

Associated with the local, Lie group (4) is the so-called infinitesimal

transformation, which is the principle linear part of the transformation.

If we denote T = 5%—¢(t,x,u,0), X = gg-w(t,x,u,O), and U = 5% Q(t,x,u,0), and

expand the right hand sides of (4) in a Taylor series about € = 0, we obtain

t +e¢T (t,x,u) + 0(52)

t =

- 2
x=x+ e X (t,x,u) + 0(e™)
- 2
u=u+e¢e¢U (t,x,u) + 0(e”)

- 21 -



The 0(52) terms are generally dropped and the result is what is called the

infinitesimal transformation.

u =1

ﬁ\

1

//E\ }E. (tlxlu)

-
t
t t
Figure 1. Coordinate transformation Figure 2. Point transformation

Also, there is associated a natural vector field (T,X,U) and operator

9 9 9 .
7t X =t 8] e with the group. T, X, and U are called the

=T
generators of the group. The integral curves of the vector field (T,X,U)
are the orbits of the group. As it turns out, they define special
coordinates which make the group a simple translation. It is these coordi-

nates which give the similarity variable and similarity solution.

u‘r

/
|
__4/

N7
=

t

Figure 3. The orbits or integral curves of the vector field (T,X,U).

- 22 -



Note that the orbits are found from the equations

dt _ dx _ du _
Fr N P T e
Example (Heat equation) u o -u T 0.

. . - 2 - -
Earlier, we calculated the group of transformations t = €"t, X = €x, u = u,

Here, the infinitesimal generators are (note e = 1 gives the identity)

dt dx _ du _

HE— 2t, 'd—e— X, —e'— 0,
or

2t X 0

= s = constant.

d
Also, u = constant = w Also, from -—% = de we get In x =¢ + cC.

Pick r

1l

In x. So, take a new coordinate system to be (canonical variables)

In this new coordinate system the transformation is a translation. This

is easily checked as follows:

- 23 -



- X £X X
§s=—= =— =-——==35

/t /t

t /Czt t
r=Inx=In¢cx=1nc+Inx=1nc¢c +r
W=1u-=u

Writing out the heat equation in the canonical variables r, s, and w, we
obtain

ow 2 2 azw
2

S 52 Brz S 3s

= 0.

| »
[
QL
=
p—t
QL
=
0N
QL
=

Note that there are no r's in the coefficients. Therefore we notice that

there is a solution of the form

w = f(s).

If we substitute this into the last equation, we obtain an ordinary

differential equation for f(s), namely,

(] 5 1 —
'+ > f 0

This can be solved to obtain
S 2

f(s) = a J el dz + D
0

b erf(s) + D

X
Therefore, u(x,t) = b erf(;%ﬁ + D,

and we have obtained a solution to our problem. The constants b and D can

be evaluated from initial and boundary data.

- 24 -



3. Summary and Algorithm

The following schematic summarizes an algorithm for determining
similarity solutions via canonical coordinates given the fact that the

problem is invariant under a known group with generators T, X, and U:

Given a PDE

H(t,x,u,ut,ux,...) =0

invariant under
a group with generators

T, X, U

Solve the characteristic system

= de to find the canonical coordinates

|Q.-
3| eF
[aF)
xlx
[aN
cl&

r, s, and w as first integrals

of this system.

Rewrite the PDE in the new

coordinate system as

H(r,s,w,wr,ws,...) =0,

and solve.

In the canonical system the partial differential equation
H(r,s,w,wr,ws,...) = 0 will not have explicit dependent on one of the inde-
pendent variables r or s. As a result, a solution which is just a function

of one variable can be expected.

- 25 -



The reason for this simplification is indicated

in the following

schematic. In the new coordinate system the group is a translation in one

of the variables, and so the PDE in that system cannot depend explicitly

on that variable; hence we have a reduction of the number of independent

variables.
PDE
H(t,x,u,ut,ux,...) =0 invariant t
under X
u
change of
variables
to r,s,w J
H(r,s,w,wr,ws,...) =0 invariant T
under s
W

4. Exercise

A. The equation uu, - uu - u
Yy Xy xyy yyy

theory for flow along a flat plate.

= 0 occurs

GROUP

¢(t,x,u,c)

w(t)x’u)s)

Q(t,x,u,e)

change of
variables

to r,s,w

in boundary layer

a. Verify that the equation is invariant under the group

- 2 - -
X=€X, y=¢€y, u= eu.

b. Determine the generators of the group.

c. Show that the canonical coordinates are given by

r = Y//;, =-% In x

- 26 -



and
w = u/vYx
d. Show that in canonical coordinates the equation becomes

1
rrr 2 rr 2 Vs T 7 Vs T 0

and then obtain an ordinary differential equation for a solution

of the form

w = f(r).

- 27 -



LECTURE 4

THE INVARIANT SURFACE CONDITION

1. Introduction

Let us assume that the boundary-value problem

H(t,x,u,u ,ux) = 0

t
(S)

B(t,x,u) = 0 on w(t,x) =0

is invariant under a l-parameter local Lie group of transformations

t = ¢(t’x,u,€)
(r.) x = y(t,x,u,¢)
u = Q(t,x,u,e)

In the last lecture we determined a new set of canoncial or preferred
coordinates in which the group became a simple translation and the PDE
could be simplified so as to depend on one less independent variable.
Now, let us take an alternate viewpoint and derive a condition on the
solution u = g(t,x) of (S) which must hold when (S) is invariant under

the group (Fe)'

2. Transformation of Solutions

Let u = g(t,x) be a solution to (S). We ask how the surface
representing this solution changes under the transformation PE. The
set of points (t,x,u) on the solution surface gets mapped for each ¢

to a set of points (t,x,u) in txu-space via (also see figure 1)

- 28 -



t = ¢(t,x,g(t,x),e)
x = p(t,x,g(t,x),e)
u = 9(t,x,g(t,x),e)

1

u=g(t,x)

cl
i
Ql
=
51

’

EJ

t T

Figure 1

Solving the first pair of equations for t and x in terms of t and X
(it can be shown that these two equations can be inverted provided ¢ is

sufficiently small), we get
t = t(t,x), x = x(t,x)
Substituting into the third equation gives
u = Q(t(t,x), x(t,x), gt(t,x), x(t,x)),e) = g(t,x)
This is the equation that defines the transformed surface u = g(t,x).

3. The Invariant Surface Condition

Now consider the same system (S) in barred or transformed coordinates:
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H(E,i,ﬁ,ﬁf,ﬁi) =0

B(t,x,u) = 0 on w(t,x) = 0

Note that H, B, and w have the same functional form. Obviously, a
solution of (S5) is u = g(t,x), since we have only renamed the variables.
For invariance, we require that u = g(t,x) satisfy (5). That is, we
say (S) is invariant under T_ if u = g(t,x) is a solution to (S) when-
ever u = g(t,x) is a solution to (S).

Since both g(t,x) and g(t,x) satisfy (S), which we can assume has

unique solutions, we must have g(t,x) = g(t,x) or
g(t,x) = Q(t,x,g(t,x),e)

where t = t(t,x) and x =x(t,x) on the right-hand side. Differentiating

this equation with respect to ¢ at ¢ = 0 gives, using the chain rule,

Py Ry Lo
3t SE)€=O * x5 T alt,x,g(t,x),e) -

or

where T, X, and U are the generators of the group Fe. Now, there is no

need to distinguish g and u so we write

u Ju
F+X = U. (1)

T X
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This is the invariant surface condition. It is a condition on a solution

surface u(x,t) in order that the problem be invariant under a local,
Lie group FE. We recognize it as a first order, quasi-linear, partial
differential equation. The method of characteristics allows us to find

the general solution. We form the characteristic system

dt _ dx _ du
T(t,x,u) ~ X(t,x,u)  U(t,x,u)

If wl(t,x,u) = constant and wz(t,x,u) = constant are two independent

first integrals, then the general solution of (1) is
F(wl,wz) =0

where F is an arbitrary function.

We now observe that the characteristic system for the condition
that a surface be invariant is the same as the equations used to determine
the canonical coordinates.

An example will now illustrate how the invariant surface condition

leads to self-similar solutions.

Example u, + uu = 0.
t X

This PDE is invariant under the local, Lie group with generators

T= (B-a) t + 6
X = (2B-0) x + yt + n
U= Ru + vy, a,B,Y,8,n constants.

We will calculate this group later. For simplicity we take
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Then

T =8t + 6
X = 28x + n
U = Bu.

The invariant surface condition is
ou au
(Bt+8) Y {2Bx+n) > - Bu,

and the characteristic system is

dt _ _dx _ du
Bt+6  2Bx+n  Bu’

Solving the first two we obtain the similarity variable s:

2
(t+5)
n = constant = s.
X"‘Z—B'
Now, from
dt du

we get

u

—tTW = constant

Hence

u= (t+ 4&/8) £(s).

To determine f we substitute into the partial differential equation:
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_2(t + 6/8)2

t = X + n/ZB f'(S) + f(S),

3
u = - if;i_élﬁlfé fr(s).
(x + n/28)
Hence
Uy + uu = 0 becomes 2f'(s)s +f(s) - szf'(s)f(s) =0
or
af . _-f
ds o5 _ $%f

This can be solved by introducing ¢ = sf. We obtain

L_Ld(b:.d_'_s_
¢(1-¢) s

Integrating gives

¢2
o -1 °% Cc a constant.
Hence
st - 1 ~ ’
or
C C2 c
f&=72y7-3
Therefore
2
u(x,t) = (t + a/s)[g ijC_4 - Mg_)J
(t + &/8)

and we have obtained similarity solutions to our problem.

- 33 -



4,

1.

2.

Exercises

Consider the wave equation u__ - u_, = 0.
XX Ctt
a. Determine a l-parameter local, Lie group of transformations
(stretchings) of the form
- a - -
t=¢t, X = ebx, u=u
under which the PDE is invariant.
b. Show that the canonical coordinates are
r = Xx/t, s = 1nt, w = u.
¢. In canonical coordinates show that the wave equation becomes
2
(1-v7°)w -w__ +2rw__ +w_ - 2rw_ = 0.
T SS TS s T
d. Reduce this equation to an ODE in w(r,s) = f(r) and find

a similarity solution.

Show that if the invariance group for a PDE is given by

t = ¢(t,x,€)
x = y(t,x,e)
u = g(t,x)ue + u,

then the general solution for the invariant surface condition equation

is

u(t,x) = F(x,t)f(s)

where f is an arbitrary functions of s, F is a known function of x and

t, and s is a known function of t and x.
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3. Consider the nonlinear diffusion equation

3 au
= — — < ©
ut ™ [K(u) Bx]’ 0 s x<eo, t>0

with boundary conditions

u(0,t) = u u(e,t) = u

0’ 1

and initial condition

u(x,0) = u,

, and u, are constants. Using the Boltzman transformation

where uO, u )

1

show that for proper choice of o and B the PDE is reduced to an ODE.

Assuming u; = u,, find the boundary conditions for the ODE.

4. Consider the PDE

(8) utt ¥ uxx =0

etcosx. Write down the system (5) and show

with solution u = g(t,x)

that u = g(t,x) satisfies the equation. Compute u = g(f,X) where

and show that it satisfies (g).
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LECTURES 5 AND 6

CALCULATION OF THE GROUP

1. Invariance Conditions

Let us now ask again what invariance means. We are given a

problem
H(t,x,u,p,q) = 0, p = ut, q=u

(S)

B(t,x,u) = 0 on w(t,x) = 0.

We seek a 1-parameter, local, Lie group

X = v(t,x,u,e)
u = Q(t,x,u,c)

under which (S) is invariant. We recall that our definition stated that
(S) is invariant under (FE) is u = u(x,t) is a solution to (S) implies

u = u(t,x) is a solution to (§), where (S) is the system

H(t,x,u,p,q) = 0, p=uz, q=us

S
B(t,x,u) = 0 on w(t,x) =0
We desire to make a more general definition of invariance in terms of
the partial differential equation and boundary condition directly which

will imply our previous definition given above. Clearly, the above

definition is satisfied if, for example,
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B(t,x,u) = B(t,x,u)
and
w(t,x) = w(t,x)

for all e sufficiently small. In this case we say (S) is absolutely
invariant under (Fe). Taking the derivative of the first equation

above with respect to € at € = 0 gives

oH oH oH oH oH _
a—t'T*"a—;x*"é—lIU"";EP'FEQ—O

where

Similar equations hold for the auxiliary conditions. To compute P
and Q we must know how the derivatives p and q transform. The group

r. ot (t,x,u) »> (t,x,u) automatically induces a transformation on the

derivatives; that is, the group FE can be extended to a larger group

-~

FE : (t,x,u,p,q) > (t,x,u,p,q), called the extended group. The formula

for the generators P and Q are

p-2oU 3Uu_~ 3T 3 9T 2 23X
5t T ou P "3t P "3t 9  wP su Pd

-, T X 3T X2
3x T aud T ax P T oax ou P4~ 50 4

So, our condition for invariance is, for absolute invariance,
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oH oH oH oH oH
5¥'T + 5;—X + SG-U + SB-P + sa-Q =0,

with similar equations holding for the auxiliary condition.

But this is still not quite what we want. If we recall our

example of the heat equation uoo-ou 0 from Lecture 3, we found that
under the transformation t = €“t, x = ex, u = u, the invariance

condition was

s - G- = €2 (u, - u_).
t XX t XX

. . 2
In this case there was some ''conformal' or '"stretching" factor e
connecting the barred and unbarred equations. So, we say in general

that (S) is constant conformally invariant under (FE) if there is a

constant o such that

5% H(t,x,u,p,q) = oH(t,x,u,p,q) for all t,x,u,p,q,
e=0

and similarly for B and w. The left-hand side is the Lie derivative of
H in the direction of the vector field (T,X,U,P,Q); written out, we

get

oH oH oH dH oH _ -
ET+§X+3—U-U+-5P+EQ—aH(t,x,u,p,q) *)

Further generalizations can be made be permitting o to be a function
a = a(t,x,u).

The algorithm for finding the generators is to substitute P and Q
into (*), set the coefficients of p,q,pz, qz, and pq to zero, thereby
obtaining a system of linear PDEs for the generators T, X, U. These

equations are called the determining equations for the group. In

- 38 -



practice we can usually solve them.

2. Example

We now perform a detailed calculation of the group for the PDE

We write the equation as
H(t,x,u,p,q) =p+uq=0, p=u, q=u
Then the invariance condition (*) becomes
HT + H X+ HU + Hp [Ut +Up-Tp-Xq- Tupz - Xupq]
+ Hq [Ux +Uaq-Tp-Xaq-Tpq- Xuq2] = a(p + uq)

But

Substituting these quantities we obtain

2
U+ U +Up-Tp-Xaq-Tp -Xpq

2
+ulU +Uq-Tp-Xq-Tpq-Xaql=alp+ uq)

Now set the coefficients of 1, p, q, p2, q2, pa to zero to get the

determining equations of the group:



u
-uX =0
u
- X -uT =0.
u u

We can conclude that

T=T(t,x), X = X(t,x),

and

= 1
Ut + qu 0 (1)
Tt + UTx = Uu - a (2)
Xt + uX_ =U + uUu - au (3)

It is these equations we must solve to obtain the generators T, X,

and U.
From (2),

U =a+ T, +uT.

u t X
Therefore,

Uu = o(t,x) u + B(t,x),
and

u2

U=oa(t,x) — + B(t,x)Ju + v(t,x),

where

a(t,x) = T, T, = 8(t,%) - a (4)
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From (3),

2

tal
+
c
~
1]

+ ula(t,x)u + B(t,x)] - ou

2

Equating coefficients of u we get

Xt = v(t,x)
a(t,x) =0
Xx = 2B(t,x) - a.

So, we have T = T(t) and B8 = B(t)

From (5),

_ 9y _ '
xtx T oax th 28" (1)

or

ay

Y - g9r -
28'(t) 3x 0
Now we know

U= B(t)u + v(t,x)

Plug into (1):

Yy ay

' _— —_—

B (tu + gy +u g =0
Hence

(7) N s and pr(r) + -

ot X

- 41 -

a(t,x) T + B(t,X)u + v(t,%)

é—a(t,x)uz + (2B(t,x) - a)u + y(t,x).

[from (4)].

(5)

(6)



But, adding (6) and (7) gives
B'(t) =0

B = constant, Yy = constant.

Thus,

Tt =B -a

T= (B - a)t + §.
Also,

Xx = 28 - «a, Xt =y

X = (28 - a)x + vyt + n.
Hence,

c
I

Bu + vy
Therefore, the generators are

(B-a)t + 6

T =
X = (28-a)x + yt + n
U= Bu + v.

3. The General Theory

In this section we shall indicate the general procedure.

Suppose we are given a system of N partial differential equations
Hn(x,u,p) =0, n=1,...N (1)
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where x = (xl,xz), u = (ul,...,um), and P = (pjl) = (aul/axJ), with

boundary conditions
B (x,u) =0, 2=1,...L, (2)

holding on the curve(s) w(x) = 0. We consider a one-parameter local,
Lie group acting on xu-space given in infinitesimal form by

X"+ eXl(u)

r (3)
o) = ul o+ eUJ(x,u).

[
1

. . i
We explicitly assume that the generators X do not depend on u.
Although this is not the most general case, it is sufficient for most
applications. The transformation FE induces a transformation on the

derivatives p given by

~ i i

p. = pj + eri(x,u,p), (4)

where the generators le are given by

i i k .

k oX i

* TPy T3P (5)
axX

in the last equation for the generator le.
We say that partial differential equation H(x,u,p) = O is constant

conformally invariant under (3) and (4) if there is a constant a such

that
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S H(,0,p)| = aH(x,u,p) (6)
& e=0

for all x, u, and p. Given the group (3), we say u = gJ(x) satisfies

the invariant surface condition if éJ = gJ that is, if the group

transforms g into itself. It is not difficult to prove that if

H(x,u,p) = 0 is constant conformally invariant under (3) and (4), and

if u) = g?(x) is a solution to H(x,u,p) = 0, then u? = g’ (X) is also

J

a solution. By differentiating 1) = g (x) with respect to € at € = 0

we get

i .
200 X o = U ix,e00), (7
9X

which is the analytic form of the invariant surface condition.

To determine the group (3) and (4) under which H(x,u,p) = 0 is
constant conformally invariant we write down condition (6) explicitly
and solve to determine the generators Xi and Uj.

Once the group is known, the similarity variable s is determined

. . . i, ..
as a first integral of the vector field X*, i.e., it is a constant of

o &l
X' ¥

Exercise

A. (Computationally involved) Consider the system of equations
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Calculate the group

t=t+eT, x=x+eX, u=u+c¢e U, v=v+eV

under which the system is absolutely invariant.

[Hint: The determining equations are

c
c
<
+
-
+
+
<
[=1
+
c
—3
I
=)

<
!
>~
ct
+
c
(o)
<
1
c
—3
1]
o

The details of this calculation are in Ovsjannikov (see references).
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LECTURE 7

DETONATION WAVES

1. Self-Similar Solutions
____F*\\ . reactive . _
— piston material time t = @
4(———————shock
> .| —> D(t) time t > 0
-..\"-.__ ..

N

reaction zone
Figure 1. Schematic of the physical problem.

At time t = 0 a piston impacts a reactive material, thereby
driving a shock wave into the material with velocity D = D(t). The
shock wave initiates a chemical reaction A -+ B measured by a progress vari-
able A. X = 0 at the shock front and A = 1 at the end of the reaction
zone. The shock path is not known a priori, but must be calculated.

The variables to be determined in the reaction zone are p (pressure),
u (particle velocity), v (specific volume), and A. All are functions
of time t and Lagrangian position h.

We assume an equation of state of the reactant-product mixture of

the form
_ _pv _
E = 71 Aq,

where q is the heat of detonation. In Lagrangian coordinates, the
governing equations are the conservation laws
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v, —-v,u =0 (mass) (n

t 0 'h
u, + Vo Py T 0 {momentum) (2)
p. *+ Py - il:llﬂ_x =0 (energy) (3)
t v t v t

and the chemical reaction equation
A, = Qp,u,v,A) (4)

where Q is the reaction rate. Q is presently treated as an unknown;

in the following calculation we characterize the possible functional

forms for Q in order that self-similar solutions exist. Boundary
conditions are given along the shock path by the Rankine-Hugoniot

jump conditions. Assuming the strong shock condition, the jump conditions

may be written

D=-"—— u,
_y-l (5)
Vo Ty + 1
_y+1 2
p1 2v u1 (6)
0
By - By =3+T1 Vo1 7
A, - A, =0, (8)

where 0 and 1 (subscripts) denote values just in front of and just

behind the shock, respectively.
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The problem now is to find a local, Lie group of transformations

u + U

c
It

t=t+eT, h

h+eH,

>1
t

A+ eh

<1
1

p + €P, v + eV,

g~
1}

under which the equations and boundary conditions are constantly
conformally invariant. The details of the calculation of T, H, U, P,

V, and A are found in the paper by J. D. Logan and J. Pérez, "Similarity
Solutions for Reactive Shock Hydrodynamics', listed in the references.

The following theorem results.

£} piston path

‘//// shock path

Figure 2. Spacetime Diagram

Theorem Under the polytropic gas and strong shock assumptions, the
equations for reactive flow (1) - (4) and the Rankine-Hugoniot jump
conditions (5) - (8) are constantly conformally invariant under the

local, Lie group with generators given by

T=at +c, H=bh+d, U= (b-a)u
(9)

s~
1}

2(b-a)p, V=0, A= 2(b-a)x,
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provided the reaction rate Q = Q(u,p,v,A) satisfies the partial

differential equation

-~
1%

+ pr +2Q, = 6Q (10)

[H)

u

where
B = (2b-3a)/(2b-2a).

Equation (10) comes from one of the invariance conditions; it
can be solved to determine the possible reaction rates for which

similarity solutions exist. The characteristic system for (10) is

dr _ dq

0 u/2 P A BQ’
and has first integrals given by

2 B
v, u’/p, A\/p, Q/p .

Hence, the general solution of (10) is given by

u2
5 (11)
Therefore, we have characterized all possible reaction rates for
which there exists a similarity solution. We are now ready to find the

self-similar solutions. The invariant surface conditions are

Tu, + Huh = U,

Tpt + th =P,

Tv, + Hvy =V,

TAt + Hxh = A,
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The characteristic system for the first equation is

dt _ _dh _ du
at + ¢ bh +d  (b-a)u

The first pair gives the similarity variable:

c4h + 1

s= A, (12)

(c3t+1) 2

where
c, = b/a, c, = a/c, c, = b/d.

The equation

dt _ du
at + ¢ (b-a)u

integrates to give the following self-similar form for u:

c.-1

ut,h) = (c t+1) 2 u,G(s) (13)
Similarly,
2(c,-1) R
p(t,h) = (03t+1) PiP(S) (14)
v(t,h) = viQ(s) (15)
2(c,-1)
A(t,h) = (cgt+l) As). (16)

These are the similarity-solutions. The functions ﬁ,ﬁ,@, and A are
yet to be determined by solving the set of ordinary differential
equations to which the PDEs reduce. These ODEs are found by sub-
stituting the self-similar forms (13)-(16) into the PDEs (1)-(4); we
obtain
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1 0 Ly+l)s 0 (QE.W [ 0 7]
2 ds
_ dp 3/ (3-
s 1 0 0 s 4/ (3-28)
~ A = ,.B
0 s Asp 0 dv 2p  4kqp'F
‘7 ds 3 - 28 (Y+1)C u 3{;
471
3 2 ~B
dA 2 2kp F
|00 0 SJ [ ds J 3 - 28  (y+l)c.u.
- 4 1 J

where we have taken the reaction rate Q to be

8 P p.u2
Q = k(_R) F (_X., Zix , i . ) ’

P: V.
i i pu.

consistent with the general form (11).
We recall that the similarity variable s is
c4h + 1

(c3t+1)c2

Since h = t = 0 is on the shock path, and the shock path must be a
similarity curve, it is given by s = 1 or

C

c4h +1 = (c3t+1) 2 [shock path].
The shock velocity is
c.C c.-1 c, -1
_dh _ 7273 2 7 _ v+l 2
D = Fr o (c3t+1) = > u (c3t+1)

The initial conditions for the system of ODEs are then

u(l) = p(1) = v(1) =1, A(l) = 0.

- 51 -



Also,

_ 28-3
2° 28-2°

We note that there is only one freee constant, namely c The

4°

remaining constants are assumed to be given:

(i) k and B from the rate law (and the function F)
(ii) v and q from the reactive material

(iii) us from the initial piston energy.

2. A Particular Case

Let us examine closely the case B > 3/2, ¢, < 0. This forces

4
Cq < 0 and 0 < <, < 1.
a\ other similarity curves (s <1)
—l/c3 L _
|
\:\ |
shock (s=1)
|
' h

rd

-1/c4

Figure 2. Similarity curves for the case B > 3/2, Cq < 0.

2(c
The pressure at the front is p, = pi(c3t+1)

2~ 1) .
, which is increasing,

and the shock is accelerating. The similarity curves meet at the
singular point (—1/c4, —1/c3) which can be considered as a transition-
to-detonation point, a detonation being considered as a steady-state

solution when viewed from the shock front.
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With a rate law of the form
B p.A
Y =k (_p) 1 - ¢ —1 )
t pi ( 1 p

the system of ODEs was numerically integrated to give the qualitative

pressure profiles shown in Figure 3.

pl\

v
(1-

Figure 3. Pressure profiles of Lagrangian particles hO, hl’ hz,

h, < h1 < h The dotted line shows the pressure p, at

0
the shock.

2

These profiles are qualitatively the same as profiles obtained

experimentally using Lagranian pressure gages by several investigators.
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