
C. H. Bennett

Logical Reversibility of Computation*

Abstract: The usual general-purpose computing automaton (e.g., a Turing machine) is logically irreversible- its transition function
lacks a single-valued inverse. Here it is shown that such machines may be made logically reversible at every step, while retaining their
simplicity and their ability to do general computations. This result is of great physical interest because it makes plausible the existence
of thermodynamically reversible computers which could perform useful computations at useful speed while dissipating considerably
less than kT of energy per logical step. In the first stage of its computation the logically reversible automaton parallels the corre
sponding irreversible automaton, except that it saves all intermediate results, thereby avoiding the irreversible operation of erasure.
The second stage consists of printing out the desired output. The third stage then reversibly disposes of all the undesired intermediate
results by retracing the steps of the first stage in backward order (a process which is only possible because the first stage has been car
ried out reversibly), thereby restoring the machine (except for the now-written output tape) to its original condition. The final machine
configuration thus contains the desired output and a reconstructed copy of the input, but no other undesired data. The foregoing results
are demonstrated explicitly using a type of three-tape Turing machine. The biosynthesis of messenger RNA is discussed as a physical
example of reversible computation.

Introduction
The usual digital computer program frequently performs
operations that seem to throwaway information about
the computer's history, leaving the machine in a state
whose immediate predecessor is ambiguous. Such opera
tions include erasure or overwriting of data, and entry
into a portion of the program addressed by several dif
ferent transfer instructions. In other words, the typical
computer is logically irreversible - its transition function
(the partial function that maps each whole-machine state
onto its successor, if the state has a successor) lacks a
single-valued inverse.

Landauer [I] has posed the question of whether logi
cal irreversibility is an unavoidable feature of useful
computers, arguing that it is, and has demonstrated the
physical and philosophical importance of this question
by showing that whenever a physical computer throws
away information about its previous state it must gener
ate a corresponding amount of entropy. Therefore, a
computer must dissipate at least kTln 2 of energy (about
3 x 10- 2 1 joule at room temperature) for each bit of in
formation it erases or otherwise throws away.

An irreversible computer can always be made reversi
ble by having it save all the information it would other
wise throwaway. For example, the machine might be
given an extra tape (initially blank) on which it could
record each operation as it was being performed, in

sufficient detail that the preceding state would be
uniquely determined by the present state and the last
record on the tape. However, as Landauer pointed out,
this would merely postpone the problem of throwing
away unwanted information, since the tape would have
to be erased before it could be reused. It is therefore
reasonable to demand of a useful reversible. computer
that, if it haIts, it should have erased all its intermediate
results, leaving behind only the desired output and the
originally furnished input. (The machine must be al
lowed to save its input-otherwise it could not be rever
sible and still carry out computations in which the input
was not uniquely determined by the output.) We will
show that general-purpose reversible computers (Turing
machines) satisfying these requirements indeed exist,
and that they need not be much more complicated than
the irreversible computers on which they are patterned.
Computations on a reversible computer take about twice
as many steps as on an ordinary one and may require a
large amount of temporary storage. Before proceeding
with the formal demonstration, the argument will be car
ried through at the present heuristic level.

:1< Much of the work on physical reversibility reported in this paper was done under
the auspices of the U.S. Atomic Energy Commission while the author was employed
by the Argonne National Laboratory, Argonne, IJlinois. 525

NOVEMBER 1973 LOGICAL REVERSIBILITY

The ordinary type of one-tape Turing machine [3]
consists of a control unit, a read/write head, and an infi
nite tape divided into squares. Its behavior is governed
by a finite set of transition formulas (commonly called
quintuples) of the read-write-shift type. The quintuples
have the form

meaning that if the control unit is in state A and the head
scans the tape symbol T, the head will first write T' in
place of T; then it will shift left one square, right one
square, or remain where it is, according to the value of
er(-, +, or 0, respectively); finally the control unit will
revert to state A'. In the usual generalization to n-tape
machines, T, T', and a are all n-tuples within the quin
tuple.

Each quintuple defines a (partial) one-to-one mapping
of the present whole-machine state (i.e., tape contents,
head positions, and control state) onto its successor and,
as such, is deterministic and reversible. Therefore a Tur
ing machine will be deterministic if and only if its quintu
ples have non-overlapping domains, and will be reversi
ble if and only if they have non-overlapping ranges. The
former is customarily guaranteed by requiring that the
portion to the left of the arrow be different for each quin
tuple. On the other hand, the usual Turing machine is
not reversible.

In making a Turing machine reversible, we will need
to add transitions that closely resemble the inverses of
the transitions it already has. However, because the
write and shift operations do not commute, the inverse
of a read-write-shift quintuple, though it exists, is of a
different type; namely, shift-read-write. In constructing a
reversible machine it is necessary to include quintuples
of both types, or else to use a formalism in which transi
tions and their inverses have the same form. Here the
latter approach is taken - the reversible machine will use
a simpler type of transition formula in which, during a
given transition, each tape is subjected to a read-write or
to a shift operation but no tape is subjected to both.

We begin with the reversible but untidy computer
mentioned earlier, which has produced, and failed to
erase, a long history of its activity. Now, a tape full of
random data cannot be erased except by an irreversible
process: however, the history tape is not random-there
exists a subtle mutual redundancy between it and the
machine that produced it, which may be exploited to
erase it reversibly. For example, if at the end of the
computation a new stage of computation were begun
using the inverse of the original transition function, the
machine would begin carrying out the entire computa
tion backward, eventually returning the history tape to
its original blank condition[2]. Since the forward com
putation was deterministic and reversible, the backward
stage would be also. Unfortunately, the backward stage
would transform the output back into the original input,
rendering the overall computation completely useless.
Destruction of the desired output can be prevented sim
ply by making an extra copy of it on a separate tape, af
ter the forward stage, but before the backward stage.
During this copying operation (which can be done re
versibly if the tape used for the copy is initially blank),
the recording of the history tape is suspended. The back
ward stage will then destroy only the original and not the
copy. At the end of the computation, the computer will
contain the (reconstructed) original input plus the intact
copy of the output; all other storage will have been re
stored to its original blank condition. Even though no his
tory remains, the computation is reversible and deter
ministic, because each of its stages has been so.

One disadvantage of the reversible machine would
appear to be the large amount of temporary storage
needed for the history - for a i--step first stage, v rec
ords of history would have to be written. In a later sec
tion it will be argued that by performing a job in many
stages rather than just three, the required amount of
temporary storage can often be greatly reduced. The final
section discusses the possibility of reversible physical
computers, capable of dissipating less than kT of energy
per step, using examples from the biochemical apparatus
of the genetic code.

AT ~ T' erA', (1)

526

Logically reversible Turing machines
This section formalizes the argument of the preceding
section by showing that, given an ordinary Turing
machine S, one can construct a reversible three-tape
Turing machine R, which emulates S on any standard
input, and which leaves behind, at the end of its compu
tation, only that input and the desired output. The R
machine's computation proceeds by three stages as de
scribed above, the third stage serving to dispose of the
history produced by the first. The remainder of this sec
tion may be skipped by those uninterested in the details
of the proof.

Definition: A quadruple (for an n-tape Turing machine
having one head per tape) is an expression of the form

(2)

where A and A' are positive integers (denoting internal
states of the control unit before and after the transition,
respectively); each tk may be either a positive integer
denoting a symbol that must be read on the kth tape or a
solidus (/), indicating that the kth tape is not read during
the transition; each tk ' is either a positive integer denoting
the symbol to be written on the kth tape or a member of
the set (-, 0, +) denoting a left, null, or right shift of the
kth tape head. For each tape k, t/t. (-, 0, +) if and only if

C. H. BENNETT IBM J. RES. DEVELOP.

tk = [, Thus the machine writes on a tape if and only if it
has just read it, and shifts a tape only if it has not just
read it.

Like quintuples, quadruples define mappings of the
whole-machine state which are one-to-one. Any read
write-shift quintuple can be split into a read-write and a
shift, both expressible as quadruples. For example, the
quintuple (1) is equivalent to the pair of quadruples

Definition: An input or output is said to be standard

when it is on otherwise blank tape and contains no
embedded blanks, when the tape head scans the blank
square immediately to the left of it, and when it includes
only letters belonging to the tape alphabet of the ma
chine scanning it.

Definition: A standard Turing machine is a finite set of
one-tape quintuples

where A" is a new control-unit state different from A and
A'. When several quintuples are so split, a different con
necting state A" must be used for each, to avoid intro
ducing indeterminacy.

Quadruples have the following additional important
properties, which can be verified by inspection. Let

1) Determinism: No two quintuples agree III both A

and T.
2) Format: If started in control state A, on any standard

input, the machine, if it halts, will halt in control state
Af if being the number of control states), leaving its
output in standard format.

3) Special quintuples: The machine includes the follow
ing quintuples

AT~T'A"

IX "" A[tp " ' , tn] ~ [tt',···, tn']A'

and

(3)

(4)

(5)

(6)

AT ---'> T' rrA'

satisfying the following requirements:

Alb~b+A2

At-I b ~ b OAf'

(1)

(7)

(8)

be two n-tape quadruples.

1) IX and f3 are mutually inverse (define inverse map
pings of the whole-machine state) if and only if A =

B' and B = A' and, for every k, either «, = Uk = /
and t..' =- u..') or Uk ~ / and tk ' = Ilk and tk = Uk').

The inverse of a quadruple, in other words, is ob
tained by interchanging the initial control state with
the final, the read tape symbols with the written, and
changing the signs of all the shifts.

2) The domains of IX and f3 overlap if and only if A = B

and, for every k, v,= j or Uk = lor I k = Ilk)' Non
overlapping of the domains requires a differing initial
control state or a differing scanned symbol on some
tape read by both quadruples.

3) The ranges of a and f3 overlap if and only if A' = B'

and, for every k, v,= I or Uk = I or Ik' = Uk'). The
property is analogous to the previous one, but de
pends on the final control state and the written tape
symbols.

A reversible. deterministic n-tape Turing machine
may now be defined as a finite set of n-tape quadruples,
no two of which overlap either in domain or range. We
now wish to show that such machines can be made to
emulate ordinary (irreversible) Turing machines. It is
convenient to impose on the machines to be emulated
certain format-standardization requirements, which, how
ever, do not significantly limit their computing power [4].

and control states A 1 and Af appear in no other quintuple.
These two are thus the first and last executed respectively
in any terminating computation on a standard input. The
letter b represents a blank.

The phrase "machine M, given standard input string I,
computes standard output string P" will be abbreviated
M: I ~ P. For an n-tape machine this will become
M: (II; 12 ; .••; In) -~ (P,; P2 ; " ' ; Pn), where I k and Pk

are the standard input and the standard output on the
kth tape. A blank tape will be abbreviated B.

The main theorem can now be stated:

Theorem: For every standard one-tape Turing machine
S, there exists a three-tape reversible. deterministic Tur
ing machine R such that if I and P are strings on the al
phabet of S, containing no embedded blanks, then S halts
on I if and only if R halts on (I; B; B), and S: I ~ P if
andonlyifR: (/;B;8) ~ (/;B;P).

Furthermore, if S has 1 control states, N quintuples
and a tape alphabet of z letters, including the blank,
R will have 21 + 2N + 4 states, 4N + 2z + 3 quadruples
and tape alphabets of z, N + 1, and z letters, respective
ly. Finally, if in a particular computation S requires v

steps and uses s squares of tape, producing an output of
length A, then R will require 4v + 4A + 5 steps, and use
s, u + 1, and A + 2 squares on its three tapes, respec
tively. (It will later be argued that where v» s, the
total space requirement can be reduced to less than
2~.) 527

NOVEMBER 1973 LOGICAL REVERSIBILITY

Each quintuple is now broken into a pair of quadruples
as described earlier. The mth quintuple becomes

Proof To construct the machine R we begin by arrang
ing the N quintuples of S in some order with the stan
dard quintuples first and last:

1) A,b--->b+A z
J
A . T -+ T' A '

J rll

lAm'l-+ uA k •
(10)

m)

N) (9)

The newly added states A ",' are different from the old
states and from each other; each A' appears in only one
pair of quadruples.

Table 1 Structure and operation of a three-tape reversible Turing machine. The computation proceeds in three stages using different
sets of quadruples and control states, linkage occurring through states Af and Cr' On the right the contents of the tapes are shown sym
bolically at the beginning and end of each stage. The underbar denotes the position of the head. The initial state is A 1 and, for a termi
nating computation, C I is the final state.

Contents of tape

Stage Quadruples

1)
JA I [I> II>1 II> + I>]A/

lA,'[I b IJ -.;> 1+ I O]Az

Compute" m) { Aj[T I I>1 IT + I>]Am'

An:Ubl] [a m O]A k

N)
{Ai_,[b I b] -.;> [h + b]A N '

AN'[/ b IJ -.;> [0 N OlAf

Af[b N b] -.;> [b N b]B.'

B.'[l11] -.;> [+ 0 +]B,

x."' b: { B,[x N b] [x N -js,: }
Copy output" B,[bNb] [b N b]B;

B;[l11] -.;> [~O-]Bz

x -;'. b: { Bz[x N .r] -.;> [x N x]B;

B
2[b

N b] -.;> [b N b]Cf

N)
{ Cf[/ N IJ [0 b OJCN '

CN'[blb]-.;> [b-b]Cf_,

Retrace m) { CkU m IJ b O]C m'
Cm'[Tlb] [T b]Cj

I)
{ C,[/I I] -.;> [- b O]C,'

C/[b/bl---", [h-b]C,

Working
tape

INPUT

OUTPUT

OUTPUT

INPUT

History
tape

HISTORY

HISTORY

Output
tape

OUTPUT

OUTPUT

'The labels I J ... m) .. , .tV) are not part of the machine. They indicate correspondence to the quintuples of the original irreversible machine, which the reversible machine
emulates.

528 hIn the second stage the small braces indicate sets of quadruples, with one,quadruple for each nonblank tape letter x.

C. H. BENNETT rBM J. RES. DEVELOP.

Two extra tapes are then added, one for the history
and one for the duplicate copy of the output. The ouput
(third) tape is left blank and null-shifted for the present,
but the history (second) tape is used to record the index
m as each transition pair is executed.

The mth pair of quadruples now has the form

stage 2, because by the definition of the machine S it
does not occur on the left in stage 1; similarly for state
Cr The non-overlapping of the stage 2 quadruples can
be verified by inspection, while the determinism and
reversibility of stage 3 foIlow from those of stage 1.

Notice that the history (second) tape is out of phase
with the other two - it is written on while they are being
shifted and vice versa. This phasing is necessary to as
sure reversibility -it serves to capture the information
that would otherwise be thrown away when the specific
control state Am' passes to the more general stateAk • The
+ shifting of the history tape assures that a blank square
will always be ready to receive the next m value. If the
computation of S does not halt, neither will that of R,
and the machine will continue printing on the history
tape indefinitely. On the other hand, if (on a standard
input) 8 halts, R will eventually execute the Nth pair of
quadruples, finding itself in state Af , with the output in
standard format on tape 1. The history head will be scan
ning the number N which it has just written at the ex
treme right end of the history on tape 2. Control then
passes to the second stage of computation, which copies
the output onto tape 3 (see Table J). The control states
for this stage are denoted by B's and are distinct from all
the A-type control states. Notice that the copying pro
cess can be done reversibly without writing anything
more on the history tape. This shows that the generation
(or erasure) of a duplicate copy of data requires no
throwing away of information.

The third stage undoes the work of the first and con
sists of the inverses of all first-stage transitions with C's
substituted for A's. In the final state C l' the history tape
is again blank and the other tapes contain the recon
structed input and the desired output.

As Table I shows, the total number of control states
is 2N + 2f + 4, the number of quadruples 4N + 2z + 3,
and the space and time requirements are as stated at the
beginning of the proof. The non-overlapping of the do
mains and ranges of all the quadruples assures determin
ism and reversibility of the machine R. In the first stage,
the upper transitions of each pair do not overlap in their
domains because of the postulated determinacy of the
original Turing machine S, whose quintuples also began
AJ -4. The ranges of the upper quadruples (as well as
the domains of the lower) are kept from overlapping by
the uniqueness of the states Am'. Finally, the ranges of
the lower quadruples are saved from overlapping by the
unique output m on the history tape. The state AI causes
no trouble, even though it occurs in both stage 1 and

[

Aj [T l b] -4 [T' +b]A m '

A,,,'(f b I] -4 [<T m O]Ak • (IJ)

Discussion
The argument developed above is not limited to three
tape Turing machines, but can be applied to any sort of
deterministic automaton, finite or infinite, provided it
has sufficient temporary storage to record the history.
One-tape reversible machines exist, but their frequent
shifting between the working and history regions on the
tape necessitates as many as p2 steps to emulate a p

step irreversible computation.
In the case that S is a universal Turing machine, R

becomes a machine for executing any computer program
reversibly. For such a general-purpose machine it seems
highly unlikely that we can avoid having to include the
input as part of the final output. However, there are
many calculations in which the output uniquely deter
mines the input, and for such a problem one might hope
to build a specific reversible computer that would simply
map inputs onto outputs, erasing everything else. This is
indeed possible, provided we have access to an ordinary
Turing machine which, given an output, computes the
corresponding input. Let S, be the (irreversible) Turing
machine that computes the output from the input and Sz

be the one that computes the input from the output. The
reversible computation proceeds by seven stages as
shown in Table 2, of which the first three employ a re
versible form of the S, computer and, as in Table I, serve
to map the input onto the input and output. Stage four
interchanges input and output. Stages five and seven use
a reversible realization of the Sz computer; stage five has
the sole purpose of producing a history of the 82 compu
tation (i.e., of the input from the output) which, after the
extra copy of the input has been erased in stage six, is
used in stage seven to destroy itself and the remaining
copy ofthe input, while producing only the desired output

We shall now return to the more usual situation, in
which the input must be saved because it is not a known,
computable function of the output. Performing a compu
tation reversibly entails only a modest increase in com
puting time and machine complexity; the main drawback
of reversible computers appears thus to be the large
amount of temporary storage they require for the history
in any long, compute-bound job (i.e., one whose number
of steps, P, greatly exceeds the number of squares of
memory used, s). Fortunately, the temporary storage
requirement can be cut down by breaking the job into a
sequence of n segments, each one of which would be
performed and retraced (and the history tape thereby
erased and made ready for reuse) before proceeding to 529

NOVEMBER 1973 LOGICAL REVERSIBILITY

Table 2 Reversible computer for a specific problem in which the input is a known, computable function of the output.

1.

3.

4.

5.

6.

7.

Action

Forward S, computation

Copy output

Retraced S, computation

Interchange output with input

Forward S2 computation

Reversible erasure of extra copy of input

Retraced S2 computation

Tape I

INPUT

OUTPUT

OUTPUT

INPUT

OUTPUT

INPUT

INPUT

OUTPUT

Tape 2

HiSTORY I

HISTORY I

HISTORY 2

HISTORY 2

Tape 3

OUTPUT

OUTPUT

INPUT

INPUT

530

the next. Each segment would leave on the working tape
(tape I) a restart dump that would be used as the input
of the next segment; but to preserve reversibility it
would also have to leave (on tape 3, say) a copy of its
own input, which would in most cases simply be the
preceding restart dump. At the end of the computation
we would have, in addition to the original input and de
sired output, all the n -- 1 intermediate dumps (concate
nated, e.g., on tape 3). These intermediate results, which
would not have been produced had the job not been
segmented, either can be accepted as permanent (but
unwanted) output, in exchange for the n-fold reduction
of the history tape, or can themselves be reversibly
erased by first making an extra copy of the desired final
output (putting it, say, on a previously unused part of
tape 3), then reversing the whole n-segment computa
tion. This reversal is possible because each segment has
been performed reversibly. The sequence of restart
dumps thus functions as a kind of higher-level history,
and it is erased by a higher-level application of the same
technique used to erase the primary histories. At the end
of the computation, the machine will contain only the
original input and the desired nth segment output, and
every step of the original irreversible computation will
have been performed twice forward and twice backward.
For a job with v steps and a restart dump of size s, the
total temporary storage requirement (minimized by
choosing 11=V;7~) is 2V~-:;: squares, half on the history

tape and half on the dump tape. A (~V~f;)-fold reduc
tion in space can thus be bought by a twofold increase in
time (ignoring the time required to write and read restart
dumps) without any unwanted output. By a systematic
reversal of progressively larger nested sequences of
segments one might hope to reach an absolute minimum
temporary storage requirement growing only as log u, for
sufficiently large u, with the time increasing perhaps as
v

2
, because of the linearly increasing number of times

each segment would have to be retraced.
It thus appears that every job of computation can be

done in a logically reversible manner, without inordinate
increases in machine complexity, number of steps, un
wanted output, or temporary storage capacity.

Physical reversibility
The existence of logically reversible automata suggests
that physical computers might be made thermodynami
cally reversible, and hence capable of dissipating an ar
bitrarily small amount of energy per step if operated
sufficiently slowly. A full treatment of physically reversi
ble computers is beyond the scope of the present paper
[5], but it is worthwhile to give a brief and non-rigorous
introduction to how they might work.

An obvious approach to the minimizing the energy
dissipation is to design the computer so that it can oper
ate near thermodynamic equilibrium. All moving parts
would then, at any instant, have near-thermal velocity,

C. H. BENNETT IBM J. RES. DEVELOP.

and the desired logical transitions would necessarily be
accomplished by spontaneous thermally activated mo
tion over free energy barriers not much higher than kT.
At first sight this might seem impossible-in existing
electronic computers, for example, even when a compo
nent being switched is itself nondissipative (e.g., a mag
netic core), the switching process depends 011 temporari
ly applying a strong external force to push the compo
nent irreversibly over a high free energy barrier. How
ever, nature provides a beautiful example of a thermally
activated "computer" in the biochemical apparatus re
sponsible for the replication. transcription and translation
of the genetic code [6]. Each of these processes in
volves a long, deterministic sequence of manipulations
of coded information, quite analogous to a computation,
and yet, so far as is known, each is simply a sequence of
coupled, thermally activated chemical reactions. In bio
chemical systems, enzymes play the essential role of
selectively lowering the activation barriers for the de
sired transitions while leaving high barriers to obstruct
all undesired transitions - those which in a computer
would correspond to errors. Although the environment
in which enzymes normally function is not at chemical
equilibrium, many enzyme-catalyzed reactions are freely
reversible, and one can find a set of equilibrium reactant
concentrations at which both forward and reverse reac
tions occur equally rapidly, while competing uncatalyzed
reactions have negligible rates. It is thus not unreasona
ble to postulate a thermally activated computer in
which, at equilibrium, every logically allowed transition
occurs equally often forward and backward, while illogi
cal transitions hardly ever occur. In the following dis
cussion chemical terminology will be used, without
implying that thermally activated computers must be
chemical systems.

The chemical realization of a logically reversible com
putation is a chain of reactions, each coupled only to the
preceding one and the following one. It is helpful to
think of the computing system as comprising a major
reactant (analogous to DNA) that encodes the logical
state, and minor reactants that react with the major one
to change the logical state, Only one molecule of the
major reactant is present, but the minor reactants are all
present at definite concentrations, which may be manip
ulated to drive the computation forward or backward.
If the minor reactants are in equilibrium, and the major
reactant initially corresponds to the initial state of a p

step computation, the system will begin a random walk
through the chain of reactions, and after about pt steps
will briefly visit the final state. This does not deserve to
be called a computation: it would be legitimate to insist
that the system proceed through the chain of reactions
with some positive drift velocity and, after sufficient time,
have a high probability of being in the final state (if

the computation has one). The former requirement can
be met by adjusting the chemical potentials of the minor
reactants so that each forward step dissipates a little
energy e; the latter can be met by dissipating a trivial
extra amount during the last step. (If all steps had equal
dissipation, e < kT, the final state occupation probabili
ty would be only about eik'I', By dissipating an extra
kT In (3 kTlc) of energy during the last step, this proba
bility is increased to about 95 %.) Given a uniform rate I'
for all forward reactions, an energy dissipation e < kT
per step will buy a drift velocity (i.e., computation
speed) of fclkT steps per second. On the other hand, for
e > k'I', backward steps will be effectively suppressed
and the computation speed will approach the forward
reaction rate I', The chemical system is thus a thermo
dynamically reversible computer of the type we have
been seeking.

If we attempt to apply the preceding argument to a
logically irreversible computer, we can see that here the
reactions form a branching structure, with a main trunk
corresponding to the desired computation path, and side
branches corresponding to incorrect or "extraneous"
reverse computations. The states on the side branches
are valid predecessors of the final state but not valid
successors of the initial state. A few such extraneous
states would pose no problem-a small driving force
would still suffice to push the system into the desired
final state. Temporary backward excursions onto the
side branches would occur, but would not lead to errors,
contrary to what one might expect. Since no state of a
deterministic computer can have more than one logical
successor, the erroneously reversed operations would be
corrected as soon as the computation proceeded forward
again, and the desired path would be rejoined. The real
problem comes from the enormous number of extra
neous predecessors; typically they outnumber the states
on the intended computation path by hundreds of orders
of magnitude. This is because, in irreversibly pro
grammed computations, one can usually proceed back
ward along an extraneous path for many steps, making
further wrong choices along the way. before arriving at a
state that has no predecessors.

If a thermally activated computer with many extra
neous states is operated close to equilibrium, the system
will spend only a minuscule fraction of its time on the
desired path of computation, let alone in the desired final
state. An acceptable computation rate requires l) that
finite (but time-consuming) backward excursions be
largely suppressed, and 2) that infinite ones be com
pletely suppressed. This in turn means (roughly
speaking) that the dissipation per step must exceed kT
In m, where m is the mean number of immediate prede
cessors I) averaged over states near the intended path.
or 2) averaged over all accessible states, whichever is 531

'lOVEMBER 1973 LOGICAL REVERSIBILITY

greater. For a typical irreversible computer, which
throws away about one bit per logical operation, In is
approximately two, and thus kT In 2 is, as Landauer has
argued [I], an approximate lower bound on the energy
dissipation of such machines. For a logically reversible
computer, however, In is exactly one by construction.

The biosynthesis and biodegradation of messenger
RNA may be viewed as convenient examples of logical
ly reversible and irreversible computation, respectively.
Messenger RNA, a linear polymeric informational mac
romolecule like DNA, carries the genetic information
from one or more genes of a DNA molecule, and serves
to direct the synthesis of the proteins encoded by those
genes. Messenger RNA is synthesized by the enzyme
RNA polymerase in the presence of a double-stranded
DNA molecule and a supply of RNA monomers (the
four nucleotide pyrophosphates ATP, GTP, CTP, and
UTP) [7]. The enzyme attaches to a specific site on the
DNA molecule and moves along, sequentially incorpo
rating the RNA monomers into a single-stranded RNA
molecule whose nucleotide sequence exactly matches
that of the DNA. The pyrophosphate groups are re
leased into the surrounding solution as free pyrophos
phate molecules. The enzyme may thus be compared to
a simple tape-copying Turing machine that manufactures
its output tape rather than merely writing on it. Tape
copying is a logically reversible operation, and RNA
polymerase is both thermodynamically and logically
reversible. In the cellular environment the reaction is
driven in the intended forward direction of RN A synthe
sis by other reactions, which maintain a low concentra
tion of free pyrophosphate, relative to the concentrations
of nucleotide pyrophosphates [8]. A high pyrophosphate
concentration would drive the reaction backward,
and the enzyme would carry out a sequence-spe
cific degradation of the RNA, comparing each nucleo
tide with the corresponding DNA nucleotide before
splitting it off. This process, which may be termed logi
cally reversible erasure of RNA, does not normally oc
cur in biological systems-instead, RNA is degraded by
other enzymes, such as polynucleotide phosphorylase
[9], in a logically irreversible manner (i.e., without
checking its sequence against DNA). Polynucleotide
phosphorylase catalyzes the reaction of RN A with free
phosphate (maintained at high concentration) to form
nucleotide phosphate monomers. Like the polymerase
reaction, this reaction is thermodynamically reversible;
however, because of its logical irreversibility, a fourfold
greater phosphate concentration is needed to drive it
forward than would be required for a logically reversible

532

C. H. BENNETT

phosphorolytic degradation. The extra driving force is
necessary to suppress the undesired synthesis of non
sense RNA by random polymerization.

In biological systems, apparently, the speed and flexi
bility of irreversible erasure outweigh its extra cost in
free energy (kT In 4 per nucleotide in this case). Indeed,
throughout the genetic apparatus, energy is dissipated at
a rate of roughly 5 to 50 kT per step; while this is ten
orders of magnitude lower than in an electronic com
puter, it is considerably higher than what would theoreti
cally be possible if biochemical systems did not need to
run at speeds close to the kinetic maximum - presum
ably to escape the harmful effects of radiation, uncata
Iyzed reactions, and competition from other organisms.

Acknowledgment
I thank Rolf Landauer for raising the question of re
versibility of computation in the first place and for stim
ulating discussions of my model s.

References and notes
l. R. Landauer, IBM J. Res. Develop. 3, 183 (1961). R. W.

Keyes and R. Landauer, IBM J. Res. Develop. 14, 152
(1970), investigate a specific model computer whose energy
dissipation per step is about kT.

2. R. W. Keyes [Science 168, 796 (1970)], in summarizing
Landauer's argument [I], commented that a saved history
might be used to reverse the steps of the original computa
tion, but that this was not practical in a general purpose com
puter. He did not explicitly point out that a reversible ma
chine can be made to erase its own history (an ability which,
we have argued, allows it to be useful as a general purpose
computer).

3. For a good informal exposition of Turing machines see Chap
ter 6 ofM. L. Minsky, Computation: Finite and Infinite Ma
chines, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967.

4. By the addition of a few extra tape symbols and quintuples,
an arbitrary Turing machine can be made to obey these for
mat requirements while computing essentially the same func
tion as it did before. See M. Davis, Computability and Un
solvability, McGraw-Hili Book Co., Inc., New York, 1958,
pp.25-26.

5. The author is currently preparing a paper on physically re
versible model computers.

6. For a good introduction to this subject see James D. Watson
Molecular Biology of the Gene (2nd ed.) , W. A. Benjamin,
Inc., New York, 1970.

7. Ibid., p. 336 fr.
8. Ibid., p. 155 if.
9. Ibid., p. 403.

Received April 12, 19Z3

C. H. Bennett is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELOP.

