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Abstract
Within the parameterized post-Newtonian (PPN) formalism, there could be an
anisotropy of local gravity induced by an external matter distribution, even
for a fully conservative metric theory of gravity. It reflects the breakdown
of the local position invariance of gravity and, within the PPN formalism, is
characterized by the Whitehead parameter ξ . We present three different kinds of
observation, from the Solar system and radio pulsars, to constrain it. The most
stringent limit comes from recent results on the extremely stable pulse profiles
of solitary millisecond pulsars, that gives |ξ̂ | < 3.9 × 10−9 (95% CL), where
the hat denotes the strong-field generalization of ξ . This limit is six orders of
magnitude more constraining than the current best limit from superconducting
gravimeter experiments. It can be converted into an upper limit of ∼4 × 10−16

on the spatial anisotropy of the gravitational constant.

Communicated by C M Will

PACS numbers: 04.80.Cc, 96.60.−j, 97.60.Gb

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the 1960s, advances in technologies are continuously providing a series of formidable
tests of gravity theories from on-ground laboratories, the Solar system, various pulsar systems,
and also cosmology [42, 43]. Up to now, Einstein’s general relativity (GR) passed all
experimental tests with flying colors. However, questions related to the nature of dark matter
and dark energy, and irreconcilable conflicts between GR and the standard model of particle
physics, are strong motivations to study alternative theories of gravity. In addition, gravity as
a fundamental interaction of nature deserves most stringent tests from various aspects.

For tests of gravity theories, one of the most popular frameworks is the parameterized
post-Newtonian (PPN) formalism, proposed by Nordtvedt and Will [25, 40, 44, 42]. In the
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standard PPN gauge, the framework contains ten dimensionless PPN parameters in the metric
components as coefficients of various potential forms. These parameters take different values
in different gravity theories. Hence, experimental constraints on these parameters can be
directly used to test specific gravity theories [30, 42, 43].

In this paper, we concentrate on one of the ten PPN parameters which characterizes a
possible Galaxy-induced anisotropy in the gravitational interaction of localized systems. Such
an anisotropy is described by the Whitehead parameter ξ in the weak-field slow-motion limit
[41]. We use ξ̂ to explicitly denote its strong-field generalization. Besides Whitehead’s gravity
theory [39], ξ is relevant for a class of theories called ‘quasilinear’ theories of gravity [41]. In
GR, the gravitational interaction is local position invariant with ξ = 0, while in Whitehead’s
gravity, local position invariance (LPI) is violated and ξ = 1 [41, 15].

An anisotropy of gravitational interaction, induced by the gravitational field of the Galaxy,
would lead to anomalous Earth tides at specific frequencies with characteristic phase relations
[41, 38]. The ξ -induced Earth tides are caused by a change in the local gravitational attraction
on the Earth surface due to the rotation of the Earth with frequencies associated with the sidereal
day. By using constraints on ξ from superconducting gravimeter, Will gave the first disproof
of Whitehead’s parameter-free gravity theory [41] (see [15] for multiple recent disproofs).
Later Warburton and Goodkind presented an update on the limit of ξ by using new gravimeter
data [38], where they were able to constrain |ξ | to the order of 10−3. The uncertainties
concerning geophysical perturbations and the imperfect knowledge of the Earth structure limit
the precision. Uncertainties include the elastic responses of the Earth, the effects of ocean
tides, the effects of atmospheric tides from barometric pressure variation, and the resonances
in the liquid core of the Earth [38] (see [16, 36] for recent reviews on superconducting
gravimeters).

Limits from Earth tides are based on periodic terms proportional to ξ , while secular
effects in other astrophysical laboratories can be more constraining. Nordtvedt used the close
alignment of the Sun’s spin with the invariable plane of the Solar system to constrain the
PPN parameter α2, associated with the local Lorentz invariance of gravity, down to O(10−7)

[28]. In the same publication Nordtvedt pointed out that such a limit is also possible for
ξ , as the two terms in the Lagrangian have the same form. However, to our knowledge, no
detailed calculations have been published yet. In section 3 we follow Nordtvedt’s suggestion
and achieve a limit of O(10−6).

A non-vanishing (strong-field) ξ̂ would lead to characteristic secular effects in the
dynamics of the rotation and orbital motion of radio pulsars. We have presented the
methodologies in details to constrain the (strong-field) α̂2 from binary pulsar timing [34]
and solitary pulsar profile analysis [33] respectively. By the virtue of the similarity between
α̂2- and ξ̂ -related effects, in section 4 we extend the analysis in [34, 33] to the case of LPI of
gravity. From timing results of PSRs J1012 + 5307 [19] and J1738 + 0333 [13], a limit of
|ξ̂ | < 3.1 × 10−4 (95% CL) is achieved for neutron star (NS) white dwarf (WD) systems [35].
As shown in this paper, from the analysis on the pulse profile stability of PSRs B1937 + 21
and J1744 − 1134, a limit of |ξ̂ | < 3.9 × 10−9 (95% CL) is obtained, utilizing the rotational
properties of solitary millisecond pulsars. This limit is six orders of magnitude better than the
(weak-field) limit from gravimeter.

The paper is organized as follows. In the next section, the theoretical framework for tests
of LPI of gravity is briefly summarized. In section 3, a limit on ξ from the Solar system is
obtained. Then we give limits on ξ̂ from binary pulsars and solitary pulsars in section 4. In
the last section, we discuss issues related to strong-field modifications and conversions from
our limits to limits on the anisotropy in the gravitational constant. Comparisons between our
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tests with other achievable tests from gravimeter and lunar laser ranging (LLR) experiments
are also given.

2. Theoretical framework

In the PPN formalism, PPN parameters are introduced as dimensionless coefficients in the
metric in front of various potential forms [44, 42, 43]. In the standard post-Newtonian gauge,
ξ appears in the metric components g00 and g0i [44, 42, 43]. However, in most cases, it is
relevant only in linear combinations with other PPN parameters like β, γ (see [42, 43] for
formalism and details). Due to the limited precision in constraining these PPN parameters (see
table 4 in [43] for current constraints on PPN parameters), it is not easy to get an independent
stringent limit for ξ . For example, based on the Nordtvedt parameter (see (43) in [15]),

η = 4β − γ − 3 − 10
3 ξ − α1 + 2

3α2 − 2
3ζ1 − 1

3ζ2, (1)

one can only constrain ξ to the order ofO(10−3) at most. Nevertheless, in the metric component
g00, −2ξ alone appears as the coefficient of the Whitehead potential [41],

�W (x) ≡ G2

c2

∫∫
ρ(x′)ρ(x′′)

(
x − x′

|x − x′|3
)

·
(

x′ − x′′

|x − x′′| − x − x′′

|x′ − x′′|
)

d3x′ d3x′′ , (2)

where ρ(x) is the matter density, G and c are the gravitational constant and the speed of light
respectively. This fact provides the possibility to constrain the PPN parameter ξ directly.

Correspondingly, in the PPN n-body Lagrangian, we have a ξ -related term for three-body
interactions (see e.g. (6.80) in [42]),

Lξ = −ξ

2

G2

c2

∑
i, j

mimj

r3
i j

ri j ·
[∑

k

mk

(
r jk

rik
− rik

r jk

)]
, (3)

where the summation excludes terms that make any denominators vanish. For our purposes
below, we consider the third body being our Galaxy, and only consider a system S (the Solar
system or a pulsar binary system or a solitary pulsar) of typical size much less than its distance
to the Galactic center RG. Hence the Lagrangian (3) reduces to (dropping a constant factor that
rescales G)

Lξ = ξ

2

UG

c2

∑
i, j

Gmimj

r3
i j

(ri j · nG)2, (4)

where UG is the Galactic potential at the position of the system S (associated with the mass
inside RG), and nG ≡ RG/RG is a unit vector pointing from S to the Galactic center. In our
calculations below we will use UG ∼ v2

G, where vG is the rotational velocity of the Galaxy
at S. Equation (4) is exact, only if the external mass is concentrated at the Galactic center,
otherwise a correcting factor has to be applied, which depends on the model for the mass
distribution in our Galaxy [21]. At the end of section 5, we show that this factor is close to
two, as already estimated in [15].

From Lagrangian (4), a binary system of mass m1 and m2 gets an extra acceleration for
the relative movement (see (8.73) in [42] with different sign conventions),

aξ = ξ
UG

c2

G(m1 + m2)

r2
[2(nG · n)nG − 3n(nG · n)2], (5)

where r ≡ r1 − r2 and n ≡ r/r. Because of the analogy between the extra acceleration caused
by the PPN parameter α2 (see (8.73) in [42]), the Lagrangian (4) results in similar equations
of motion with replacements,

w → vG and α2 → −2ξ, (6)
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Figure 1. Local position invariance violation causes a precession of the Solar angular momentum
S� around the direction of the local Galactic acceleration nG, which causes characteristic changes
in the angle θ between S� and the norm of the invariable plane ninv. Due to the movement of the
Solar system in the Galaxy, nG is changing periodically with a period of ∼250 Myr.

where vG ≡ vGnG is an effective velocity [35]. With replacements (6), the influence of ξ for an
eccentric orbit of a binary system can be read out readily from (17)–(19) in [34]. As for the α2

test, in the limit of small eccentricity, ξ induces a precession of the orbital angular momentum
around the direction nG with an angular frequency [34],

�prec = ξ

(
2π

Pb

)(vG

c

)2
cos ψ, (7)

where Pb is the orbital period, and ψ is the angle between nG and the orbital angular momentum.
This precession would introduce observable effects in binary pulsar timing experiments (see
section 4.1).

Similar to the case of a binary system, for an isolated, rotating massive body with internal
equilibrium, Nordtvedt showed in [28] that ξ would induce a precession of the spin around nG

with an angular frequency (note, in [28] ξNordtvedt = − 1
2ξ ),

�prec = ξ

(
2π

P

)(vG

c

)2
cos ψ, (8)

where now ψ stands for the angle between the spin of the body and nG (see figure 1). This
precession can be constrained by observables in the Solar system and solitary millisecond
pulsars (see section 3 and section 4.2 respectively).

3. A weak-field limit from the Solar spin

At the birth of the Solar system ∼4.6 billion years ago, the angle θ between the Sun’s spin
S� and the total angular momentum of the Solar system (its direction is represented by the
norm of the invariable plane ninv) were very likely closely aligned (see figure 1 for notation),
as suggested by our understanding of the formation of planetary systems. After the birth,
the Newtonian torque on the Sun produced by the tidal fields of planets is negligibly weak
(see (10)). Due to today’s observation of θ ∼ 6◦, Nordtvedt suggested to constrain ξ to a
high precision through constraining (8) [28]. Based on his α2 test and an order-of-magnitude
estimation, he already concluded |ξ | � 10−7. Here we slightly improve his method and present
detailed calculations to constrain ξ from the Solar spin.

For directions of S� and ninv, we take the International Celestial Reference Frame
equatorial coordinates at epoch J2000.0 from recent reports of the IAU/IAG working
group on cartographic coordinates and rotational elements [32, 1]. The direction of S�
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Figure 2. Evolutions of the misalignment angle θ (t) backward in time with different ξ vaules,
which have taken both (8) and (10) into account.

is (α0, δ0)� = (286◦.13, 63◦.87) in the Celestial coordinates or (l, b)� = (94◦.45, 22◦.77)

in the Galactic coordinates. The coordinates of ninv are (α0, δ0)inv = (273◦.85, 66◦.99) or
(l, b)inv = (96◦.92, 28◦.31). The difference between these two directions is

θ |t=0 = 5◦.97, (9)

where t = 0 denotes the current epoch.
Assuming that the Sun’s spin was closely aligned with ninv right after the formation of

the Solar system, 4.6 Gyr in the past, one can convert (9) into a limit for ξ . For this, one
has to account for the Solar movement around the Galactic center (∼20 circles in 4.6 Gyr)
when using (8) to properly integrate back in time for a given ξ . We show evolutions of the
misalignment angle θ (t) in figure 2 for different ξ vaules. In calculations in figure 2, besides
the contribution (8), we also include the precession produced by the Newtonian quadrupole
coupling with an angular frequency,

�
prec
J2

= 3

2
J2

GM�R2
�

|S�|
∑

i

mi

r3
i

, (10)

where M� and R� are the Solar mass and the Solar radius, mi and ri are the mass and the
orbital size of body i in the Solar system, and J2 = (2.40 ± 0.25) × 10−7 [12]. The main
contributions in (10) are coming from Jupiter, Venus and Earth. The coupling is very weak,
and (10) has a precession period ∼9 × 1011 yr, hence it precesses ∼2◦ in 4.6 Gyr (notice a
factor of two discrepancy with (15) in [28] mainly due to the use of a modern J2 value). Such
a precession hardly modifies the evolution of θ (t); besides, the precession (10) is around ninv

which by itself does not change θ .
In figure 3 we plot the initial misalignment angle at the birth of the Solar system and

the angle �χ swept out by S� during the past 4.6 Gyr as functions of ξ . From figure 3 it is
obvious that any ξ significantly outside the range

|ξ | � 5 × 10−6 (11)

would contradict the assumption that the Sun was formed spinning in a close alignment with
the planetary orbits (say, θbirth � 10◦). Limit (11) is three orders of magnitude better than that
from superconducting gravimeter [38].
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Figure 3. The initial misalignment angle θbirth and the angle difference �χ between current S�
and S� at birth as functions of ξ . They are obtained from evolving S� according to (8) and (10)
back in time to the epoch t = −4.6 Gyr.

4. Limits from radio millisecond pulsars

4.1. A limit from binary pulsars

According to (7), the orbital angular momentum of a binary system with a small eccentricity
undergoes a ξ -induced precession around nG (here nG is the direction of the Galactic
acceleration at the location of the binary). As mentioned in [35], this precession is analogous
to the precession induced by the PPN parameter α2 [34] with replacements (6). Hence the
same analysis done for the α̂2 test in [34] applies to the ξ̂ test in binary pulsars.

Using the Galactic potential model in [31] with the distance of the Solar system to the
Galactic center ∼8 kpc, Shao et al [35] performed 107 Monte Carlo simulations to account
for measurement uncertainties and the unknown longitude of ascending node (for details, see
section 3 of [34]). From a combination of PSRs J1012 + 5307 and J1738 + 0333, they got a
probabilistic limit (see figure 1 in [35] for probability densities from separated binary pulsars
and their combination),

|ξ̂ | < 3.1 × 10−4, (95% CL). (12)

It is two orders of magnitude weaker than the limit (11) from the Solar spin, but it represents
a constraint involving a strongly self-gravitating body, namely, NS-WD binary systems (see
section 5).

4.2. A limit from solitary pulsars

Similar to the precession of the Solar spin, the spin of a solitary pulsar would undergo a ξ̂ -
induced precession around nG with an angular frequency (8). Such a precession would change
our line-of-sight cut on the pulsar emission beam, hence change the pulse profile characteristics
over time, see figure 1 in [33] for illustrations.

Recently, to test the local Lorentz invariance of gravity, Shao et al [33] analyzed a large
number of pulse profiles from PSRs B1937 + 21 and J1744 − 1134, obtained at the 100 m
Effelsberg radio telescope with the same backend, spanning about ∼15 years. From various
aspects, the pulse profiles are very stable, and no change in the profiles is found (see figures 2–7
in [33] for stabilities of pulse profiles). These results can equally well be used for a test of LPI
of gravity.

6



Class. Quantum Grav. 30 (2013) 165020 L Shao and N Wex

]-9 [10ξ
-10 -5 0 5 10

P
ro

ba
bi

lit
y 

D
en

si
ty PSR B1937+21

PSR J1744-1134

Combined

95% CL

Figure 4. Probability density functions of the strong-field PPN parameter ξ̂ from PSR B1937 + 21
(blue dashed histogram), PSR J1744 − 1134 (red dotted histogram), and their combination (black
solid histogram). All probability density functions are normalized.

By using a simple cone emission model of pulsars [20], one can quantitatively relate a
change in the orientation of the pulsar spin with that in the width of the pulse profile (see (10)
in [33]). By using the limits on the change of pulse widths in table 1 of [33], we set up 107

Monte Carlo simulations to get probability densities of ξ̂ from PSRs B1937 + 21 and J1744 −
1134. In simulations we use the Galactic potential model in [31] and all other parameters are
the same as in [33] with replacements (6). The results are shown in figure 4 for PSRs B1937
+ 21 and J1744 − 1134 and their combination. For the individual limits one finds

PSR B1937 + 21: |ξ̂ | < 2.2 × 10−8, (95% CL), (13)

PSR J1744 − 1134: |ξ̂ | < 1.2 × 10−7, (95% CL). (14)

They are already significantly better than the limit (11) obtained from the Solar spin. Like in
[33], the analysis for PSR B1937 + 21 is based on the main-pulse. Also here, one could use
the interpulse to constrain a precession of PSR B1937 + 21, which again leads to a similar,
even slightly more constraining limit. As in [33], we will stay with the more conservative
value derived from the main-pulse.

As explained in details in [34, 33], the combination of two pulsars leads to a significant
suppression of the long tails in the probability density function. Assuming that ξ̂ is only weakly
dependent on the pulsar mass, PSRs B1937 + 21 and J1744 − 1134 give a combined limit for
strongly self-gravitating bodies of

|ξ̂ | < 3.9 × 10−9, (95% CL). (15)

The limit (15) is the most constraining one of the three tests presented in this paper. It is more
than three orders of magnitude better than the limit (11) from the Solar system and five orders
of magnitude better than the limit (12) from binary pulsars. This is in accordance with the α2

and α̂2 results [28, 34, 33].

5. Discussions

Mach’s principle states that the inertial mass of a body is determined by the total matter
distribution in the Universe, so if the matter distribution is not isotropic, the gravity interaction

7
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that a mass feels can depend on its direction of acceleration [7, 8]. The tests presented in this
paper are Hughes–Drever-type experiments which originally were conducted to test a possible
anisotropy in mass through magnetic resonance measurements in spectroscopy [14, 11]. We
note that the constraint on LPI here is for the gravitational interaction, that is different from
the LPI of Einstein’s equivalence principle related to special relativity, see e.g. [5, 2] and the
review article [43].

Although we express our limits on the anisotropy of gravity in terms of the PPN parameter
ξ (or its strong-field generalization ξ̂ ), it is quite straightforward to convert them into limits
on the anisotropy of the gravitational constant. From (6.75) in [42], one has

Glocal = G0

[
1 + ξ

(
3 + I

MR2

)
UG + ξ (e · nG)2

(
1 − 3I

MR2

)
UG

]
, (16)

where G0 is the bare gravitational constant; I, M, and R are the moment of inertia, mass and
radius of a system S respectively; e is a unit vector pointing from the center of mass of S
to the location where G is being measured (see [42]). The first correction only renormalizes
the bare gravitational constant and is not relevant here. The second correction contains an
anisotropic contribution. For solitary pulsars PSRs B1937 + 21 and J1744 − 1134, they both
have v2

G ∼ 5 × 10−7. Hence from (15), by using I/MR2 � 0.4 for a typical NS [18], one gets∣∣∣∣�G

G

∣∣∣∣
anisotropy

< 4 × 10−16, (95% CL) (17)

which is the most constraining limit on the anisotropy of G. It is four orders of magnitude
better than that achievable with LLR in the foreseeable future [29].

For any ‘quasilinear’ theory of gravity, the PPN parameters satisfy β = ξ [41]. Hence for
such a theory, a limit on β of O(10−9) can be drawn, which is six orders of magnitude more
constraining than the limit on β from the anomalous precession of Mercury [43]. Nordtvedt
developed an anisotropic PPN framework [27] and suggested to use the binary pulsar PSR
B1913 + 16 [26] and LLR [10, 29] to constrain its parameters. Our result shows that careful
profile analysis of solitary pulsars can constrain some anisotropic PPN parameters more
effectively. The standard model extension of gravity [4, 17] has 20 free parameters in the
pure-gravity sector, of which a subset s̄ jk appears in a Lagrangian term similar to (4) (see (54)
in [4]), hence can be constrained tightly through our tests. We expect a combination of s̄ jk

(similar to (97) in [4]) can be constrained to O(10−15)3.
At this point we would like to elaborate on the distinction between the weak-field PPN

parameter ξ and its strong-field generalization ξ̂ . In GR, ξ = ξ̂ = 0, but a distinction is
necessary for alternative gravity theories. Damour and Esposito-Farèse explicitly showed that
in scalar–tensor theories, the strong gravitational fields of NSs can develop nonperturbative
effects [9]. Although scalar–tensor theories have no LPI violation, one can imagine that similar
nonperturbative strong-field modifications might exist in other theories with LPI violation. If
the strong-field modification is perturbative, one may write an expansion like,

ξ̂ = ξ + K1C + K2C2 + · · · , (18)

where the compactness C (roughly equals the fractional gravitational binding energy) of a NS
(CNS ∼ 0.2) is O(105) times larger than that of the Sun (C� ∼ 10−6). Hence NSs can probe
the coefficients Ki’s much more efficiently than the Solar system.

Let us compare the prospects of different tests of LPI in the future. As mentioned
before, the best limit on ξ from superconducting gravimeter [38] is of O(10−3). Modern
superconducting gravimeters are more sensitive. They are distributed around the world, where

3 See relevant limits from LLR [3] and atom interferometry [22, 6] for comparison.
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a total of 25 superconducting gravimeters form the global geodynamics project (GGP) network
[36]. The sensitivity of a superconducting gravimeter, installed at a quiet site, is better than
1 nGal ≡ 10−11 m s−2 for a one-year measurement, which is less than the seismic noise level
(a few nGal) at the signal frequencies of ξ [36]. However, the test is severely limited by the
Earth model and unremovable Earth noises. Even under optimistic estimations for GGP, ξ is
expected to be constrained to O(10−5) at best [36], which is four orders of magnitude away
from (15). The analysis of LLR data usually does not include the ξ parameter explicitly, but
with its analogy with α2, one can expect a limit of O(10−5) at best [23]. The Solar limit
(11) is based on a long baseline in time (about 4.6 Gyr), hence it is not going to improve
anymore. In contrast, the limits (12) and (15) will continuously improve with T −3/2 solely
based on current pulsars, where T is the observational time span [34, 33]. New telescopes like
the Five-hundred-meter Aperture Spherical Telescope (FAST) [24] and the Square Kilometre
Array (SKA) [37] will provide better sensitivities in obtaining pulse profiles, that will be very
valuable for improving the limit of ξ̂ (and also α̂2 [33]), especially for the weaker pulsar PSR
J1744 − 1134. In addition, discoveries of new fast rotating millisecond pulsars through FAST
and SKA are expected in the future, which will enrich our set of testing systems and further
improve the limits.

Let us elaborate on a possible correcting factor to our limits on ξ and ξ̂ , arising from
a more rigorous treatment of the Galactic mass distribution. When estimating UG, we have
approximated it as UG ∼ v2

G which, e.g., at the location of the Sun gives UG/c2 � 5.4 × 10−7.
Mentock pointed out that the dark matter halo might invalidate such an approximation [21].
However, Gibbons and Will explicitly showed, by using a Galaxy model with spherically
symmetric matter distribution, that such a correction is roughly a factor of two [15]. We use
the Galaxy potential model in [31] that consists of three components, namely the bulge, the
disk and the dark matter halo, and get a factor of 1.86.4 The results confirm the correcting
factor in [15], and our limits on ξ and ξ̂ should be weakened by this factor (as well as all
previous limits on ξ in literature). Nevertheless, the limit (17) on the anisotropy of G will not
change because only the product ξUG enters in (16).

As a final remark, using the words of [15], also for pulsar astronomers Whitehead’s gravity
theory [39] (ξ = 1) is truly dead.
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