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Abstract. In this paper, we present preimage attacks on up to 43-
step SHA-256 (around 67% of the total 64 steps) and 46-step SHA-512
(around 57.5% of the total 80 steps), which significantly increases the
number of attacked steps compared to the best previously published
preimage attack working for 24 steps. The time complexities are 2251.9,
2509 for finding pseudo-preimages and 2254.9, 2511.5 compression func-
tion operations for full preimages. The memory requirements are mod-
est, around 26 words for 43-step SHA-256 and 46-step SHA-512. The
pseudo-preimage attack also applies to 43-step SHA-224 and SHA-384.
Our attack is a meet-in-the-middle attack that uses a range of novel
techniques to split the function into two independent parts that can be
computed separately and then matched in a birthday-style phase.

Keywords: SHA-256, SHA-512, hash, preimage attack,
meet-in-the-middle.

1 Introduction

Cryptographic hash functions are important building blocks of many secure sys-
tems. SHA-1 and SHA-2 (SHA-224, SHA-256, SHA-384, and SHA-512) [1] are
hash functions standardized by the National Institute of Standards and Tech-
nology (NIST) and widely used all over the world. However, a collision attack
on SHA-1 has been discovered recently by Wang et al. [2]. Since the structure of
SHA-2 is similar to SHA-1 and they are both heuristic designs with no known
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security guarantees or reductions, an attack on SHA-2 might be discovered in
the future too. To avoid a situation when all FIPS standardized functions would
be broken, NIST is currently conducting a competition to determine a new hash
function standard called SHA-3 [3]. From the engineering viewpoint, migration
from SHA-1 to SHA-3 will take a long time. SHA-2 will take an important role
during that transitional period. Hence, rigorous security evaluation of SHA-2
using the latest analytic techniques is important.

NIST requires SHA-3 candidates of n-bit hash length to satisfy a several
security properties [3], first and foremost

– Preimage resistance of n bits,
– Second-preimage resistance of n − k bits for any message shorter than 2k

blocks,
– Collision resistance of n/2 bits.

NIST claims that the security of each candidate is evaluated in the environment
where they are tuned so that they run as fast as SHA-2 [4]. It seems that NIST
tries to evaluate each candidate by comparing it with SHA-2. However, the
security of SHA-2 is not well understood yet. Hence, the evaluation of the security
of SHA-2 with respect to the security requirements for SHA-3 candidates is also
important as it may influence our perspective on the SHA-3 speed requirements.

SHA-256 and SHA-512 consist of 64 steps and 80 steps, respectively. The first
analysis of SHA-2 with respect to collision resistance was described by Mendel
et al. [5], which presented the collision attack on SHA-2 reduced to 19 steps.
After that, several researches have improved the result. In particular, the work
by Nikolić and Biryukov improved the collision techniques [6]. The best collision
attacks so far are the ones proposed by Indesteege et al. [7] and Sanadhya and
Sarkar [8], both describing collision attacks for 24 steps. The only analysis of
preimage resistance we are aware of is a recent attack on 24 steps of SHA-2 due
to Isobe and Shibutani [9].

One may note the work announced at the rump session by Yu and Wang [10],
which claimed to have found a non-randomness property of SHA-256 reduced
to 39 steps. Since the non-randomness property is not included in the security
requirements for SHA-3, we do not discuss it in this paper. In summary, the
current best attacks on SHA-2 with respect to the security requirements for
SHA-3 work for only 24 steps.

After Saarinen [11] and Leurent [12] showed examples of meet-in-the-middle
preimage attacks, the techniques for such preimage attacks have been developed
very rapidly. Attacks based on the concept of meet-in-the-middle have been re-
ported for various hash functions, for example MD5 [13], SHA-1, HAVAL [14],
and so on [15,16,17,18]. The meet-in-the-middle preimage attack is also applied
to recently designed hash function ARIRANG [19], which is one of SHA-3 can-
didates, by Hong et al. [20]. However, due to the complex message schedule in
SHA-2, these recently developed techniques have not been applied to SHA-2 yet.

Our contribution. We propose preimage attacks on 43-step SHA-256 and 46-
step SHA-512 which drastically increase the number of attacked steps compared
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to the previous preimage attack on 24 steps. We first explain various attack
techniques for attacking SHA-2. We then explain how to combine these tech-
niques to maximize the number of attacked steps. It is interesting that more
steps of SHA-512 can be attacked than of SHA-256 with so-called partial-fixing
technique proposed by Aoki and Sasaki [15]. This is due to the difference of the
word size as functions σ and Σ mix 32-bit variables in SHA-256 more rapidly
than in the case of double-size variables in SHA-512.

Our attacks are meet-in-the-middle. We first consider the application of the
previous meet-in-the-middle techniques to SHA-2. We then analyse the message
expansion of SHA-2 by considering all previous techniques and construct the
attack by finding new independent message-word partition, which is the funda-
mental part of this attack.

Our attacks and a comparison with other results are summarized in Table 1.

Table 1. Comparison of preimage attacks on reduced SHA-2

Reference Target Steps Complexity Memory

Pseudo-preimage Preimage (approx.)

Ours Section 7 SHA-224 43 2219.9 - 26 words

[9] SHA-256 24 2240 2240 216 · 64 bits

Ours Section 5 SHA-256 42 2245.3 2251.7 212 words

Ours Section 5 SHA-256 43 2251.9 2254.9 26 words

Ours Section 7 SHA-384 43 2366 - 219 words

[9] SHA-512 24 2480 2480 not given

Ours Section 6 SHA-512 42 2488 2501 227 words

Ours Section 6 SHA-512 46 2509 2511.5 26 words

Outline. In Section 2, we briefly describe SHA-2. Section 3 gives an overview of
the meet-in-the-middle preimage attack. In Section 4, we describe all techniques
of our preimage attack. Then Sections 5 and 6 explain how these techniques can
be applied together to mount an attack on SHA-256 and SHA-512, respectively.
In Section 7, we put some remark on our attack. Section 8 concludes this paper.

2 SHA-2 Specification

Description of SHA-256. In this section we describe SHA-256, consult [1] for
full details. SHA-256 adopts the Merkle-Damg̊ard structure [21, Algorithm 9.25].
The message string is first padded with a single “1” bit, appropriate number of
zero bits and then 64-bit length of the original message so that the length of the
padded message is a multiple of 512 bits and then divided into 512-bit blocks,
(M0,M1, . . . ,MN−1) where Mi ∈ {0, 1}512.

The hash value hN is computed by iteratively using the compression function
CF, which takes a 512-bit message block and a 256-bit chaining variable as the
input and yields an updated 256-bit chaining variable as the output,



Preimages for Step-Reduced SHA-2 581

{
h0 ← IV,

hi+1 ← CF(hi,Mi) (i = 0, 1, . . . , N − 1), (1)

where IV is a constant value defined in the specification.
The compression function is based on the Davies-Meyer mode [21, Algorithm

9.42]. It consists of a message expansion and a data processing. Let �x and ≫x

denote the x-bit right shift and rotation, respectively. First, the message block
is expanded by the message expansion function,

Wi ←
{
mi for 0 ≤ i < 16 ,
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 for 16 ≤ i < 64 .

(2)

where (m0,m1, . . . ,m15)←Mi (mj ∈ {0, 1}32) and “+” denotes addition mod-
ulo 2word size. In SHA-256 the word size is 32 bits. Functions σ0(X) and σ1(X)
are defined as

σ0(X)← (X≫7)⊕ (X≫18)⊕ (X�3),
σ1(X)← (X≫17)⊕ (X≫19)⊕ (X�10). (3)

where “⊕” stands for bitwise XOR operation.
Let us use pj to denote a 256-bit value consisting of the concatenation of eight

words Aj , Bj , Cj , Dj , Ej , Fj , Gj and Hj . The data processing computes hi+1 as
follows. ⎧⎨

⎩
p0 ← hi,

pj+1 ← Rj(pj ,Wj), (j = 0, 1, . . . , 63)
hi+1 ← hi + p64,

(4)

Step function Rj is defined as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T
(j)
1 ← Hj +Σ1(Ej) + Ch(Ej , Fj , Gj) +Kj +Wj ,

T
(j)
2 ← Σ0(Aj) + Maj(Aj , Bj , Cj),

Aj+1 ← T
(j)
1 + T

(j)
2 , Bj+1 ← Aj , Cj+1 ← Bj , Dj+1 ← Cj ,

Ej+1 ← Dj + T
(j)
1 , Fj+1 ← Ej , Gj+1 ← Fj , Hj+1 ← Gj .

(5)

Above, Kj is a constant, different for each step, and the following functions are
used

Ch(X,Y, Z)← (X ∨ Y )⊕ ((¬X) ∨ Z),
Maj(X,Y, Z)← (X ∨ Y )⊕ (X ∨ Z)⊕ (Y ∨ Z),

Σ0(X)← (X≫2)⊕ (X≫13)⊕ (X≫22),
Σ1(X)← (X≫6)⊕ (X≫11)⊕ (X≫25).

(6)

where ¬ means bitwise negation of the word.

Description of SHA-512. The structure of SHA-512 is basically the same as
SHA-256. In SHA-512, the word size is 64 bits, double of SHA-256, hence, the
message-block size is 1024 bits and the size of chaining variable pj is 512 bits.
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The compression function has 80 steps. Rotation numbers in σ0, σ1, Σ0, and Σ1

are different from those used in SHA-256, which are shown below.

σ0(X)← (X≫1)⊕ (X≫8)⊕ (X�7),
σ1(X)← (X≫19)⊕ (X≫61)⊕ (X�6),
Σ0(X)← (X≫28)⊕ (X≫34)⊕ (X≫39),
Σ1(X)← (X≫14)⊕ (X≫18)⊕ (X≫41).

(7)

3 Overview of the Meet-in-the-Middle Preimage Attack

A preimage attack on a narrow-pipe Merkle-Damg̊ard hash function is usually
based on a pseudo-preimage attack on its underlying compression function, where
a pseudo-preimage is a preimage of the compression function with an appro-
priate padding. Many compression functions adopt Davies-Meyer mode, which
computes Eu(v) ⊕ v, where u is the message, v is the intermediate hash value
and E is a block cipher.

First we recall the attack strategy on a compression function, which has been
illustrated in Fig. 1. Denote by h the given target hash value. The high-level
description of the attack for the simplest case is as follows.

1. Divide the key u of the block cipher E into two independent parts: u1 and
u2. Hereafter, independent parts are called “chunks” and independent inputs
u1 and u2 are called “neutral words”.

2. Randomly determine the other input value v of the block cipher E.
3. Carry out the forward calculation utilizing v and all possible values of u1,

and store all the obtained intermediate values in a table TF .
4. Carry out the backward calculation utilizing h⊕ v and all possible values of
u2, and store all the intermediate values in a table TB.

5. Check whether there exists a collision between TF and TB. If a collision
exists, a pseudo-preimage of h has been generated. Otherwise, go to Step 2.

The main novelty of the meet-in-the-middle preimage attacks is, by utilizing
independence of u1 and u2 of the key input, transforming the problem of find-
ing a preimage of h to the problem of finding a collision on the intermediate
values, which has a much lower complexity than the former one. Suppose there

v h

u1 u2

backwardforward

E

Fig. 1. Meet-in-the-middle attack strategy on a Davies-Meyer compression function
Eu(v) ⊕ v
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are 2t possible values for each of u1 and u2. Using 2t compression function com-
putations, the attacker obtains 2t elements in each of TF and TB. The collision
probability is roughly 22t−n, where n is the bit length of h, much better than the
probability 2t−n of finding a preimage by a brute force search with complexity 2t.

4 The List of Attack Techniques

This section describes the list of techniques used in the attack. Some of them
were used before in previous meet-in-the-middle attacks [15,18,16]. We explain
them here first and then in Sections 5 and 6, we show how to combine them in
an attack on SHA-2.

4.1 Splice-and-Cut

The meet-in-the-middle attack starts with dividing the key input into two in-
dependent parts. The idea of splice-and-cut is based on the observation made
in [15] that the last and first steps of the block cipher E in Davies-Meyer mode
can be regarded as consecutive by considering the feed-forward operation.

This allows the attacker to choose any step as the starting step of the meet-
in-the-middle, which helps with finding more suitable independent chunks.

This technique can find only pseudo-preimages of the given hash value instead
of preimages. However, pseudo-preimages can be converted to preimages with a
conversion algorithm explained below.

4.2 Converting Pseudo-preimages to Preimages

In x-bit iterated hash functions, a pseudo-preimage attack with complexity
2y, y < x− 2 can be converted to a preimage attack with complexity of 2

x+y
2 +1

[21, Fact9.99]. The idea is applying the unbalanced meet-in-the-middle attack
with generating 2(x−y)/2 pseudo-preimages and generating 2(x+y)/2 1-block
chaining variables starting from IV.

4.3 Partial-Matching

The example in Fig. 1 is the simplest and optimistic case. In fact, in the previous
attacks, the key input cannot be divided into just two independent chunks.
Usually besides the two independent chunks u1 and u2, there is another part,
which depends on both u1 and u2. Hence, the stored intermediate values in TF

and TB are ones at different steps. This raises a problem: how the values in TF

and TB can be compared. However, many hash functions, including SHA-2, have
Unbalanced Feistel Network structure, where the intermediate values will only be
updated partially at one step. This means that a part of the intermediate values
does not change during several steps and the attacker can check the match of
two values partially.
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Consider SHA-2, assume one chunk produces the value of pj and the other
chunk produces the value of pj+s. The attacker wants to efficiently check whether
or not pj and pj+s match without the knowledge of Wj ,Wj+1, . . . ,Wj+s−1. In
SHA-2, the maximum number of s is 7.

Assume the value of pj+7 = Aj+7‖Bj+7‖ · · · ‖Hj+7 is known and Wj+6 is un-
known. By backward computation, we can obtain the values of Aj+6, Bj+6, . . . ,
Gj+6. This is because Aj+6, Bj+6, Cj+6, Ej+6, Fj+6, and Gj+6 are just copies of
corresponding values in pj+7 and Dj+6 is computed as follows.

Dj+6 ← Ej+7 − (Aj+7 − (Σ0(Bj+7) + Maj(Bj+7, Cj+7, Dj+7))). (8)

By repeating the similar computation, in the end, Aj is computed from pj+7

without the knowledge of Wj ,Wj+1, . . . ,Wj+6. Note that this technique was
already used (but not explicitly named) in [9].

4.4 Partial-Fixing

This is an extension of the partial-matching technique that considers parts of
registers of the internal state. It increases the number of steps that can exist
between two independent chunks. Assume that the attacker is carrying out the
computation using u1 and he is facing a step whose key input depends on both
u1 and u2. Because the computation cannot go ahead without the knowledge
of u2, the chunk for u1 must stop at this step. The partial-fixing technique is
partially fixing the values of u1 and u2 so that we can obtain partial knowledge
even if the full computation depends on both u1 and u2.

The partial-fixing technique for SHA-2 has not been considered previously.
Assume we can fix the lower x bits of the message word in each step. Under this
assumption, 1 step can be partially computed easily. Let us consider the step
function of SHA-2 in the forward direction. Equations using Wj is as follows.

{
T

(j)
1 ← Hj +Σ1(Ej) + Ch(Ej , Fj , Gj) +Kj +Wj ,

Aj+1 ← T
(j)
1 + T

(j)
2 , Ej+1 ← Dj + T

(j)
1 .

(9)

If the lower x bits of Wj are fixed, the lower x bits of Aj+1 (and Ej+1) can be
computed independently of the upper 32− x bits of Wj . Let us consider to skip
another step in forward direction. The equation for Aj+2 is as follows:

Aj+2 ← T
(j+1)
1 +Σ0(Aj+1) + Maj(Aj+1, Bj+1, Cj+1). (10)

We know only the lower x bits on Aj+1. Hence, we can compute Maj function for
only the lower x bits. How about the Σ0 function? We analysed the relationship
of the number of consecutive fixed bits from LSB in the input and output of
σ0, σ1, Σ0, and Σ1. The results are summarized in Table 2.

From Table 2, if x is large enough, we can compute the lower x − 22 bits of
Aj+2 in SHA-256 and the lower x − 39 bits in SHA-512, though the number
of known bits is greatly reduced after the Σ0 function. This fact also implies
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Table 2. Relationship of number of consecutive fixed bits from LSB in input and
output of σ and Σ

SHA-256 SHA-512
Σ0 Σ1 σ0 σ1 Σ0 Σ1 σ0 σ1

Input x x x x x x x x
output x − 22 x − 25 x − 18 x − 19 x − 39 x − 41 x − 8 x − 61

When x agrees with the word size, the output is x. When the number described in the
output is negative, the output is 0.

that we cannot obtain the value of Aj+3 since the number of fixed bits will be
always 0. In the end, the partial-fixing technique can be applied for up to 2
steps in forward direction. Similarly, we considered the partial-fixing technique
in backward, and found that it can be applied up to 6 steps.

However we have another problem in the first assumption; the lower x bits
of each message word can be fixed. This is difficult to achieve because the fixed
bits in message words are mixed by the σ function in the message expansion.
In fact, we could apply the partial-fixing technique for computing only 1 step in
forward, and only 2 steps in backward for SHA-256. However, in SHA-512, the
bit-mixing speed of σ is relatively slow due to the double word size. In fact, we
could compute 2 steps in forward, and 6 steps in backward. Finally, 10 steps in
total can be skipped by the partial-matching and partial-fixing techniques for
SHA-256, and 15 steps for SHA-512. (These numbers of steps are explained in
Sections 5 and 6.)

4.5 Indirect-Partial-Matching

This is another extension of partial-matching. Consider the intermediate values
in TF and TB. We can express them as functions of u1 and u2, respectively. If the
next message word used in forward direction can be expressed as ψ1(u1)+ψ2(u2)
and computation of chaining register at the matching point does not destroy this
relation (because the message word is also added), the matching point can still be
expressed as a sum of two independent functions of u1, u2, e.g. ψF (u1)+ ξF (u2).
Similarly, we can express the matching point from backward as ψB(u1)+ξB(u2),
and we are to find match. Now, instead of finding a match directly, we can
compute ψF (u1)−ψB(u1) in forward direction and ξB(u2)−ξF (u2) in backward
direction independently and find a match.

In case of SHA-2, it is possible to extend the 7-step partial-matching to 9-step
indirect-partial-matching by inserting one step just before and after the partial
matching.

Note this technique can be combined with partial-fixing technique by apply-
ing them in order: partial-fixing, partial-matching and indirect-partial-matching.
However, there are some constraints that need to be satisfied, such as the inde-
pendence of message word used in indirect-partial-matching, while we need to
be able to compute enough bits at the matching point in order to carry out the
partial-matching efficiently.
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4.6 Initial Structure

In some cases, the two independent chunks u1 and u2 will overlap with each other.
The typical example is that the order of the input key of E is u1u2u1u2. This
creates a problem: how should the attacker carry out the forward and backward
computations independently. The Initial Structure technique was proposed by
[16] to solve such a problem. Previous attacks usually set a certain step as the
starting step, then randomly determine the intermediate value at that step, and
carry out the independent computations. However, the initial structure technique
sets all the steps of u2u1 in the middle of u1u2u1u2 together as the starting
point. Denote the intermediate values at the beginning and last step of u2u1

as I1 and I2 respectively. For each possible value of u1, the attacker can derive
a corresponding value I1. Similarly, for each possible value of u2, the attacker
can derive a corresponding value I2. Moreover, any pair (I1, u1) and (I2, u2) can
be matched at the steps of u2u1 of u1u2u1u2. Thus, the attacker can carry out
independent computations utilizing (I1, u1) and (I2, u2).

Initial structure for SHA-2 makes use of the absorption property of the func-
tion Ch(x, y, z) = xy⊕ (¬x)z. If x is 1 (all bits are 1), then Ch(1, y, z) = y which
means z does not affect the result of Ch function in this case; similarly when x
is 0 (all bits are 0), y does not affect the result. When we want to control partial
output (few bits), we need to fix the corresponding bits of x instead of all bits
of x.

We consider 4 consecutive step functions, i.e. from step i to step i + 3. We
show that, under certain conditions, we can move the last message word Wi+3

to step i and move Wi to step i+1 while keeping the final output after step i+3
unchanged.

Assume we want to transfer upwards a message word Wi+3. Due to the ab-
sorption property of Ch, we can move Wi+3 to step i + 2 (adding it to register
Gi+2) if all the bits of Ei+2 are fixed to 1. This is illustrated in Fig. 2 (left).
Similarly, we can further move Wi+3 to step i+ 1 (adding it to register Fi+1) if
all the bits of Ei+1 are 0. Then, we still can move it upwards by transferring it
to register Ei after step transformation in step i.

The same principle applies if we want to transfer only part of the register
Wi+3. If l most significant bits (MSB) of Wi+3 are arbitrary and the rest is set
to zero (to avoid interference with addition on least significant bits), we need to
fix l MSB of Ei+2 to one and l MSB of Ei+1 to zero.

As l MSB of Ei+1 need to be 0, we need to use l MSB of Wi to satisfy this
requirement. This reduces the space of Wi to 232−l. Similarly, we need to choose
those Wi that fix l MSB of Ei+2 to one. This is possible because changing the
value of Wi influences the state of register Ei+2 through Σ1 at step i + 1. We
experimentally checked that changing Wi generates changes in Ei+2 that are
sufficiently close to uniformly distributed. Satisfying additional constraints on l
bits further reduces the space of Wi to 232−2l.

The important thing to note here is that if we fix the values of Fi+1, Gi+1

and of the sum Di+1 +Hi+1 we can precompute the set of good values for Wi

and store them in a table. Then, we can later recall them at negligible cost.
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Fig. 2. Initial structure for SHA-2 allows to move the addition of Wi+3 upwards pro-
vided that the Ch functions absorb the appropriate inputs (left); move Wi one step
downwards (right)

On the other hand, message word Wi can be moved to step i + 1 with no
constraint, as shown in Fig. 2 (right).

This procedure essentially swaps the order of words Wi and Wi+3.

4.7 Two-Way Expansion

Message expansion usually works in such a way that some consecutive several
messages can determine the rest. For SHA-2, any consecutive 16 message words
can determine the rest since the message expansion is a bijective mapping. This
enables us to control any intermediate 16 message words and then expand the
rest in both ways. This technique gives us more freedom of choices of neutral
words, and extends the number of steps for the two chunks a lot. Note that the
maximum number of consecutive steps for the two chunks is 30 for SHA-2. Since
the message expansion is a bijective mapping, no matter which neutral word
is chosen, it must be used to compute at least one of the any consecutive 16
message words. So each chunk of consecutive steps is of length at most 15.

4.8 Message Compensation

For some choice of neutral words, two chunks are not able to achieve the optimal
length. By forcing some of the other message words to cancel the change intro-
duced by neutral words, the optimal or near-optimal length could be achieved.
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Combining the initial structure, two-way expansion and message compensa-
tion techniques, we are able to find two chunks of length 33. We choose to control
on {Wz, . . . ,Wz+15}, for some z which we will determine later. We choose Wz+5

and Wz+8 as neutral words. We show the first chunk {Wz−10, . . . ,Wz+4,Wz+8}
to be independent from Wz+5 and second chunk {Wz+5,Wz+6,Wz+7,Wz+9, . . . ,
Wz+22} to be independent from Wz+8. Note that Wz+8 is “moved” to first chunk
by method explained in initial structure. For forward direction, we need to show
{Wz−10, . . . ,Wz−1} are independent from Wz+5 when they are expanded from
{Wz, . . . ,Wz+15}.

Wz−1 = Wz+15 − σ1(Wz+13)−Wz+8 − σ0(Wz) , (11)
Wz−2 = Wz+14 − σ1(Wz+12)−Wz+7 − σ0(Wz−1) , (12)
Wz−3 = Wz+13 − σ1(Wz+11)−Wz+6 − σ0(Wz−2) , (13)
Wz−4 = Wz+12 − σ1(Wz+10)−Wz+5 − σ0(Wz−3) , (14)
Wz−5 = Wz+11 − σ1(Wz+9)−Wz+4 − σ0(Wz−4) , (15)
Wz−6 = Wz+10 − σ1(Wz+8)−Wz+3 − σ0(Wz−5) , (16)
Wz−7 = Wz+9 − σ1(Wz+7)−Wz+2 − σ0(Wz−6) , (17)
Wz−8 = Wz+8 − σ1(Wz+6)−Wz+1 − σ0(Wz−7) , (18)
Wz−9 = Wz+7 − σ1(Wz+5)−Wz − σ0(Wz−8) , (19)
Wz−10 = Wz+6 − σ1(Wz+4)−Wz−1 − σ0(Wz−9) . (20)

We note that Wz+5 is used in (19) and (14), we compensate them by using Wz+7

andWz+12. By “compensating” we mean making the equation value independent
from Wz+5 by forcing Wz+7 − σ1(Wz+5) = C (C is some constant, we use 0 for
simplicity) and Wz+12 −Wz+5 = C. Wz+7 is also used in (17), however we can
use Wz+9 to compensate for it, i.e. set Wz+9 = σ1(Wz+7) = σ2

1(Wz+5). Then
Wz+9 and Wz+12 are used in steps above, so we continue this recursively and
finally have the following constraints that ensure the proper compensation of
values of Wz+5.

Wz+7 = σ1(Wz+5) ,
Wz+9 = σ2

1(Wz+5) ,
Wz+11 = σ3

1(Wz+5) ,
Wz+13 = σ4

1(Wz+5) ,
Wz+15 = σ5

1(Wz+5) ,
Wz+12 = Wz+5 ,
Wz+14 = 2 σ1(Wz+5) .

(21)

The second chunk is independent from Wz+8 automatically without any com-
pensation. The 33-step two-chunk is valid regardless of the choice of z as long
as z > 10. To simplify the notation, we use Wj , . . . ,Wj+32 to denote the two
chunks, then Wj+15 and Wj+18 are the two neutral words. We reserve the final
choice of j for later to pick the one that allows to attack the most steps, as
described later.
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5 Preimage Attack against 43 Steps SHA-256

5.1 Number of Attacked Steps

The attack on SHA-256 uses 33-step two-chunk Wj , . . . ,Wj+32 explained in
Section 4. Hence, in forward direction, pj+33 can be computed independently of
the other chunk and in backward direction, pj can be computed independently
of the other chunk. We extend the number of attacked steps as much as possible
with partial-fixing (PF) and indirect-partial-matching (IPM) techniques.

Forward computation of Aj+34: The equation for Aj+34 is as follows.
⎧⎨
⎩
Aj+34 = Σ0(Aj+33) + Maj(Aj+33, Bj+33, Cj+33) +Hj+33

+Σ1(Ej+33) + Ch(Ej+33, Fj+33, Gj+33) +Kj+33 +Wj+33,
Wj+33 = σ1(Wj+31) +Wj+26 + σ0(Wj+18) +Wj+17

We can use either PF or IPM to compute Aj+34. If we use PF, we fix the
lower l bits of Wj+18, which is a neutral word for the other chunk. According
to Table 2, this fixes the lower l − 18 bits of σ0(Wj+18). Finally, the lower
l−18 bits of Aj+34 can be computed. If we use IPM, we describe Aj+34 as a
sum of functions of each neutral words i.e. Aj+34 = ψF (Wj+15)+ξF (Wj+18).
From the above equations, they can be easily done. Note that IPM is more
efficient than PF with respect to only computing Aj+34 because IPM does
not need to fix a part of neutral word.

Forward computation of Aj+35: The equation for Aj+35 is as follows.
{
Aj+35 = Σ0(Aj+34) + Maj(Aj+34, Bj+34, Cj+34) + · · ·+Wj+34,
Wj+34 = σ1(Wj+32) +Wj+27 + σ0(Wj+19) +Wj+18

Neither PF nor IPM can compute Aj+35. If we used PF for Aj+34, only the
lower l − 18 bits are known. This makes all bits of Aj+35 unknown after
the computation of Σ0(Aj+34). If we used IPM, Aj+34 is described as a
sum of two independent functions. However, because Σ0 consists of XOR of
three self-rotations, it seems difficult to describe Σ0(Aj+34) as a sum of two
independent functions.

In summary, we can skip only 1 step in forward. In this case, using IPM is more
efficient than using PF.

Backward computation of Hj−1: The equation for Hj−1 is as follows.
⎧⎨
⎩
Hj−1 = Aj − (Σ0(Bj) + Maj(Bj , Cj , Dj))

−Σ1(Fj)− Ch(Fj , Gj , Hj)−Kj−1 −Wj−1,
Wj−1 = Wj+15 − σ1(Wj+13)−Wj+8 + σ0(Wj)

We can use either PF or IPM to compute Hj−1. If we use PF, we fix the
lower l bits of Wj+15, and then, the lower l bits of Hj−1 can be computed.
If we use IPM, we describe Hj−1 as a sum of functions of each neutral word.
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Fig. 3. Separation of chunks and dependencies of state words for SHA-256

Backward computation of Hj−2: The equation for Hj−2 is as follows.⎧⎨
⎩
Hj−2 = Aj−1 − (Σ0(Bj−1) + Maj(Bj−1, Cj−1, Dj−1))

−Σ1(Fj−1)− Ch(Fj−1, Gj−1, Hj−1)−Kj−2 −Wj−2,
Wj−2 = Wj+14 − σ1(Wj+12)−Wj+7 + σ0(Wj−1)

We can use PF to compute Hj−2 but cannot use IPM. To describe Ch(Fj−1,
Gj−1, Hj−1) and σ0(Wj−1) as a sum of two independent functions seems diffi-
cult. If we used PF forHj−1, we can obtain the lower l bits of Ch(Fj−1, Gj−1,
Hj−1) and lower l− 18 bits of σ0(Wj−1). Finally, we can compute the lower
l − 18 bits of Hj−2.

By the similar analysis, we confirmed that we cannot computeHj−3. In summary,
we can skip 2 steps in backward with PF which fixes the lower l, l > 18 bits of
Wj+15.

The attack uses 33-step two-chunk Wj , . . . ,Wj+32 including 4-step initial
structure. Apply PF for Wj−1 and Wj−2, and apply IPM for Wj+34. Finally,
43 steps are attacked by skipping additional 7 steps using partial-matching
technique.

36 steps (Wj−2 to Wj+34) must be located sequentially. We have several op-
tions for j. We choose j = 3 for the following two purposes; (1) W13,W14, and
W15 can be freely chosen to satisfy message padding rules, (2) pseudo-preimage
attack on SHA-224 is possible (explained in Section 7).

We need to fix the lower l+18 bits of W18 to fix the lower l bits of W2 by PF.
Besides, we lose half of remaining freedom to construct 4-step initial structure.
Hence, we choose l to balance l− 18 and 32−l

2 , i.e. we choose l = 23.
The overview of the separation of chunks is shown in Fig. 3. denotes

variables depending only on W21; denotes variables depending only on W18;
and denote registers that can be expressed as a sum modulo 232 of two

independent functions of neutral variables W18 and W21; denotes registers
with few bits depending only on W21; denotes registers depending on both
W18 and W21 in a complicated way.
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5.2 Attack Procedure

1. Randomly choose the values for internal chaining variable p19 (after the
movement of message words by initial structure) and message word W19.
Randomly fix the lower 23 bits of W18. By using the remaining 9 free bits
of W18, find 25 values on average that correctly construct the 4-step initial
structure, and store them in the table TW . Let us call this an initial table-
preparation.

2. Randomly choose message words not related to initial structure and neutral
words, i.e. W13,W14,W15,W16,W17,W23. Let us call this an initial
configuration.

3. For all 25 possible W18 in TW , compute the corresponding W20,W22,W24,
W25,W26,W27,W28 as shown in equations (21). Compute forward and find
ψF (W18). Store the pairs (W18, ψF (W18)) in a list LF .

4. For all 24 possible values (the lower 4 bits) of W21, compute backward and
find ξF (W21), which is σ0(W21) in this attack, and the lower 4 bits of A37.

5. Compare the lower 4 bits of A37− σ0(W21) and the lower 4 bits of ψF (W18)
stored in LF .

6. If a match is found, compute A37, B37, . . . , H37 with the corresponding W18

and W21 and check whether results from both directions match each other.
If they do, output p0 and W0, . . . ,W15 as a pseudo-preimage.

7. Repeat steps 2 – 6 for all possible choices of W13,W16,W17,W21. Note, the
MSB of W13 is fixed to 1 to satisfy message padding. Hence, we have 2127

freedom for this step.
8. If no freedom remains in step 7, repeat steps 1 – 7.
9. Repeat steps 1 – 8 24 times to obtain 24 pseudo-preimages. Then, convert

them to a preimage according to [21, Fact9.99].

5.3 Complexity Estimation

We assume the complexity for 1 step function and 1-step message expansion
is 1

43 compression function operation of 43-step SHA-256. We also assume that
the speed of memory access is negligible compared to computation time for step
function and message expansion. Complexity for step 1 is 29 and use a memory
of 25 words. Complexity for step 2 is negligible. In step 3, we compute pj+1 ←
Rj(pj ,Wj) for j = 18, 19, . . . , 36 and corresponding message expansion. Hence,
the complexity is 25 19

43 . We use a memory of 25×2 words. Similarly, in step 4, we
compute pj ← R−1

j+1(pj+1,Wj) for j = 20, 19, . . . , 2 and 6 more steps for partial-
fixing and partial-matching. Hence, the complexity is 24 25

43 . In step 5, we compare
the match of lower 4 bits of 29(= 24 · 25) items. Hence, 25 results will remain.
Complexity for step 6 is 25 8

43 and the probability that all other bits match is
2−252. Hence, the number of remaining pair becomes 2−247(= 25 · 2−252). So far,
the complexity from step 2 to 6 is 25 19

43 +24 25
43 +25 8

43 = 25 39.5
43 ≈ 24.878. In step 7,

this is repeated 2127 times and its complexity is 2131.878. Step 8 is computed 2120

times. This takes 2120 · (29 + 2131.878) ≈ 2251.9. This is the complexity of the
pseudo-preimage attack on SHA-256 43-steps. Finally, at Step 9, preimages are
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found with a complexity of 21+(251.878+256)/2 = 2254.939 ≈ 2254.9. The required
memory for finding a pseudo-preimage is 25 words and 25 × 2 words in Steps 1
and 3, which is 25 × 3 words. For finding a preimage, we need to store 21.9

pseudo-preimages for unbalanced meet-in-the-middle. This requires a memory
of 21.9 × 24 words.

5.4 Attack on 42 Steps SHA-256

When we attack 42 steps, We use 1-step IPM instead of 2-step PF in backward.
This allows the attacker to use more message freedom. We choose l = 10 so
that l and 32−l

2 are balanced. Because each chunk has at least 10 free bits, the
complexity for finding pseudo-preimages is approximately 2246(= 2256 · 2−10).
The precise evaluation is listed in Table 1.

6 Preimage Attack against 46 Steps SHA-512

6.1 Basic Strategy for SHA-512

For SHA-512, we can attack more steps than SHA-256 by using PF. This occurs
by the following two properties;

– Message-word size of SHA-512 is bigger than that of SHA-256. Hence, the
bit-mixing speed of σ and Σ functions are slower than SHA-256.

– The choice of three rotation numbers for the σ0 function is very biased.

To consider the above, we determine to use the message freedom available to the
attacker for applying PF as much as possible.

Construction of the 4-step initial structure explained in Section 4 consumes
a lot of message freedom. Therefore, we do not use the 4-step initial structure
for SHA-512. Construction of the 3-step initial structure also needs a lot of
message freedom. On the other hand, 2-step initial structure does not consume
any message freedom because we do not have to control Ch functions. Finally, in
our attack, we use a 31-step two-chunk including 2-step initial structure. Because
construction of 2-step initial structure is much simpler than that of 4-step initial
structure, we omit the detailed explanation of the construction.

6.2 Chunk Separation

The 31 message words we use are Wj to Wj+30. We apply the 2-step initial
structure for Wj+15 and Wj+16, hence the neutral words for the first chunk is
Wj+16 and for the second chunk is Wj+15. Whenever we change the value of
Wj+16, we change the values of Wj+7,Wj+6, . . . ,Wj by message compensation
technique so that the change does not impact to the second chunk. Similarly,
whenever we change Wj+15, we change Wj+17,Wj+19,Wj+21,Wj+22, . . . ,Wj+30.
Finally, Wj to Wj+30 can form the 31-step two-chunks.



Preimages for Step-Reduced SHA-2 593

6.3 Partial-Fixing Technique

We skip 6 steps in backward and 2 steps in forward by PF. Namely, we need to
partially compute Wj−1,Wj−2, . . . ,Wj−6 independently of Wj+15, and partially
compute Wj+31 and Wj+32 independently of Wj+16, The equations for these
message words are as follows.

Wj−1
l

= Wj+15
l
− σ1(Wj+13)−Wj+8 + σ0(Wj),

Wj−2
l−8

= Wj+14 − σ1(Wj+12)−Wj+7 + σ0(Wj−1
l
),

Wj−3
l−16

= Wj+13 − σ1(Wj+11)−Wj+6 + σ0(Wj−2
l−8

),
Wj−4

l−24
= Wj+12 − σ1(Wj+10)−Wj+5 + σ0(Wj−3

l−16
),

Wj−5
l−32

= Wj+11 − σ1(Wj+9)−Wj+4 + σ0(Wj−4
l−24

),
Wj−6

l−40
= Wj+10 − σ1(Wj+8)−Wj+3 + σ0(Wj−5

l−32
),

Wj+31
l−8

= σ1(Wj+29) +Wj+24 + σ0(Wj+16
l
) +Wj+15,

Wj+32
l

= σ1(Wj+30) +Wj+25 + σ0(Wj+17) +Wj+16
l
.

Remember Table 2. If the lower l bits of input of σ0 is fixed, we can compute
the lower l−8 bits of its output. In backward, if we fix the lower l bits of Wj+15,
the lower l bits of Wj−1, the lower l − 8 bits of Wj−2, the lower l − 16 bits of
Wj−3, the lower l−24 bits of Wj−4, the lower l−32 bits of Wj−5, and the lower
l−40 bits of Wj−6 can become independent of the second chunk. This results in
computing the lower l bits of Hj−1, the lower l− 8 bits of Hj−2, the lower l− 16
bits of Hj−3, the lower l − 41 bits of Hj−4, the lower l − 49 bits of Hj−5, and
the lower l− 57 bits of Hj−6. Note that we also need to consider Σ1 to compute
Hj−4, Hj−5, and Hj−6. If we fix the lower l bits of Wj+16, the lower l− 8 bits of
Wj+31, and the lower l bits of Wj+32 can become independent of the first chunk.
This results in computing the lower l− 8 bits of Aj+32, and the lower l− 47 bits
of Aj+33.

Therefore, if we choose l = 60, we can match the lower 3 bits of Hj−6 and 13
bits of Aj+33 after we skip 7 steps by the partial-matching technique.

6.4 Attack Overview

The attack uses 31-step two-chunk Wj , . . . ,Wj+30 including 2-step initial struc-
ture. Apply PF for Wj−1,Wj−2, . . . ,Wj−6, and Wj+31,Wj+32. Finally, 46 steps
are attacked by skipping additional 7 steps using partial-matching technique.

39 steps (Wj−6 to Wj+32) must be located sequentially. Because Wj+8,Wj+9,
Wj+10,Wj+11,Wj+12,Wj+13,Wj+14,Wj+18,Wj+20 are the message words we fix
in advance, we choose j = 6 so thatW14 andW15 can be chosen to satisfy message
padding rules. The MSB of W13 can also be satisfied. In this chunk separation,
Wj+7 can be described as Wj+7 = Const−Wj+16, where Const is a chosen fixed
value and the lower l bits of Wj+16 are fixed. If we fix Const and the MSB of
Wj+16 to 0 and some value, respectively, and choose the lower l bits of Wj+16

so that the MSB of −Wj+16 does not change for all active bits of Wj+16, we can
always fix the MSB of Wj+7.
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The number of free bits in Wj+16 is 3. (l = 60 but we fix the MSB for
satisfying padding for W13.) The number of free bits in Wj+15 is 4. Results
from both chunks are compared with 3 bits. Therefore, the final complexity of
pseudo-preimage attack is approximately 2509. This is converted to a preimage
attack whose complexity is approximately 2511.5. For finding pseudo-preimages,
this attack needs to store 23 items. Hence, the required memory is 23× 9 words.
For finding preimages, we need to store 21.5 pseudo-preimages for unbalanced
meet-in-the-middle. This requires a memory of 21.5 × 24 words.

6.5 Attack on 42 Steps SHA-512

When we attack 42 steps, we stop using 1-step PF in forward and 3-step PF in
backward. We choose l = 40. Because each chunk has at least 24 free bits, the
complexity for finding pseudo-preimages is approximately 2488(= 2512 · 2−24).
The precise evaluation is listed in Table 1.

7 Remarks

7.1 Length of Preimages

The preimages are of at least two blocks, last block is used to find pseudo-
preimages and the second last block links to the input chaining of last block.
Two block preimages is only possible if we can preset the message words used
for encoding the length (m14 and m15 for SHA-2) of last block according to the
padding and length encoding rules. In our case, this can be done in the first step
of the algorithm. On the other hand, we can leave m14 and m15 as random, later
we can still resolve the length using expandable messages [22].

7.2 SHA-224 and SHA-384

Our attack on 43 steps SHA-256 can also produce pseudo-preimages for SHA-
224 by using the approach by Sasaki [23]. In our attack, we match 4-bits of A37

which is essentially equivalent to G43. Then, we repeat the attack until other
registers randomly match i.e. we wait until A43, B43, . . . , F43, and H43 randomly
match. In SHA-224, the value of H43 is discarded in the output. Hence, we do not
have to care the match of H43, which results in decreasing the complexity by 232

bits. Hence, pseudo-preimages of SHA-224 can be computed with a complexity
of 2219.9(= 2251.9 ·2−32). Note, this cannot be converted to a preimage attack on
SHA-224 because the size of intermediate chaining variable is 256 bits.

If we apply our attack on SHA-512 to SHA-384, W13,W14, and W15 will
depend on neutral words. Hence, we cannot confirm 46 steps SHA-384 can be
attacked or not because of padding problem. However, 43 steps SHA-384 can be
attacked by using the same chunk as SHA-256. By considering the difference of
word size and application of PF, we can optimize the complexity by choosing
l = 27 so that l − 8 and 64−l

2 are balanced.
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7.3 Multi-preimages and Second-Preimages

We note that the method converting pseudo-preimage to preimages can be fur-
ther extended to find multi-preimages. We find first k block multi-collisions [24],
then follow the expandable message [22] to link to the final block. This gives 2k

multi-preimages with additional k2n/2 computations, which is negligible when
k is much smaller than 2(n−t)/2 (t denotes number of bits for each chunk, refer
to Section 3). We need additional 128k bytes of memory to store the k block
multi-collisions. Furthermore, most of the message words are randomly chosen,
this attack naturally gives second preimages with high probability. Above multi-
preimages are most probably multi-second preimages.

8 Conclusions

In this paper, we presented preimage attacks on 43 steps SHA-256 and 46 steps
SHA-512. The time complexity of the attack for 43-step SHA-256 is 2254.9 and
it requires 25 · 3 words of memory. The time complexity of the attack for 46-
step SHA-512 is 2511.5 and it requires 23 · 9 words of memory. The number of
attacked steps is greatly improved from the best previous attack, in other words,
the security margin of SHA-256 and SHA-512 is greatly reduced. Because SHA-
256 and SHA-512 have 64 and 80 steps, respectively, they are currently secure.

An open question worth investigating would be to see if the current attacks
may still be improved. Perhaps finding 15+4+15 pattern of chunks with 4-step
initial structure in the middle or using better partial-fixing technique that would
utilize middle bits of the message word would extend the attacks.

The preimage attack we presented creates a very interesting situation for SHA-
2 when a preimage attack, covering 43 or 46 steps, is much better than the best
known collision attack, with only 24 steps. Our attack does not convert to collision
attack because of the complexity above the birthday bound. However, we believe
that the existence of such a preimage attack suggests that a collision attack of
similar length could be also possible. In that light, the problem of finding collisions
for reduced variants of SHA-256 definitely deserves more attention.
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