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Abstract Lie-integration is one of the most efficient algorithms for numerical integration
of ordinary differential equations if high precision is needed for longer terms. The method
is based on the computation of the Taylor coefficients of the solution as a set of recurrence
relations. In this paper, we present these recurrence formulae for orbital elements and other
integrals of motion for the planar N -body problem. We show that if the reference frame is
fixed to one of the bodies—for instance to the Sun in the case of the Solar System—the
higher order coefficients for all orbital elements and integrals of motion depend only on the
mutual terms corresponding to the orbiting bodies.

Keywords N -body problems · Numerical methods · Lie-integration · Planetary systems ·
Recurrence relations · Taylor coefficients

1 Introduction

Due to the lack of analytical solutions, numerical integration is required to solve the equations
of motion of the gravitational N -body problem for almost any initial conditions for 3 ≤ N .
There are many textbooks with algorithms related to general purpose numerical integration
of ordinary differential equations (ODEs, see e.g., Press et al. 2002, for an introduction). In
principle, if we have to solve the equation ẋi = fi (x), where x = (x1, . . . , xN ), then the
respective Lie-operator is defined as

L =
N∑

i=1

fi
∂

∂xi
. (1)
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46 A. Pál

The solution of the equation after time Δt is then written in the form

x(t + Δt) = exp (Δt · L) x(t) =
∞∑

k=0

Δtk

k! Lk x(t). (2)

The finite approximation of the above sum is called Lie-integration (see also Gröbner and
Knapp 1967). The higher order derivatives can efficiently be computed using recurrence
relations where the derivatives Lk+1x(t) are expressed as functions of L�x(t), where 0 ≤
� ≤ k. The method has many advantages: It is one of the most efficient methods if we
consider long-term and high precision computations, adaptive forms can be implemented
without losing computation time, roundoff errors are smaller than other algorithms, etc. (see
e.g., Pál and Süli 2007; Hanslmeier and Dvorak 1984). However, the need of derivations of
the respective recurrence series for any new problem is a major drawback.

First, Hanslmeier and Dvorak (1984) have obtained the recurrence relations for the
N -body problem, taking into account mutual and purely Newtonian gravitational forces.
Soon after, the relations have been derived for the restricted three-body problem (Delva
1984). Many methods for stability analysis require the computation of linearized equations.
The relations for the linearized N -body problem—including the equations where one of the
bodies is fixed—have been presented by Pál and Süli (2007). The algorithm of Lie-integration
has widely been applied for stability studies related to known planetary systems (see e.g.,
Asghari et al. 2004) or special resonant systems (see e.g., Funk et al. 2013). In addition,
more sophisticated semi-numerical methods can be based on the Lie-series (see e.g., Pál
2010, about the numerical computation of partial derivatives of coordinates and velocities
with respect to the initial conditions and the direct applications for exoplanetary analysis).
Recently, Bancelin et al. (2012) published the relations extended with relativistic effects and
some non-gravitational forces. It should be noted that Lie-integration does not handle regu-
larization, i.e., equations are integrated in proper time by default. However, the method itself
could be applied for regularized forms of the perturbed two-body problem (see e.g., Baù
et al. 2013, for a review about recent methods). Due to its properties and implementation
techniques, close encounters can be handled easily with Lie-series (see also Funk et al. 2013).

The aim of this paper is to present the recurrence relations for the osculating orbital
elements and the mean longitude in the case of the planar N -body problem. Here we employ
a reference frame where one of the bodies (i.e., the central body) has been fixed. Choosing
this reference frame has the advantage that all of the bodies orbiting the center have constant
osculating orbital elements if we neglect mutual interactions. As we show later on, all of
the non-trivial terms depend purely on the mutual terms between the orbiting bodies. In
other words, trivial cases yield constantly zero series for the Lie-coefficients. In Sect. 2,
we summarize the relations for the fixed-center reference frame, following the notations
of Hanslmeier and Dvorak (1984) and Pál and Süli (2007). The recurrence equations for
constants of motion are derived in Sect. 3 while the relations for the mean longitude are
obtained in Sect. 4. Our results and conclusions are summarized in Sect. 5.

2 Notations and Lie-series for the N-body problem

Throughout this paper, we follow the conventions used in Hanslmeier and Dvorak (1984) or
Pál and Süli (2007). The Newtonian gravitational constant is denoted by G, the mass of the
central body is M while the orbiting ones have a mass of mi (1 ≤ i ≤ N , hence we deal with
1 + N bodies). Coordinates and velocities (with respect to the central body) are denoted by
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Lie-series for orbital elements 47

ri ≡ rik and ui = uik (where k = 1 or 2) if we consider vector notations. The components
of these vectors are denoted by ri ≡ (xi , yi ) and ui ≡ (vi , wi ). For simplicity, specific mass
is denoted by μi ≡ G(M + mi ).

Based on Pál and Süli (2007), the relations for the fixed-center problem are the following
series of equations. These are

Ln+1ri = Lnui , (3)

for the coordinates,

Ln+1ui = −μi

n∑

k=0

(
n

k

)
Lkφi Ln−kri

−G
∑

j �=i

m j

n∑

k=0

(
n

k

) [
Lkφi j Ln−k(ri − r j ) + Lkφ j Ln−kr j

]
, (4)

for the velocities,

LnΛi =
n∑

k=0

(
n

k

)
Lkri Ln−kui , (5)

LnΛi j =
n∑

k=0

(
n

k

)
Lk(ri − r j )Ln−k(ui − u j ), (6)

for the auxiliary quantities Λi = ri ui and Λi j = (ri − r j )(ui − u j ), and

Ln+1φi = ρ−2
i

n∑

k=0

F (−3)
nk Ln−kφi LkΛi , (7)

Ln+1φi j = ρ−2
i j

n∑

k=0

F (−3)
nk Ln−kφi j LkΛi j . (8)

for the distances ρi = |ri |, the mutual distances ρi j = |ri − r j | and the reciprocal cubic
distances φi ≡ ρ−3

i , φi j ≡ ρ−3
i j . Here

F (−3)
nk = −3

(
n

k

)
− 2

(
n

k + 1

)
. (9)

If we evaluate the above relations in the order of equations (3)–(8), for all values of 1 ≤ i ≤ N
and then increase n by one in each step (thus starting over with i = 1, etc.), we obtain the
Lie-terms for the coordinates and the velocities. The solution of the original ODE after Δt
time can be approximated as

ri (t + Δt) ≈
nmax∑

n=0

Δtn

n! Lnri (t), (10)

ui (t + Δt) ≈
nmax∑

n=0

Δtn

n! Lnui (t). (11)

Note that for the last value of n = nmax, we need only to evaluate equations (3) and (4). In order
to bootstrap these relations, one could consider the fact that for any quantity Q, L0 Q ≡ Q.
Hence, the above definitions and relations for Λi and Λi j are self-explanatory.
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In the following, we derive the relations for the integrals of motion, the orbital elements
and the mean longitude.

3 Relations for the orbital elements

In order to introduce the features of the Lie-series for the classical Keplerian orbital elements,
first, we compute the relations for the specific angular momentum,

Ci = ri ∧ ui = xi ẏi − yi ẋi = xiwi − yivi . (12)

Since the definition of Ci is similar to the relations for Λi (both are second-order and bilinear
functions of the coordinates and velocities), one could expect a similar type of relations like
equation (5). Indeed, the relations for the LnCi terms can be written as

LnCi =
n∑

k=0

(
n

k

)
Lkri ∧ Ln−kui =

n∑

k=0

(
n

k

) [
Lk xi Ln−kwi − Lk yi Ln−kvi

]
. (13)

Here, equations for the coordinates and velocities should be computed using Eqs. (3)–(8) up
to some order of n ≤ nmax. In the case of N = 1, LnCi must be equal to 0 for any 1 ≤ n
since Ci ≡ C1 is an integral of motion. However, Eq. (13) does not imply this property. In
order to obtain the values for LnCi , first we compute L1Ci :

L1Ci = LCi = L(xiwi − yivi ) = (Lxi )wi + xi Lwi − (Lyi )vi − yi Lvi . (14)

Since Lxi = vi and Lyi = wi , we get

LCi = viwi + xi Lwi − wivi − yi Lvi = xi Lwi − yi Lvi . (15)

Now, Eq. (4) is substituted for n = 1:

LCi = +xi

⎡

⎣−μiφi yi − G
∑

i �= j

m j [φi j (yi − y j ) + φ j y j ]
⎤

⎦

−yi

⎡

⎣−μiφi xi − G
∑

i �= j

m j [φi j (xi − x j ) + φ j x j ]
⎤

⎦ . (16)

By expanding the above summations and multiplications, the following can easily be seen.
In addition to the Keplerian terms (the first ones, proportional to μiφi ), one part of the terms
corresponding to the direct perturbations also cancels. Therefore,

LCi = G
∑

i �= j

m j (φi j − φ j )(xi y j − x j yi ). (17)

For higher orders, the set of relations can be written as

Ln Si j =
n∑

k=0

(
n

k

)
(Lk xi Ln−k y j − Lk x j Ln−k yi ), (18)

Ln+1Ci = G
∑

i �= j

m j

n∑

k=0

(
n

k

)
Lk φ̂i j Ln−k Si j , (19)

where we introduce Si j = xi y j − x j yi and φ̂i j = φi j − φ j for simplicity.
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Lie-series for orbital elements 49

3.1 Eccentricity and longitude of pericenter

In the following, we compute the recurrence relations for the Lagrangian orbital elements k =
e cos � and h = e sin � . These are widely used as an equivalent alternative in astrodynamics
studies instead of eccentricity, e and longitude of pericenter, � . In the planar case, k and h
are the components of the Laplace–Runge–Lenz vector:

(
ki

hi

)
= Ci

μi

(+wi

−vi

)
− 1

ρi

(
xi

yi

)
. (20)

Due to the properties of the Lie-operator (linearity and Leibniz’ product rule), the components
of the above equation can easily be expanded once Lρ−1

i is known. Indeed, similarly to
φi = ρ−3

i , it can be shown that

Lρ−1
i = L

[
(ρ2

i )−1/2] = (−1/2)(ρ2
i )−3/2 L(ρ2

i ) = −1/2φi 2Λi = −φiΛi , (21)

see also Hanslmeier and Dvorak (1984) or Pál and Süli (2007). Now, our goal is to obtain a
relation for ki and hi like equation (17) that contains only mutual terms. Right after multi-
plying equation (20) by μi , we got the relation

μi Lki = (LCi )wi + Ci Lwi − μiρ
−1
i Lxi − μi L(ρ−1

i )xi . (22)

Then, we have to substitute equations (17), (4), (21), wi and φi (x2
i + y2

i ) for LCi , Lwi ,

L(ρ−1
i ), Lxi and ρ−1

i , respectively, and then perform a full expansion on Eq. (22). The
Keplerian terms indeed cancel and the remaining parts can be written as

μi Lki = G
∑

i �= j

m j

[
φ̂i j (wi Si j + Ci y j ) − Ci yiφi j

]
(23)

Lhi can be computed in a similar manner, thus the relations for L(ki , hi ) are

L

(
ki

hi

)
=

∑

i �= j

Gm j

μi

[
φ̂i j

(+wi Si j + Ci y j

−vi Si j − Ci x j

)
− Ciφi j

(+yi

−xi

)]
. (24)

In order to obtain higher order Lie-derivatives, Ln+1(ki , hi ), we should use Leibniz’ product
rule for the multilinear expressions appearing in the above relation. This can either be done
directly using the multilinear form

Ln(Q1 Q2 . . . Qm) =
∑

k1+k2+···+km=n

n!
k1!k2! . . . km ! Lk1 Q1Lk2 Q2 . . . Lkm Qm (25)

or by introducing auxiliary quantities (e.g., Ci y j , wi Si j ) and subsequently apply the bilinear
Leibniz’ product rule for these ones.

3.2 Specific energy and semimajor axis

The specific energy is defined as

εi = U 2
i

2
− μi

ρi
, (26)

where Ui = |ui | =
√

v2
i + w2

i . The semimajor axis can then be computed as ai = −μi/(2εi ).
For simplicity, in the following, we compute relations for the quantity Hi := −2εi = μi/ai .

123



50 A. Pál

Using the relations for ρ−1
i and the velocities (see Eq. 4), derivation schemes presented above

yields

L Hi = 2
∑

i �= j

Gm j

[
φi jΛi − φ̂i j Λ̂ j i

]
, (27)

where we introduce Λ̂ j i = x jvi + y jwi . The higher order Lie-derivatives are then obtained
as it is described at the end of the previous section.

4 Relations for the mean longitude

The previously obtained relations for the orbital elements can applied not only for closed
(circular or elliptic) orbits but for parabolic and hyperbolic orbits, as well. In the following, due
to its relevance, we handle only closed orbits. Hence, eccentricity e = √

k2 + h2 is expected
to be smaller than unity for all orbits and the reciprocal semimajor axis μ/a = −2ε = H is
also positive.

The mean longitude is the only related quantity which is defined for both circular and
elliptical orbits and which is an analytic function of the coordinates and velocities (see e.g.,
Pál 2009). Therefore, in the following, we ignore the eccentric, mean and true anomalies
from the computations. It should be noted that some quantities like e sin E or e cos E also
behaves analytically in the e → 0 limit, hence Lie-series can also be defined for these (where
E denotes the eccentric anomaly, see e.g., Pál 2009).

4.1 Full expansion of the mean longitude

The mean longitude λi can be computed using the analytic equation

λi = arg
[+ρ̂iwi + hiΛi ,−ρ̂ivi − kiΛi

] − Λi

Ci
Ji . (28)

Here, we introduced Ji =
√

1 − e2
i = bi/ai , the oblateness of the orbit and ρ̂i = ρi (1 + Ji ).

Regarding to the differentiation, the arg(x, y) function behaves like the arc tangent function,
arc tg(y/x):

d
[
arg(x, y)

] = d
[
arc tg

( y

x

)]
= xdy − ydx

x2 + y2 . (29)

The first-order Lie-derivative of λi is then

Lλi = (ρ̂ivi + kiΛi )L(ρ̂iwi + hiΛi ) − (ρ̂iwi + hiΛi )L(ρ̂ivi + kiΛi )

(ρ̂iwi + hiΛi )2 + (ρ̂ivi + kiΛi )2 − L

(
Λi

Ci
Ji

)
.

(30)

The denominator of the first (apparently large) fraction can significantly be simplified to the
form (1 + Ji )

2C2
i . Now, one has to simplify the above equation in order to depend mostly

on the mutual interactions. Since Lλi = λ̇i = ni �= 0 even for non-perturbed orbits, this
simplification cannot be homogeneous with respect to Gm j . In the following, we deal with
the perturbed and non-perturbed terms separately and expand the above equation into two
parts. The expansion of the numerator in the first fraction of Eq. (30) yields
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Lie-series for orbital elements 51

(ρ̂ivi + kiΛi )L(ρ̂iwi + hiΛi ) − (ρ̂iwi + hiΛi )L(ρ̂ivi + kiΛi )

= ρ̂2
i (vi Lwi − wi Lvi ) + (Λi Lρ̂i − ρ̂i LΛi )(wi ki − vi hi )

+ ρ̂iΛi (vi Lhi − wi Lki + ki Lwi − hi Lvi ) + Λ2
i (ki Lhi − hi Lki ). (31)

The terms appearing above can be expanded as:

vi Lwi − wi Lvi = μiφi Ci + G
∑

i �= j

m j

[
φi j Ci − φ̂i j Ĉ j i

]
, (32)

vi hi − wi ki = Ci

(
1

ρi
− U 2

i

μi

)
, (33)

vi Lhi − wi Lki + ki Lwi − hi Lvi = −CiφiΛi −
∑

i �= j

Gm j φ̂i j Si j

(
1

ρi
+ U 2

i

μi

)
, (34)

ki Lhi − hi Lki =
∑

i �= j

Gm j

μi

[
−C2

i

μi
φ̂i j Ĉ j i + C3

i

μi
φi j

+ φ̂i j

ρi
(Λi Si j + Ci Ri j ) − Ciρiφi j

]
, (35)

Λi Lρ̂i − ρi LΛi = (1 + Ji )(Λ
2
i ρ

−1
i − ρi LΛi ) + Λiρi L Ji (36)

and

LΛi =
(

U 2
i − μi

ρi

)
+

∑

i �= j

Gm j

[
φ̂i j Ri j − φi jρ

2
i

]
. (37)

where Ĉ ji = x jwi − y jvi and Ri j = ri r j = xi x j + yi y j .
Using the well-known relations from classical celestial mechanics, it can be shown that

the double-negative specific energy, Hi relates to the oblateness Ji and the specific angular
momentum Ci as C2

i Hi = J 2
i μ2

i . From this relation, by taking the Lie-derivative of both
sides, we got

L Ji = Ji

(
LCi

Ci
+ L Hi

2Hi

)
. (38)

Therefore, the last term in Eq. (30) can be written as

L

(
Λi

Ci
Ji

)
= − LCi

C2
i

JiΛi + Ji

Ci
LΛi + Λi

Ci
L Ji

= − LCi

C2
i

JiΛi + Ji

Ci
LΛi + Λi

Ci

Ji

Ci
LCi + Λi

Ci

Ji

2Hi
L Hi . (39)

Here, the first and third terms cancel each other, thus

L

(
Λi

Ci
Ji

)
= Ji

Ci
LΛi + JiΛi

2Ci Hi
L Hi . (40)
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4.2 The non-perturbed part

From the above series of equations, we collect those where terms after the summation∑
i �= j Gm j (·) do not occur. This part, denoted as Lλi |0 is

Lλi |0 = − Ji

Ci

(
U 2

i − μi

ρi

)
+ 1

C2
i (1 + Ji )2

{
ρ̂2

i μiφi Ci − ρ̂iΛ
2
i Ciφi

−
[
Λ2

i ρ
−1
i (1 + Ji ) − ρ̂i

(
U 2

i − μi

ρi

)]
Ci

(
1

ρi
− U 2

i

μi

) }
. (41)

By substituting the relations U 2
i −μi/ρi = μi/ρi −Hi , C2

i Hi = J 2
i μ2

i and Λ2
i +C2

i = U 2
i ρ2

i ,
Eq. (41) can greatly be simplified to obtain Kepler’s third law:

Lλi |0 = μ2
i J 3

i

C3
i

= 1

μi
H3/2

i =
√

μi

a3
i

. (42)

4.3 The perturbed part

Let us write the full Lie-derivative of Lλi in the form

Lλi = 1

μi
H3/2

i +
∑

i �= j

Gm j [Lλ]i j . (43)

This is similar to the forms obtained for the angular momentum, specific energy and
Lagrangian orbital elements, with the exception of the presence of the term related to Kepler’s
third law. The goal now is to compute the terms [Lλ]i j as simple as possible. It can be shown
that this term is

[Lλ]i j = + φ̂i j

1 + Ji

[(
−2Ji (1 + Ji )

Ci
+ 2Ci

μiρi

)
Ri j −

(
ρi

μi
+ C2

i

μ2
i

)
Ĉ ji

]

+ φi j

1 + Ji

[
C3

i

μ2
i

− Ci

μi
ρi + 2Ji (1 + Ji )

Ci
ρ2

i

]
. (44)

The deduction of the above equation has the following steps. First, one should fully expand
equation (31) while keeping only the terms

∑
Gm j (·). Then, it is divided by (1+ Ji )

2C2
i after

which we add the expansion of Eq. (40), still keeping only the terms
∑

Gm j (·). This Eq. (44)
can be simplified in terms of computation implementation by introducing the dimensionless
quantity gi = μiρi C

−2
i :

[Lλ]i j = + φ̂i j

1 + Ji

[
2

Ci

(
g−1

i − Ji (1 + Ji )
)

Ri j − ρi

μi

(
g−1

i + 1
)

Ĉ ji

]

+ φi j

1 + Ji

ρ2
i

Ci

[
g−2

i − g−1
i + 2Ji (1 + Ji )

]
. (45)

Therefore, the first Lie-derivative of λi can be written as

Lλi = 1

μi
H3/2

i +
∑

i �= j

Gm j

[
φ̂i j (AR Ri j + ACĈ ji ) + φi j A0 Rii

]
(46)
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where

AR = 2

Ci

(
g−1

i

1 + Ji
− Ji

)
, (47)

AC = ρi

μi

(
1 + g−1

i

1 + Ji

)
, and (48)

A0 = 1

Ci

(
g−2

i − g−1
i

1 + Ji
+ 2Ji

)
. (49)

Higher order derivatives can then be computed using the relation

Ln+1λi = 1

μi
Ln

(
H3/2

i

)
= +

∑

i �= j

Gm j

∑

k+p+q=n

n!
k!p!q!

×
[

Lk φ̂i j

(
L p AR Lq Ri j + L p ACLqĈ ji

)
+ Lkφi j L p A0 Lq Rii

]
(50)

Let us suppose that the Lie-derivatives of the arbitrary quantity Q are known up to the order
of n + 1. It can be shown by mathematical induction that the (n + 1)th Lie-derivative of Q p

can be computed using the relation

Ln+1 Q p = Q−1
n∑

k=0

[
p

(
n

k

)
−

(
n

k + 1

)]
Ln−k (

Q p) Lk+1 Q (51)

By substituting p = 3/2, this relation can be used to compute Ln H3/2
i if higher order

derivatives of Hi are known. In addition, Eq. (51) can be exploited in order to compute
(1 + Ji )

−1, C−1
i , C2

i and g−2
i . The additional terms AR, AC and A0 depend only on the

i th orbit. Hence, the relatively complex equations (47)–(49) are only computed N times in a
single iteration, instead of N 2/2. Therefore, these calculations do not significantly increase
the total computing time for larger number of bodies.

5 Conclusions and summary

In this paper, we presented recurrence formulae of the orbital elements related to the planar
N -body problem. As we showed, the structure of these formulae depends only on the terms
related to the mutual interactions. Therefore, the relations for the two-body problem reduces
to a constant motion that can be integrated with arbitrary step size. It should be noted that
although the presented procedure still requires the computation of higher order derivatives of
coordinates and velocities, these relations are exploited as auxiliary equations for computing
the mutual terms and these are not integrated directly.

In order to estimate the merits of using the orbital elements instead of the coordinates and
velocities, we can compare, for instance, the magnitude of the terms LkCi when these are
computed using Eq. (13) or Eq. (19). In the unperturbed case, the latter one yields exactly
zero while roundoff errors initiate an exponential growth in the higher order derivatives
yielded by naive computation. Using double-precision arithmetic and bootstrapping with
unity specific mass and angular momentum, the roundoff errors accumulate to unity around
the order of k ≈ 19 . . . 21, depending on the initial eccentricity and orbital phase. In addition,
for a given step size and desired precision, employing orbital elements instead of coordinate
components decrease the integration order nmax. For weakly perturbed systems (like the inner
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54 A. Pál

Solar System), this decrement can be a factor of ∼2. This would naively yield a gain of ∼4 in
computing time due its O(n2

max) dependence. However, the additional computations needed
by the orbital elements make a practical implementation less efficient. Our initial analysis
also showed that the higher the perturbations, the less the gain in the integration order. In
the case of the outer Solar System (where mi/M � 10−3), this gain in the decrease of the
maximum of derivative order is less prominent.

Following studies could investigate the relations for the spatial problem. In some cases,
this extension could be straightforward for scalar quantities like the specific energy. Care must
be taken in the cases where pseudo-scalars (like Ci ) or explicit coordinates occur. Another
interesting point can be the elimination of the need for computing the recurrence formulae
for coordinates and velocities and employ directly the orbital elements.
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