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Abstract

Solving nonlinear ordinary differential equations is one of the fundamental and practically im-
portant research challenges in mathematics. However, the problem of their algorithmic lineariz-
ability so far remained unsolved. In this contribution, we propose a solution of this problem
for a wide class of nonlinear ordinary differential equation of arbitrary order. We develop two
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ourselves to quasi-linear equations with a rational dependence on the occurring variables and
to point transformations. While the first algorithm is based on a construction of the Lie point
symmetry algebra and on the computation of its derived algebra, the second algorithm exploits
the differential Thomas decomposition and allows not only to test the linearizability, but also to
generate a system of nonlinear partial differential equations that determines the point transfor-
mation and the coefficients of the linearized equation. The implementation of our algorithms is
discussed and evaluated using several examples.

Keywords: Algorithmic linearization test, determining equations, differential Thomas
decomposition, Lie symmetry algebra, ordinary differential equations, point transformation,
power series solutions, Tremblay-Turbiner-Winternitz system.

Email addresses: dmitry.lyakhov@kaust.edu.sa (Dmitry A. Lyakhov), gerdt@jinr.ru (Vladimir P. Gerdt),
dominik.michels@kaust.edu.sa, michels@cs.stanford.edu (Dominik L. Michels)

URL: http://www.lyakhov.com/ (Dmitry A. Lyakhov), http://compalg.jinr.ru/CAGroup/Gerdt/
(Vladimir P. Gerdt), http://dmichels.de/ (Dominik L. Michels)

Preprint submitted to Journal of Symbolic Computation July 11, 2019



1. Introduction

The automation of solving nonlinear ordinary differential equations (ODEs) belongs to the
most fundamental and practically important research challenges in mathematics and in the com-
putational sciences. Such equations are typically solved numerically or by approximate analyt-
ical methods since obtaining their explicit solution is usually very difficult in practice or even
impossible. One of the important approaches for solving a nonlinear ODE explicitly considers
the existence of an invertible linearizing transformation of the variables and its construction. The
reduction of a nonlinear ODE to a linear one makes its explicit integration much easier and often
allows for obtaining an exact solution.

The linearization problem for a second-order ODE

y′′ + f (x, y, y′) = 0 (1)

was solved by Lie (1883), who applied his general theory of integration of ODEs by means of a
group of point transformations. He proved that f is at most cubic in y′ for a linearizable equation
and derived the necessary and sufficient conditions of linearizability. These conditions have the
form of two explicit and easily verifiable equations (22) containing differential polynomials in
the coefficients of f as a polynomial in y′:

f = F3(x, y)(y′)3 + F2(x, y)(y′)2 + F1(x, y) y′ + F0(x, y) . (2)

Lie’s ideas and methods were extended and applied to third-order equations y′′′ = f (x, y, y′, y′′)
by Ibragimov (2005) and later to fourth-order equations y′′′′ = f (x, y, y′, y′′, y′′′) (Ibragimov
(2008)). In these contributions, all possible structures of the candidates for the linearization were
found and the explicit form of necessary and sufficient linearizability conditions of the coef-
ficients of those structures were derived. Therefore, given an ODE of second, third or fourth
order, to check whether it is linearizable by a point transformation or not, it is sufficient to verify
whether the relevant explicit linearizability conditions are satisfied or not.

In practice, such a verification typically needs a computer-based symbolic algebraic compu-
tation for the simplification of the resulting expressions. An additional point to emphasize is that
if the ODE contains parameters and/or arbitrary functions, then the linearizability conditions im-
ply the algebraic and/or differential constraints on these parameters and/or functions that provide
the linearization. Generally, however, these constraints may include the point transformation
functions, and it may be highly conjectural to solve the constraints and to find a linearizing point
transformation.

In this paper we suggest two algorithmic linearization tests applicable to a quasi-linear ODE1

of any order greater or equal to two with a rational dependence on the other derivatives and the
independent variable. The first linearization test is applicable to ODEs which do not contain pa-
rameters and arbitrary functions. This test is based on the construction of the Lie point symme-
try algebra for the input ODE. The relevant mathematical methods are described in several text-
books (see, for example, Bluman (2001); Ibragimov (2009); Olver (1993, 1995); Ovsyannikov
(1992); Schwarz (2008)). To detect linearizability we compute the maximal abelian dimen-
sion of the Lie symmetry algebra and make use of the results of Mahomed (1990). Unlike
the first test, our second test exploits the differential Thomas decomposition (for more details,

1Quasi-linear ODE means that it depends linearly on the highest order derivative, i.e. solvable with respect to its
highest order derivative.
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see Bachler (2012); Gerdt (2008); Li (1999); Robertz (2014); Thomas (1937, 1962); Wang
(2001)), a universal algorithmic tool for the algebraic analysis of polynomially-nonlinear systems
of partial differential equations (PDEs), and allows not only for the detection of linearizability
but also for the derivation of necessary and sufficient linearizability conditions for arbitrary func-
tions or parameters occurring in these equations. An example of such a problem is given by
Eq. (1) whose linearizability conditions are given by Eq. (2).

Linearizability problems for nonlinear ODEs were studied by the prominent Russian math-
ematician Nail Ibragimov (2005, 2008), who contributed immeasurably to group analysis of
differential equations and to the popularization of symmetry methods. He and his co-authors
were able to obtain explicit formulas for linearizable equations by point and contact transfor-
mations, which could be reproduced automatically by our second algorithm. Sadly, we have
to mention that during the writing of this paper he passed away. We dedicate this paper to his
memory.

Second linearization algorithms gives more information and suitable for finding the transfor-
mation and the coefficients. However, the first linearization test is computationally more efficient
and it is therefore advisable to apply it first when considering higher-order equations, and then,
in the case of linearizability, apply the second test in order to construct the linearizing point
transformation and the reduced linear form of the ODE.

This paper is an extended version of our recent contribution (Lyakhov (2017)). For our
first linearizing test we presented there (Lyakhov (2017), Sect. 4), we now present one more
implementation based on the algorithms described in the recent paper by Lisle (2017). It is
implemented in the freely available Maple library LAVF (Lie Algebra of Vector Fields). Our
benchmark shows (Sect. 5, Table 1) that the new implementation clearly outperforms the other
two implementations. Moreover, we applied our second linearizing algorithm to the third-order
ODE arising in the study by Gubbiotti (2017) of the superintegrable Hamiltonian system known
in the literature as the Tremblay-Turbiner-Winternitz system. In Gubbiotti (2017) it was shown
that the ODE admits linearization by a certain point transformation. Our algorithm constructed
another linearizing transformation, and we included this application of our second algorithm as
an additional example (Ex. 12) to our Sect. 5).

This paper is organized as follows. In Sect. 2 we briefly describe the mathematical objects
we deal with before presenting our algorithms in Sect. 3. Their implementation in Maple is then
described in Sect. 4 and its application is illustrated in Sect. 5 using several examples including
the Tremblay-Turbiner-Winternitz system. Finally, a conclusion is provided in Sect. 6.

2. Underlying Equations

In this paper we consider ODEs of the form

y(n) + f (x, y, y′, . . . , y(n−1)) = 0 , y(k) :=
dky

dxk
, (3)

where f is a rational function of its arguments.2 As additional arguments, the function f may
also include parameters and/or arbitrary functions in x and/or y. Given an ODE of the form (3),

2We can also assume that f is a rational function of (y′, . . . , y(n−1)) with coefficients α(x, y) which satisfy some given
polynomially nonlinear differential equations.
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our aim is to check the existence of an invertible transformation3

u = φ(x, y) , t = ψ(x, y) (4)

which maps (3) into a linear n-th order homogeneous equation

u(n)(t) +
n−1∑
k=0

ak(t) u(k)(t) = 0 , u(k) :=
dku

dtk
. (5)

The invertibility of (4) is provided by the inequation

J := φxψy − φyψx �= 0 , (6)

where we use the standard notion for derivatives

φx =
∂φ

∂x
, ψy =

∂ψ

∂y
.

If such a transformation exists for n ≥ 3, then it can always be chosen (cf. Olver (1995),
Thm. 6.54; Ibragimov (2009), Thm. 6.6.3) in a way that (5) takes the Laguerre-Forsyth nor-
mal form4

u(n)(t) +
n−3∑
k=0

ak(t) u(k)(t) = 0 . (7)

A first-order ODE y′ = f (x, y) is always linearizable, but its linearization procedure is as hard as
the integration of the equation (cf. Arnold (1992), Ch. 2, Thm. 1). For n = 2 any homogeneous
linear equation

y′′(x) + a(x) y′(x) + b(x) y(x) = 0

can be transformed by a substitution

t = ϕ(x), ϕ′(x) �= 0, u = σ(x) y, σ(x) �= 0

to the simplest second order equation (Ibragimov (2009), Thm. 3.3.1)

u′′(t) = 0 . (8)

One way to check the linearizability of Eq. (3) is to follow the classical approach by Lie (1883)
to study the symmetry properties of Eq. (3) under the infinitesimal transformation

x̃ = x + ε ξ(x, y) + O(ε2) , ỹ = y + ε η(x, y) + O(ε2) . (9)

The invariance condition for Eq. (3) under the transformation (9) is given by the equality

X(y(n) + f (x, y, ..., y(n−1))) |y(n)+ f (x,y,...,y(n−1))=0= 0, (10)

3Since we consider local linearizability, hereafter we assume that all functions are smooth in the vicinity of the
linearization point.

4It is important to use the Laguerre-Forsyth normal form for reasons of computational efficiency of the algorithm
LinearizationTest II due to finite dimensionality of the linearizing differential system (see Def. 6).
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where the symmetry operator reads

X := ξ ∂x +

n∑
k=0

η(k)∂y(k) , η(k) := Dxη
(k−1) − y(k)Dx ξ, (11)

η(0) := η and Dx := ∂x +
∑

k≥0 y(k+1)∂y(k) is the total derivative operator with respect to x. Here we
use the commonly accepted standard notation in group analysis (Ibragimov (2009), Sect. 1.4),
where all differential functions depend only on a finite number of differential variables y(k), and

∂x =
∂

∂x
, ∂y(k) =

∂

∂y(k) .

Example 1. As a toy example we consider the second-order trivial ODE

y′′(x) = 0 . (12)

By a substitution of the arbitrary point transformation[
u = f (x, y), t = g(x, y), J = fxgy − fygx �= 0

]
,

it is transformed into

u′′(t) + A3 · (u′)3 + A2 · (u′)2 + A1 · u′ + A0 = 0 .

The symmetry property implies

A3 = −∂
2g

∂y2

∂ f

∂y
+
∂2 f

∂y2

∂g

∂y
= 0 ,

A2 = −∂
2g

∂y2

∂ f

∂x
+
∂2 f

∂x∂y

∂g

∂y
+ 2
∂2 f

∂y∂y

∂g

∂x
− 2
∂2g

∂x∂y

∂ f

∂y
= 0 ,

A1 = −∂
2g

∂x2

∂ f

∂y
+
∂2 f

∂x2

∂g

∂y
+ 2
∂2 f

∂x∂y

∂g

∂x
− 2
∂2g

∂x∂y

∂ f

∂x
= 0 ,

A0 = −∂
2g

∂x2

∂ f

∂x
+
∂2 f

∂x2

∂g

∂x
= 0 .

Instead of searching for the Lie group itself we rewrite this system in terms of generators of the

one-parameter group of symmetry transformations (with group parameter a):

g(x, y) := x + a · ξ(x, y) + o(a) ,

f (x, y) := y + a · η(x, y) + o(a) .

Substitution to symmetry conditions and differentiation by a at a = 0 leads to the linear PDE

system
∂2η

∂x2 = 0 , −∂
2ξ

∂x2 + 2
∂2η

∂x∂y
= 0 ,

∂2ξ

∂y2 = 0 , −∂
2η

∂y2 + 2
∂2ξ

∂x∂y
= 0 ,
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which can be easily solved by hand:

ξ(x, y) = (C7 · x +C8) · y +C5 · x2 +C3 · x +C4 ,

η(x, y) = (C5 · y +C6) · x +C7 · y2 +C1 · y +C2 .

It corresponds to the 8-parameter Lie group of symmetries, which contains all linear mappings

of plane, projections, and shifts. Geometrically, the symmetry group represents all possible

transformations of the set of straight lines on a plane into itself that is given by solutions of

Eq. (12).

The invariance condition (10) means that its left-hand side vanishes when Eq. (3) holds. Then
the application of (11) to the left-hand side of Eq. (3) and the substitution of

y(n) = − f (x, y, ..., y(n−1))

in the resulting expression leads to the equality g = 0 with the polynomial dependence of g on the
derivatives y′, . . . , y(n−1). Since, by the transformation (9), the functions ξ and η do not depend on
these derivatives, the equality g = 0 holds if and only if all coefficients in y′, . . . , y(n−1) are equal
to zero. This leads to an overdetermined system of linear PDEs in ξ and η called determining

system. Its solution yields a set of symmetry operators whose cardinality we denote by m. This
set forms a basis of the m-dimensional Lie symmetry algebra

[Xi,X j] =
m∑

k=1

Ck
i, jXk , 1 ≤ i < j ≤ m . (13)

We denote the Lie symmetry algebra by L and m = dim(L). Its derived algebra L′ ⊂ L is a
subalgebra that consists of all commutators of pairs of elements in L.

It was shown (Lie (1883), Ch. 12, p. 298, “Satz” 3) that the Lie point symmetry algebra of
an n-order ODE has a dimension m satisfying

n = 1, m = ∞; n = 2, m ≤ 8; n ≥ 3, m ≤ n + 4 .

Later, the interrelations between n and m were established that provide the linearizability
of (3) by a point transformation (4) in the absence of parameters and arbitrary functions. Here
we present the two theorems that describe such interrelations and form the basis of our first
linearization test.

Theorem 2. (Mahomed (1990), Thm. 1) A necessary and sufficient condition for the lineariza-

tion of (3) with n ≥ 3 via a point transformation is the existence of an abelian n-dimensional

subalgebra of (13).

Theorem 3. (Mahomed (1990), Sect. 2–4 and Thms. 6,8; Schwarz (2008), Thm. 5.19)5 Eq. (3)
with n ≥ 2 is linearizable by a point transformation if and only if one of the following conditions

is fulfilled:

1. n = 2, m = 8;

2. n ≥ 3, m = n + 4;

5Cf. Thm. 6.39 in (Olver (1995)) regarding n = 2.
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3. n ≥ 3, m ∈ {n + 1, n + 2} and (13) admits an abelian subalgebra of dimension n.

These theorems show that the verification of the third condition requires, in addition to the
determination of m, a computation to check the existence of an abelian Lie symmetry subalge-
bra of dimension n. To our knowledge, there is only an algorithm described in the literature
(Ceballos (2012)) for the computation of the maximal abelian dimension, i.e. dimension of the
maximal abelian subalgebra of a finitely-dimensional Lie algebra given by its structure constants.
The algorithm is reduced to solving the quadratically nonlinear system of multivariate polyno-
mial equations providing vanishing of the Lie bracket between two arbitrary vectors in the Lie
algebra. Clearly, the computing time of the algorithm is at least exponential in the dimension m

of the algebra.
Instead, to verify the third condition in Thm. 3 we devise a much more efficient algorithm.

Our algorithm relies on the following statement which is a corollary to Thms. 2 and 3.

Corollary 4. (Lyakhov (2017)) The third condition is equivalent to

3’. n ≥ 3, m ∈ {n + 1, n + 2} and the derived algebra of (13) is abelian of dimension n.

Proof. Under the third condition, since L′ ⊂ L, Eq. (3) is linearizable by Thm. 1. Let Eq. (3)
be linearizable. The symmetry Lie algebra of (5) is similar and hence isomorphic to that of (3)
(cf. Ovsyannikov (1992), Ch. 2, §7.9). It is easy to see that a linear n-th order equation (5) with
variable coefficients admits the Lie point symmetry group

{ t̄ = t, ū = u + ci · vi(t) (i = 1, .., n), ū = cn+1 · u }, (14)

where ci, cn+1 are constants (the group parameters) and vi(t) are the fundamental solutions of (5).
The Lie group (14) has the (n + 1)-dimensional Lie algebra (cf. Schwarz (2008), Thm. 5.19)

Ln+1 := { Xi := vi(t) ∂u (i = 1, .., n), Xn+1 := u ∂u } . (15)

If a linear n-th order Eq. (5) has constant coefficients, then in addition to (15) the Lie point
symmetry group (14) includes the translation t̄ = t + cn+2 and, hence, its Lie algebra, in addition
to (15), has one more element:

Ln+2 := Ln+1 ∪ {Xn+2 := ∂t} . (16)

Furthermore, [Xn+1,Xn+2] = 0, and for all i ∈ {1, . . . , n}:

[Xi,Xn+1] = Xi, [Xi,Xn+2] = −v′i(t)∂u =

n∑
j=1

α jX j,

where α j are constants. Therefore, both Lie algebras (15) and (16) have abelian derived algebras
of dimension n.

It is important to emphasize that m can be algorithmically computed without solving the the
determining system what is generally impossible. To do such computation it is necessary first to
complete the last system to involution (for the theory of completion to involution we refer to the
paper of Seiler (2010)). Then one can apply Algorithm 3 by Lisle (2017) or use the algorithmic
ideas of Reid (1991a,b) based on construction of power series solutions to determining system.
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We exploit both these approaches in our implementation (Sect. 4) of the algorithm Lineariza-
tionTest I described in Sect. 3.1. In doing so, in our implementation of the first approach we use
the Maple library LAVF (see Sect. 4, Item 1). To implement the second approach (see Sect. 4,
Item 2) we use the differential Thomas decomposition (Bachler (2012); Robertz (2014)) for a
degree-reverse lexicographical ranking to complete the determining system to involution and
then we compute the differential dimension polynomial (Lange-Hegermann (2014)) for the out-
put Janet basis.

The differential Thomas decomposition was suggested in the papers of Thomas (1937, 1962)
as a generalization of the Riquier-Janet theory of passive linear and orthonomic PDE systems
(see also Seiler (2010) and the references therein) to polynomially-nonlinear systems of gen-
eral form. The Thomas decomposition provides a universal algorithmic tool (Bachler (2012);
Robertz (2014)) to study a differential system, which is defined as follows.

Definition 5. (Bachler (2012); Gerdt (2008); Li (1999); Robertz (2014); Thomas (1937,

1962); Wang (2001)) A differential system is a system S := {S =, S �=} of differential equations

and (possibly) inequations of the form

S = := {g1 = 0, . . . , gs = 0}, S �= := {h1 �= 0, . . . , ht �= 0},
where s is a positive integer as well as t if S �= �= ∅, and gi, h j are elements in the differential

polynomial ring in finitely many differential indeterminates (dependent variables) over the dif-

ferential field of characteristics zero.

The Thomas decomposition applied to a differential system S yields a finite set of passive (in-
volutive) and differentially triangular differential systems called simple (see Bachler (2012);
Gerdt (2008); Li (1999); Robertz (2014); Thomas (1937, 1962); Wang (2001)) that partition
the solution set of the input differential system. Algebraically, this provides a characterizable
decomposition (Hubert (2003)) of the radical differential ideal

√I where I is the differential
ideal generated by the polynomials in S =.

Unlike the LinearizationTest I where one can use, due to the linearity of determining sys-
tems, any procedure of completion to involution (e.g. the standard form algorithm of Reid
(1991a)), our second algorithm LinearizationTest II (Sect. 3.2) is oriented to the Thomas de-
composition.
To apply it, we need to formulate the conditions for the functions φ(x, y), ψ(x, y) in (4) and for
the coefficients ak(t) in (7) (if n ≥ 3) such that these conditions hold if and only if (3) is lineariz-
able. In addition to the input differential system, the Thomas decomposition is determined by a
ranking, that is, a linear ordering on the partial derivatives compatible with derivations (Bachler
(2012); Gerdt (2008); Li (1999); Robertz (2014); Thomas (1937, 1962); Wang (2001)) (in our
case with ∂x and ∂y).

By differentiating the equality u(ψ(x, y(x))) = φ(x, y(x)), that follows from (4), n times with
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respect to x, we obtain the following equations:

u′(t) =
φx + φyy′

ψx + ψyy′
,

u′′(t) =
J

(ψx + ψyy′)3 y′′ +
P2(y′)

(ψx + ψyy′)3 , (17)

...

u(n)(t) =
J

(ψx + ψyy′)n+1 y(n) +
Pn(y′, . . . , y(n−1))
(ψx + ψyy′)2n−1 .

Here J is the Jacobian (6), Pk (k = (2, . . . , n)) are polynomials in their arguments whose coeffi-
cients are differential polynomials in φ and ψ, for example,

P2(y′) = (ψx + ψyy′)
(
φxx + φxyy′ + φyy(y′)2

)
− (φx + φyy′)

(
ψxx + ψxyy′ + ψyy(y′)2

)
.

Now we replace the derivatives u(k) occurring in (7) (or the second-order derivative in (8) if n = 2)
with the appropriate right-hand sides in Eqs. (17) and solve the obtained equality with respect to
y(n) (or y′′). As a result, we obtain the equality

y(n) +
R(y′, . . . , y(n−1))

J · (ψx + ψyy′)n−2 = 0 , (18)

where R is a polynomial in y′, . . . , y(n−1) whose coefficients for n ≥ 3 are the differential polyno-
mials not only in φ and ψ but also in ak(t) = ak(ψ(x, y(x))), the coefficients in Eq. (7).

Denote by M and N the numerator and denominator of the function f in Eq. (3). Then, after
elimination of y(n) from the equation system (3), (18) and clearing denominators in the rational
functions of the obtained equality we obtain equation

R · N − J · M · (ψx + ψyy′)n−2 = 0 . (19)

This equation is a polynomial in y′, y′′, . . . , y(n−1), and there are no constraints on these vari-
ables. Therefore, the equation holds if and only if all coefficients of the polynomial in the left-
hand side vanish. This condition gives a partial differential equation system in φ, ψ and ak. If
the function f in Eq. (3) depends on parameters and/or undetermined functions in (x, y), then
Eq. (19) contains these parameters/functions.6

Let S = be the set of equations obtained from Eq. (19) by equating the coefficients of the
polynomial (in y′, . . . , y(n−1)) in the left-hand side to zero. If n ≥ 3 we enlarge S = with the set of
equations

S = = S = ∪n−3
k=0 {ψy(ak)x − ψx(ak)y = 0}. (20)

The equation ψy(ak)x −ψx(ak)y = 0 means that ak is a function of t in accordance to (7). It is easy
to see by differentiating the equality ak(t) = ak(ψ(x, y)) as follows:

(ak)x = (ak)tψx, (ak)y = (ak)tψy, ⇐⇒ ψy(ak)x − ψx(ak)y = 0 .

6One can always consider parameters as functions in x and y with zero derivatives.
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Since we admit the invertible transformations (4) only, one has to add to the enlarged equation
set S = the inequation

S �= := {J �= 0} (21)

where J is the Jacobian (6).
Thereby, the main object of our construction and the statements on its relation to the lin-

earization are given as follows.

Definition 6. The differential system (see Def. 5) made up of the above constructed PDE set S =

and of the inequation set S �= = {J �= 0} will be called linearizing differential system.

The linearization of the differential system follows a direct procedure of transformation to a
linear equation (if J �= 0). It is clear that its consistency implies the linearizability criterion.

Theorem 7. Eq. (3) is linearizable via a point transformation (4) if and only if the linearizing

differential system is consistent, i.e. has a solution.

Corollary 8. Eq. (3) is nonlinearizable via a point transformations (4) if and only if the result of

the Thomas decomposition algorithm (Bachler (2012), Alg. 2.25; Robertz (2014), Alg. 2.2.56)

applied to the linearizing differential system is the empty set.

Proof. Bachler (2012), Remark 2.3 and Robertz (2014), Remark 2.2.58.

3. Linearization Tests

In this section we present our algorithms LinearizationTest I and LinearizationTest II.
These algorithms, given an input equation (3), verify its linearizability by the point transforma-
tion (4). In so doing, the first test is applicable only to an ODE without parameters and undeter-
mined functions in the variables x and y. The second algorithm admits a rational dependence of
the function f in Eq. (3) on such parameters and functions.

3.1. Linearization Test I

Our first test, presented below, is based on the computation of the Lie symmetry algebra
and its analysis. In line 2 we compute the determining system for (3). It is the straightforward
procedure outlined in the preceding section and described in most textbooks on Lie symmetry
analysis, in particular in (Bluman (2001); Ibragimov (2009); Olver (1993, 1995); Ovsyannikov
(1992); Schwarz (2008)). As a routine, this procedure is present in most computer algebra
packages specialized to such an analysis, for example, in the Maple packages DESOLV (Carminati
(2000)), DESOLVII (Vu (2012)), and SADE (Filho (2011)).
Since the determining system is linear, one can use any algorithm for its completion to involution
in line 3, (cf. Reid (1991a); Seiler (2010), Sect. 10.7). However, we prefer to use the differential
Thomas algorithm here (Bachler (2012), Sect. 3; Robertz (2014) Sect. 2.2).

The dimension m of the Lie algebra (13) (line 4) is the dimension of the solution space of the
determining system and can be computed in several ways (cf. Seiler (2010), Sect. 8.2 and 9.3).
Having computed the Janet involutive form of the determining system, it is easy to compute the
dimension of its solution via an algorithmic construction of the differential dimension polynomial

(Lange-Hegermann (2014)).
We refer to the papers (Lisle (2017); Reid (1991b)) for the subalgorithm providing computa-

tion of the Lie symmetry algebra (line 8), i.e. for the computation of the structure constants Ck
i, j in

10



Algorithm 1 LinearizationTest I (q)
Input: q, a nonlinear differential equation of form (3)
Output: True, if q is linearizable and False, otherwise

1: n := order(q);
2: DS := DeterminingSystem (q);
3: IDS := InvolutiveDeterminingSystem (DS );
4: m := dim(LieSymmetryAlgebra) (IDS );
5: if n = 1 ∨ (n = 2 ∧ m = 8) ∨ (n > 2 ∧ m = n + 4) then
6: return True;
7: else if n > 2 ∧ (m = n + 1 ∨ m = n + 2) then
8: L := LieSymmetryAlgebra (IDS );
9: DA := DerivedAlgebra (L);

10: if DA is abelian and dim(DA) = n then
11: return True;
12: end if
13: end if
14: return False;

Algorithm 2 LinearizationTest II (q, P,H)
Input: q, a nonlinear differential equation of form (3) of order ≥ 2; P, a set of parameters; H, a
set of undetermined functions in (x, y)
Output: set G of differential systems for functions φ and ψ in (4) and (possibly) in elements of
P and H if (3) is linearizable, and the empty set, otherwise

1: n := order(q);
2: G := ∅;
3: M := numerator( f ); N := denominator( f );
4: J := φxψy − φyψx; {Jacobian (6)}
5: if n = 2 then
6: r := u′′(t) = 0; {ODE (8)}
7: A := ∅;
8: else
9: r := u(n)(t) +

∑n−3
k=0 ak(t)u(k)(t) = 0; {ODE (7)}

10: A := {a0, . . . , an−3};
11: end if

12: r
by (4)−−−−→ y(n) +

R(y′,...,y(n−1))
J·(ψx+ψyy′)(n−2) = 0; {Eq. (18)}

13: T := R · N − M · J · (ψx + ψyy′)(n−2) = 0; {Eq. (19)}
14: S = := {c = 0 | c ∈ coeffs (T, {y′, . . . , y(n−1)})};
15: S = := S = ∪p∈P {px = 0, py = 0};
16: S = := S = ∪a∈A {axψy − ayψx = 0}; {Eq. (20)}
17: S �= := {J �= 0}; {Ineq. (21)}
18: G := ThomasDecomposition (S =, S �=);
19: return G;

11



Eq. (13). The last subalgorithm DerivedAlgebra in line 9 does the straightforward computation
of the derived algebra via the structure constants.

Correctness and termination. For the subalgorithms both these properties are either obvi-
ous (as for DerivedAlgebra) or shown in the papers we referred to in the description of the
subalgorithms above. Therefore, the whole algorithm LinearizationTest I terminates, and its
correctness is provided by Thms. 2 and 3, and Cor. 4.

3.2. Linearization Test II

Our second test is based on the differential Thomas decomposition (Bachler (2012); Robertz
(2014)). It admits the rational dependence of Eq. (3) on a finite set of parameters (constants)
and/or undetermined functions in (x, y). In the absence of parameters/functions the corresponding
sets are inputted as the empty ones.

In lines 3–17 of the algorithm LinearizationTest II the input linearizing differential system
(Def. 6) is constructed for the Thomas decomposition computed in line 18. This construction is
done in correspondence with the formulas (6)–(7), (8), and (18)–(21).

Furthermore, if the output set of the Thomas decomposition is nonempty, then Eq. (3) is
linearizable by Thm. 7. In this case the simple systems in the decomposition provide a parti-
tion of the solution space of the linearizing differential system and their solutions determine the
invertible point transformation (4) and the coefficients ak(t) of the linearized form (7) or (8).
In addition, if there are parameters and/or undetermined functions in (3), then the output dif-
ferential systems of the Thomas decomposition provide the compatibility conditions to these
parameters/functions imposed by the linearization.

Correctness and termination are provided by those of the Thomas decomposition (Bachler
(2012), Sect. 3.4; Robertz (2014), Thr. 2.2.57).

4. Implementation

We implemented both linearization tests in Maple and our implementation runs on version
16 and the current 2017 version.

First, we describe three different implementations of the algorithm LinearizationTest I.

1. For the generation of the determining system DS (line 2) we use the routine Determining-

PDE of the package PDETools built-in Maple. By doing so, the output system is reduced
taking into account its integrability conditions. Hence, we can skip the completion of the
determining system to involution (line 3). Furthermore, to determine the Lie symmetry
algebra for the input ODE we use the Maple library LAVF implementing algorithms de-
scribed by Lisle (2017). These algorithms improve those in (Reid (1991a,b)). The library
LAVF is freely downloadable from the web page indicated in the footnote of page 497 of
Lisle (2017) and consists of three packages: VactorFields, LinearHomogeneousPDE

and LieAlgebrasOfVectorFields. Computation of the Lie symmetry algebra is done
by invoking the command LieAlgebrasOfVectorFields:-LAVF. In order to construct
the derived algebra (line 9) we invoke the routine DerivedAlgebra which is a part of the
built-in package DifferentialGeometry:-LieAlgebras. To check whether the com-
puted Lie algebra is abelian we used the built-in Maple routine IsAbelian included in the
package GroupTheory.

12



2. To generate the determining system in line 2, we use the routine gendef of the Maple
package DESOLV (Carminati (2000); Vu (2012)). Then, to complete the system DS to
involution (line 3), we choose the orderly (“DegRevLex”) ranking (cf. Robertz (2014),
Def. A.3.2) such that

∂x � ∂y , ξ � η ,
and apply the routine DifferentialThomasDecomposition of the Maple package Differ-

entialThomas. This package DifferentialThomas (2012) is freely available. To compute
the dimension of the Lie symmetry algebra (line 4), we invoke the routine DifferentialSys-

temDimensionPolynomial. Since in our case the solution space of the determining system
is finitely dimensional, the last routine outputs just the dimension of the solution space. We
implemented the subalgorithm LieSymmetryAlgebra computing the structure constants
of the Lie symmetry by using the algorithmic approach developed in (Reid (1991a,b)).
Our implementation takes the Janet involutive form of the determining system outputted
by the package DifferentialThomas and exploits its routine PowerSeriesSolution.

3. This implementation differs from the previous one by the replacement of the subalgorithm
DerivedAlgebra (in line 9) with the Maple implementation of Ceballos (2012) for the
detection of a n-dimensional abelian subalgebra of the Lie symmetry algebra (line 8). By
Thm. 2, the existence of such a subalgebra yields the criterion of linearization.

The rows in the table marked with I show the timings measured with three different imple-
mentations of LinearizationTest I . In the row marked with I1 we show the computation times
based on the use of the Maple package LAVF by Lisle (2017) for the computation of the Lie
symmetry algebra.

In our implementation of LinearizationTest II we compute the expressions (17) to obtain
the left-hand side in (19) (line 13) that is a polynomial in y′, y′′, . . . , y(n). Then equating of all
coefficients in the polynomial to zero (line 14) and enlarging it with additional equations (lines 15
and 16) and the Jacobian inequation (line 17) yields the input linearizing differential system for
the subroutine DifferentialThomasDecomposition (line 18). By default, we choose the orderly
ranking on the partial derivatives of the functions φ and ψ, and of those in the sets A (line 10):

∂x � ∂y , ξ � η � a0 � · · · � an−2 .

If the input ODE (3) contains (nonempty) sets of parameters and/or undetermined functions,
then their rankings are less than those of an−2 in order to derive the compatibility conditions for
parameters and functions.

The comparative efficiency of the first algorithm could also be understood by means of com-
plexity theory. The first algorithm in comparison to the second one is dealing with a fixed number
of dependent and independent variables. It is well known that the complexity of completion al-
gorithms in differential algebra grows drastically as the number of variables increases (Grigoriev
(2009); Gustavson (2018)).

5. Examples

In this section we demonstrate our algorithmic linearization tests using several examples. All
timings given below were obtained with Maple 20187 running on a desktop computer with an
Intel(R)Xeon(R) CPU E5-2687W v4 CPU clocked at 3.00 GHz and 128 GB RAM.

7Since its 2018 version, the Differential Thomas tool is available as a built-in package of the standard Maple distri-
bution (Gerdt (2019)).
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Example 9. (Lie (1883)) Consider the second-order Eq. (1) in which f is given by (2) with

undetermined functions Fk, 0 ≤ k ≤ 3. Algorithm LinearizationTest I is not applicable to this

case, so we apply the algorithm LinearizationTest II with block elimination ranking such that

∂x � ∂y , φ � ψ �� F3 � F2 � F1 � F0 .

Then the routine DifferentialThomasDecomposition of the package DifferentialThomas (2012)

outputs three differential systems with disjoint solutions space in about 0.3 sec.:

S 1 := {S =1 , S �=1 } , S 2 := {S =2 , S �=2 } , S 3 := {S =3 , S �=3 } .
Cor. 8 guarantees that there are linearizable equations among the equations in family (1)–(2).
One of the output differential systems, namely S 1, is a generic simple system (see Robertz

(2014), Def. 2.2.67). It has eight equations, and the last two of them that contain solely func-

tions F0, F1, F2, F3 are the compatibility conditions for these functions whose solutions admit

linearization. These conditions have the following form:

3(F3)xx − 2(F2)xy + (F1)yy − 3F1(F3)x + 2F2(F2)x

−3F3(F1)x + 3F0(F3)y + 6F3(F0)y − F2(F1)y = 0 , (22)
(F2)xx − 2(F1)xy + 3(F0)yy − 6F0(F3)x + F1(F2)x

−3F3(F0)x + 3F0(F2)y + 3F2(F0)y − 2F1(F1)y = 0 .

These equations are exactly the linearizability conditions for (1)–(2) obtained by Lie (1883)

(also see cf. Ibragimov (2009), Thm. 6.5.2). The inequations in the S 1 system are

S �=1 = {J �= 0, ψx �= 0, ψy �= 0} .
The two other differential systems S 2 and S 3 have the following inequations:

S �=2 = {φx �= 0, ψy �= 0} , S �=3 = {φy �= 0, ψx �= 0} . (23)

Each of these systems has eight equations as S 1. Every equation in S 2 as well as in S 3 is valid

on all common solutions to the equations in S 1 (cf. Robertz (2014), Cor. 2.2.66). In doing so,

ψx = 0 ∈ S =2 , ψy = 0 ∈ S =3 , (24)

and hence each of (23) and (24) implies J �= 0. Therefore, algorithm LinearizationTest II
reproduces Lie’s classical results on the necessary and sufficient conditions for the linearization

of the second-order ODEs from family (1)–(2).

Example 10. (Euler (2003), Eq. 2.50) The third order ODE

y′′′ − 6
y′

x2 + 3
(y′)2

x
− 1

2
(y′)3 = 0 . (25)

is linearizable by the generalized Sundman transformation (a kind of a nonlocal transformation,

which is not a point one, in general). Here we check its linearizability via the point transforma-

tion (4). Eq. (25) admits both our tests since it does not contain parameters and/or undetermined

functions. Our implementation of algorithm LinearizationTest I returns false in 0.05 sec. and

that of LinearizationTest II returns the empty set in 0.3 sec.
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Example 11. We consider the fourth-order ODE

2x2y y′′′′ + x2y2 + h(x, y) y′y′′′ + 16x y y′′′ + 6x2(y′′)2 + 48x y′y′′ + 24y y′′ + 24(y′)2 = 0 , (26)

where h(x, y) is an undetermined function. To find all values of this function providing lineariza-

tion, we again apply algorithm LinearizationTest II. The package DifferentialThomas for

the orderly ranking satisfying

∂x � ∂y , φ � ψ � a � b � h

outputs in 3.1 sec. two differential systems S 1 and S 2 (see (28) and (30)). Each system has only

one equation containing h(x, y):
h(x, y) − 8x2 = 0 . (27)

The linearizability of (26) under condition (27) was established in paper of Ibragimov (2008),

and our computation shows that there are no other linearizable equations of family (26). More-

over, the simple systems S 1 and S 2 allow for the explicit construction of the linearizing point

transformation (4) and the coefficients a0(t) and a1(t) in the Laguerre-Forsyth form (7) of the

image of (26) under mapping (4):

u(4)(t) + a(t) u(t) + b(t)u′(t) = 0 .

To show this, consider first the equations in S =1 :

y φy − 2 φ − 2 φxxxx = 0, φxxxy = 0, x2φxxy − 2 φy = 0, x φxy − 2φy = 0,

yφyy − φy = 0, aψ4
x − 1 = 0, ψy = 0, ax = 0, ay = 0, b = 0, h − 8 x2 = 0 ,

(28)

and its inequations

S �=1 = {a �= 0, φy �= 0}. (29)

The equation system (28) can easily be integrated by hand or using the Maple routine pdsolve.

The general solution to (28), in addition to (27), reads

φ1 :=c1x2y2

+ sin
(

x√
2

) (
c2 exp

(
− x√

2

)
+ c3 exp

(
x√
2

))
+ cos

(
x√
2

) (
c4 exp

(
− x√

2

)
+ c5 exp

(
x√
2

))
,

ψ1 :=
x

c1/4
6

+ c7 , a1 := c6 , b1 := 0 ,

where ck (k ∈ {1, . . . , 7}) are arbitrary constants and the subscript 1 represents the obtained

solution to the differential system S 1. Ineq. (29) implies c1 �= 0 and c6 �= 0.

The second differential system S 2 is generic, and its set of equations is given by

32 y aφy − 64 a3(φ + φxxxx) − 96 a2axφxxx − 36 a a2
xφxx − 3 a3

xφx = 0 ,
128 x2a3φxxxy + 15 x2a3

xψy − 144 x a a2
xφy + 288 a2axφy = 0 ,

16 x2a2φxxy − 3 x2a2
xφy + 24 x a axφy − 32 a2φy = 0, (30)

x a φxy + 3 x axφy − 16 aφy = 0, yφyy − φy = 0, aψ4
x − 1 = 0, ψy = 0 ,

8 a axx − 7 a2
x = 0, ay = 0 , b = 0, h − 8 x2 = 0 .
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The set of inequations in S 2 consists of three elements:

S �=2 = {a �= 0, φy �= 0, ax �= 0}. (31)

The system (30) of differential equations is also easily solvable. Its general solution reads

φ2 := φ1
(c6 x+c7)3 , ψ2 := c8 − 1

c6(c6 x+c7) ,

a2 := (c6x + c7)8 , b2 := 0 , h := 8 x2 ,
(32)

where φ1 is the above presented solution to (28) with arbitrary constants ci (1 ≤ i ≤ 8).
The constraints that follow from (31) are those in S 1, c1 �= 0, c6 �= 0, and the additional

inequation c6x + c7 �= 0 rules out singularity in (32).
The obtained explicit solutions to S 1 and S 2 form disjoined sets, since ax = 0 for a solution

to S 1 and ax �= 0 for that to S 2. The disjointness of solution sets for the output simple systems is

guaranteed by the Thomas decomposition algorithm (Bachler (2012); Gerdt (2008); Li (1999);

Robertz (2014); Thomas (1937, 1962)). In the given case a solution to S 1 provides a mapping

of (26) into the linear ODE

u(4)(t) + c6u(t) = 0

with constant coefficients, whereas a solution to S 2 maps (26) into an equation with variable

coefficients

u(4)(t) + (c6x + c7)8u(t) = 0 .

In (Ibragimov (2008)), the simplest form of the linearizing transformation (4) was found:

t = x , u = x2y2 ,

which maps (26) and (27) into u(4)+u = 0 and corresponds to the solution of S 1 with c1 = c6 = 1
and c2 = c3 = c4 = c5 = c7 = 0.

Example 12. (Tremblay-Turbiner-Winternitz system) These equations come from the theory of

superintegrable Hamiltonian systems, which recently have found the application in quantum

mechanics as new exactly solvable models. As it is shown in (Gubbiotti (2017)), the Tremblay-

Turbiner-Winternitz system can be described by two third-order equations (Gubbiotti (2017),

Eq. (89),(90)), in which the first one is given by

y(x) y′′′(x) + y′(x)
(
16ω2 y(x) + 3 y′′(x)

)
= 0 , ω ∈ R>0 , (33)

and can be reduced to

u′′′(t) = −16ω2u′(t) (34)

using the transformation

u =
y2

2
, t = x . (35)

This reduction yields the general solution of (33) respectively (Gubbiotti (2017), Eq. (89))

y(x) =
√

a1 + a2 cos (4ω x) + a3 sin (4ω x) , (36)

where a1, a2, a3 are arbitrary constants. Eq. (36) can be substituted into (Gubbiotti (2017),

Eq. (90)) which is also linearizable and can be solved similarly. In this regard, we omit the
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details here for brevity and refer to Gubbiotti (2017). In the following, we are sketching the

procedure how to treat Eq. (33) using our approach.

If one applies the algorithm LinearizationTest I to Eq. (33) when ω = 1, then in about

0.2 sec. it outputs True. It should be noted that Eq. (34) is not in the Laguerre-Forsyth form (7).
Thus, the algorithm LinearizationTest II constructs a point transformation (4) distinct from (35)
and, respectively, another linear form

u′′′(t) + a0(t) u(t) = 0 (37)

of (33) by solving the simple differential system computed in line 18 of the algorithm.

The output simple system is computed in about 0.4 sec. Its equations and inequations read

16ω2 φ2
y φx − 2 φ2

y φxxx + 6 φy φxy φxx − 3 φx φ
2
xy = 0 , (38a)

16ω2 φ2
y − 2 φy φxxy + 3 φ2

xy = 0 , φy ψxx − φxy ψy = 0 , (38b)

y φyy − φy = 0 , φy �= 0 , (38c)
ψy = 0, ψx �= 0 , a0 = 0 . (38d)

The general solution to (38c) and (38d) is given by

φ(x, y) := F1(x) + F2(x) y2, ψ(x, y) := F3(x) (39)

where Fi(x) (i = 1, 2, 3) are arbitrary functions such that F2(x) and F3(x) do not vanish iden-

tically. The substitution of Eqs. (39) with F1(x) = 0 into Eqs. (38a)–(38b) reduces them to

ordinary differential equations whose general solution is readily found with the built-in Maple

solver dsolve and gives the following structure of (39)

φ(x, y) :=
16ω2 y2

[c1 sin (2ω x) − c2 cos (2ω x)]2 , ψ(x, y) := c3 +
c4

c1 tan (2ω x) + c2
. (40)

with arbitrary constants c1, c2, c3, c4. The setting c1 := 4, c2 := 0, c3 := 0, c4 := 4 gives the

following linearizing transformation determined by a particular solution to the system (38)

u :=
ω2 y2

sin2(2ω x)
, t :=

1
tan (2ω x)

. (41)

Since a0 = 0 in (38d), Eq. (37) reads u′′′(t) = 0, and its general solution is given by

u(t) = A2 t2 + A1 t + A0 , A0, A1, A2 are constants .

By Eqs. (41), in terms of the initial variables this solution is given by

y(x) =
1
ω

√
A2 cos2(2ω x) + A1 cos (2ω x) sin (2ω x) + A0 sin2(2ω x)

and coincides with (36) if one sets

a1 :=
A0 + A1

2ω2 , a2 :=
A1

2ω2 , a3 :=
A0 − A1

2ω2 .
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Example 13. As a serial example for benchmarking, we consider

(y2)(n) + y2 = 0 , n ∈ N≥3 . (42)

Obviously, Eq. (42) becomes u(n) + u = 0 via transformation (4) of the form t = x and u = y2.

We use this example as a benchmark for a comparative experimental analysis of the time behavior

of our algorithms when the order of the ODE grows. In so doing, we measure the CPU time for

the three different implementations of algorithm LinearizationTest I (see Sect. 4).

Table 1 presents the CPU times, and we use the subscript in the first column to mark im-

plementation of the first algorithm described in the corresponding enumerated items of Sect. 4.

“OOM” is an acronym for runs “Out Of Memory”. As one can see, our first linearization test

(I) is substantially faster than the second test (II), and the implementation marked with subscript

1 is the fastest. However, algorithm LinearizationTest II, being the slowest, outputs much more

information on the linearization. This fact was illustrated by Examples 9, 11 and 12.

Table 1: CPU times (sec.)

Test Order n of the ODE (42)
3 4 5 6 7 8 9 10 11 12 13

I1 0.3 0.4 0.4 0.5 0.6 0.8 1.1 1.4 1.8 2.3 3.0
I2 0.0 0.5 1.1 2.0 3.9 5.8 9.5 20.2 35.7 50.3 71.2
I3 0.2 0.7 1.3 2.7 4.9 8.9 14.3 39.4 70.7 120.2 234.3
II 0.5 1.8 9.4 30.1 209.9 789.8 2011 8200 25217 OOM OOM

Example 14. As another serial example for benchmarking, we consider three ODEs of fifth

order:

(I) : (Y)(5) + Y = 0 , (II) : (Y)(5) + xY = 0 , (III) : (Y)(5) + Y2 = 0 , (43)

where Y = Pn(y) is an arbitrary dense polynomial of n-th order, generated by the Maple com-

mand randpoly. Table 2 presents the CPU times for the algorithm LinearizationTest I .

Table 2: CPU times (sec.)

Test Order n of the polynomial Pn(y) in (43)
1 10 20 30 40 50 60 70 80 90 100

I 0.4 8.0 22.1 37.3 63.4 89.6 119.5 162.1 217.7 261.6 317.8
II 0.5 7.8 21.6 36.3 64.5 90.4 124.2 163.1 215.8 262.8 325.8
III 0.14 7.9 23.5 37.1 67.1 94.4 126.9 170.3 231.6 274.2 351.1

Example 15. (Ibragimov (2005)) The general problem of third-order linearizable equations is a

bit more complicated. It contains two differential algebraic forms of candidates for linearization.

The first form corresponds to the particular case gy = 0. It is described by

y′′′ = (A1y′ + A0)y′′ + B3(y′)3 + B2(y′)2 + B1y′ + B0 .

We apply the algorithm LinearizationTest II with block elimination ranking such that

∂x � ∂y , φ � ψ �� A1 � A0 � B3 � B2 � B1 � B0 .
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Then the routine DifferentialThomasDecomposition of the package DifferentialThomas (2012)

outputs three differential systems with disjoint solutions space in about 4.3 sec.

The first system is generic one and contains compatibility conditions which conicides exactly

with paper of Ibragimov (2005):

∂A0

∂y
− ∂A1

∂x
= 0,

∂

∂y

(
3B1 − A2

0 − 3
∂A0

∂x

)
= 0,

3
∂A1

∂x
+ A0A1 − 3B2 = 0, 3

∂A1

∂y
+ A2

1 − 9B3 = 0,

(
9B1 − 6

∂A0

∂x
− 2A2

0

)
∂A1

∂x
+ 9
∂

∂y

(
∂B1

∂x
− A1B0

)
+ 3
∂B1

∂y
A0 − 27

∂2B0

∂y2 = 0.

For the general case

y′′′ =
−3(y′′)2 + (C2(y′)2 +C1y′ +C0)y′′ + D5(y′)5 + D4(y′)4 + D3(y′)3 + D2(y′)2 + D1y′ + D0

y′ + r
,

the differential Thomas decomposition with block elimination ranking

∂x � ∂y , φ � ψ �� C2 � C1 � C0 � D5 � D4 � D3 � D2 � D1 � D0 .

yields four differential system8

S 1 = S̃ 1 ∪ {M = 0, r �= 0}, S 2 = S̃ 2 ∪ {M �= 0, r = 0} ,
S 3 = S̃ 3 ∪ {M �= 0, r �= 0}, S 4 = S̃ 4 ∪ {M = 0, r = 0} ,

where

M = 36D3
∂r

∂x
+ 3C0D3 + 36

∂C2

∂x

∂r

∂x
+ 3C0

∂C2

∂x
− 18
∂D5

∂y
r4 − 72

∂D5

∂x
r3

+18
∂D4

∂y
r3 − 5C3

2r3 + 72
∂D4

∂x
r2 − 18

∂D3

∂y
r2 − 18

∂D3

∂x
r − 18

∂2C2

∂x2 r

+12C1C2
∂r

∂x
+C0C1C2 − 5C0C2

2r + 63C2D5r4 − 39C1D5r3 − 48C2D4r3

−90D5r2 ∂r

∂x
+ 15C0D5r2 + 10C1C2

2r2 + 15C2
∂C2

∂x
r2 + 24C1D4r2

+33C2D3r2 − 12
∂C1

∂x
C2r − 5C2

1C2r − 18C2D2r − 9C1D3r − 15C1
∂C2

∂x
r .

The above output of the differential Thomas decomposition differs from the system (2.33)–(2.40)

given in (Ibragimov (2005), Thm.2.2). It contains eight equations and no inequations in the

differential system. Let denote it by T . To prove that we obtained an equal result, we split the

system T into four disjoint systems

T1 = T ∪ {M = 0, r �= 0}, T2 = T ∪ {M �= 0, r = 0},
T3 = T ∪ {M �= 0, r �= 0}, T4 = T ∪ {M = 0, r = 0},

Application of the Thomas Decomposition to each system Ti yields the involutive differential

system which coincides exactly with S i.

8We do not explicitly write out the resulting equations here for brevity.
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6. Conclusions

For the first time, the problem of the linearization test was algorithmically solved for a wide
class of ordinary differential equation of arbitrary order. In doing so, we have restricted ourselves
to the quasi-linear equations with a rational dependence on the other variables and to point trans-
formations, and designed two algorithmic tests in order to check linearizability.

The main benefits of these restrictions are (i) the algorithmic construction of the Lie sym-
metry algebra for the input equation and (ii) the reduction of the number of coefficients in the
linearized equation due to the Laguerre-Forsyth canonical form (7). The benefit (i) allowed
us to design an efficient algorithm LinearizationTest I which checks the linearizability of the
equations. The second benefit (ii) provides the feasibility of the algorithm LinearizationTest II
because of the overdeterminacy (cf. Seiler (2010), Sect. 7.5) of a linearizing differential system.
This overdeterminacy simplifies the consistency analysis of the linearizing system answering the
same question as the first test.

Moreover, due to finite-dimensionality of the solution space (cf. Olver (1995), Prop. 6.57)
of a linearizing system, the Thomas decomposition algorithm outputs overdetermined subsys-
tems, as those in Examples 11 and 12. In practice, the overdeterminacy of the outputted simple
systems of the Thomas decomposition of a linearizing differential system makes them easily
solvable, much like the determining systems in the Lie symmetry analysis. Thereby, with the al-
gorithm LinearizationTest II one can not only detect linearizability, but also find the linearizing
transformation (4) and the coefficients in the linear form of the equation.

The Thomas decomposition for linearizing differential systems, even in the case of its incon-
sistency, may be time and space consuming, especially for higher-order ODEs. That is why, in
practice, it is advisable to check the linearizability of the equation under consideration by the
first algorithm before applying the second one. In the case when Eq. (3) contains parameters
and/or arbitrary functions, there is no choice and one has to use the second algorithm. The first
algorithm could also improve work of the second one. Depending on the Lie Algebra of the
differential equations under consideration, we can immediately conclude which type of linear
equation (trivial, constant coefficients, or the general case) it could be mapped into. It allows to
add constraints on coefficients ak directly for linearizing differential systems in a way to increase
computational efficiency of the Thomas decomposition.

Algorithm LinearizationTest II may also improve the built-in Maple solver dsolve of differ-
ential equations. For example, dsolve applied to the equation

y′′′ +
3y′

y
(y′′ − y′) − 3y′′ + 2y′ − y = 0 (44)

outputs its solution implicitly in the complicated form of double integrals including Maple’s
symbolic presentation RootOf for the roots of expressions. On the other hand, Eq. (44) admits
the linearization (cf. Ibragimov (2009), Eqs. (6.6.57)–(6.6.59))

u′′′ − 2
t3 u = 0 , t = exp(x) , u = y2 ,

which is easily obtained by our algorithm LinearizationTest II and provides the explicit form
of the solution to (44).

Similarly, if one applies dsolve to Eq. 33, then it outputs definite integrals with y(x) in the
upper limit and with integrands containing RootOf of cumbersome combinations of algebraic
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and transcendental expressions including three arbitrary constants. It is hardly possible to obtain
Eq. 36 from such an output.

Our algorithms admit a generalization to contact and higher symmetries for scalar ordinary
differential equations as these cases are also well studied in symmetry analysis. It would be
interesting to have a similar theory for second-order ordinary differential systems, which are of
high interest in natural sciences and engineering. The main problem here is to obtain an analogue
of Thm. 3 and Cor. 4. Some particular results were recently obtained for the case of two second-
order ordinary differential equations (Ayub (2012); Bagderina (2010); Soh (2001); Sookmee
(2011)), but algorithmic and computational aspects of this problem are still open questions.
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