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of Fig. 1(a) is particularly suitable for the study of the ef-
fects of friction. The laws of viscous friction can be easily
verified by attaching a small sphere (up to 0.5 in. in diam-
eter) to the end of the needle P and/or by changing the mass
of the pendulum and/or by adding glycerine to water.
However, care must be taken to keep the speed of the needle
always slower than a few inches per second. On the con-
trary, forces that are almost proportional to the square of
the speed become important, the decay of the amplitude is
no longer exponential, and higher mathematics is required
to interpret the results.2 The disposition of Fig. 1(b) has
been used to introduce the concept of normal modes.? By
coupling the rigid pendulums M,, ..., M, with light
springs, one can show that appropriate combinations of the
displacements exist that change harmonically with time,
no matter what the starting conditions are. The recordings
of the motion of two pendulums coupled by a spring and of
their normal modes are shown in Fig. 5. The apparatus of
Fig. 2 allows one to introduce concepts like complex re-

sponse, energy stored and dissipated, These concepts are
usually demonstrated with electrical experiments which are
much easier to execute. However, from a didactic point of
view, the direct observation of the behavior of a mechanical
system is certainly worth the increase of experimental dif-
ficulties. All the experiments, designed for and used in a first
year physics laboratory since 1973, were intended to be
quantitative and the students were required to test the re-
lationships between the parameters of the experiments
(lengths, masses, elastic constants of springs, fluid viscosity,
etc.) and the times (periods and decay times) measured on
the recordings. Gratifying agreement has always been ob-
tained.

'N. R. Isenor, Am. J. Phys. 37, 1159 (1969).

2B. J. Miller, Am. J. Phys. 42, 298 (1974); F. S. Crawford, Am. J. Phys.
43,276 (1975).

F. S. Crawford, Waves-—Berkeley Physics Course (McGraw-Hill, New
York, 1965), Vol. I11, Chap. 1.

More on the prehistory of the Laplace or Runge-Lenz vector

Herbert Goldstein

Division of Nuclear Science and Engineering, Columbia University, New York, New York 10027

(Received 16 December 1975)

In a recent note! I remarked that Hamilton was reputed
to have discovered independently the vector constant of
motion properly described as the Laplace vector, and that
I would appreciate a specific reference in Hamilton’s works.
As | had hoped, a number of readers responded, citing a
July 1845 paper of Hamilton? along with a few recent
published references to this paper.3# Hamilton had invented
quaternions in 1843, and in the next few years he was busy
elaborating his new theory and applying it to various
problems in mathematics and physics. In July 1845 he de-
livered a paper to the Royal Irish Academy entitled “Ap-
plications of Quaternions to Some Dynamical Questions”
in the course of which he derived the existence of a new
constant of the motion for the Kepler problem, a constant
which he subsequently called the “eccentricity vector.” In
1846 he communicated to the same body? his investigations
on the locus of the velocity vector, when drawn from the
origin, as the particle moves through its orbit. To this locus
he gave the now-customary name of “hodograph.” He
showed that for the elliptical orbits of the inverse square law
of attraction the hodograph is a circle, a result that can be
quickly demonstrated with the help of the Laplace or “*ec-
centricity” vector. The cross product of the angular mo-
mentum L with the Laplace vector A,

A=pXL—yukr/r,
leads to the relation
p=(B/L%) — (uk/rL?) r X L,

where B is the constant vector A X L normal to the semi-
major axis. If the x axis is taken to be along the semimajor
axis, the equation of the hodograph is then given by

px*+ (py — A/L)? = (uk/L)>.
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The momentum hodograph is therefore a circle of radius
wk/L with center located a distance A/L from the center of
force along a direction normal to A. It is seen that the con-
stant nature of the Laplace vector and the circular character
of the hodograph are closely linked. Both Hamilton® and
Tait” in their monographs on quaternions prove that A is
constant as a preliminary to demonstrating that the hodo-
graph is circular.

The connection between the Laplace vector and the ho-
dograph opens up a broader area for studying the history
of the Laplace vector. In the latter half of the 19th century
the hodograph was a commonly discussed topic in British
treatises on dynamics. Maxwell,® Thomson and Tait,? and
Routh!0 all prove the circularity of the hodograph for in-
verse-square-law forces and all, in effect, trip over the
constant Laplace vector in the course of the proof. Gibbs,
the arch-foe of quaternions, has considerable discussion on
hodographs in his Vector Analysis, but interestingly enough
he does not give the hodograph for the Kepler problem.
However a few pages on!! he derives the constant Laplace
vector on his way to obtaining the equation for the orbit.
The derivation is probably the earliest in modern vector
notation and antedates Runge’s similar proof by at least 20
years. ,
These historical sidelights make it seem likely that the
Laplace vector was not foreshadowed in Newton’s Principia
(except tenuously through the very existence of a closed
orbit). Hamilton and his followers were all close students
of Newton. Indeed Hamilton in an 1845 communication!?
remarked that he had “recently resumed study of a part of
Sir Isaac Newton’s Principia.” None of these authors
however suggest any connection with Newton’s work, even.
though the circular hodograph theorem can be stated geo-
metrically, in the manner so favored by Newton. In 1854
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Percival Frost published a student’s guide to Book I, Secs.
I-111, of Newton’s Principia. It evidently proved popular
for it went through at least five editions by 1900. Frost
discusses the hodograph and its circular form for elliptical
orbits, but ascribes it entirely to Hamilton, with no mention
of Newton.!3 It would appear thus that Newton did not
discovery the vector constant of motion.!4

Note added in proof. 1t has been called to my attention!>
that Professor Otto Volk'® has traced the history of the
Laplace-Runge-Lenz vector almost a full century further
back than Laplace’s publication. The interesting story he
has uncovered deserves a brief summary here. In Newton’s
day, the usual goal was to discover the gravitational force
law given the fact that planets and comets move in conic
sections. The “inverse problem” (which we today would call
rather the direct problem), of finding the orbits given the
inverse-square law of force, was apparently first tackled in
the early decades of the eighteenth century. Jakob Her-
mann, a disciple of the Bernoullis, in 1710 published in an
obscure Italian journal'” a direct integration of the orbit
equation using the (then) new techniques of Leibniz’s cal-
culus. The magnitude of the Laplace vector appears as a
constant of integration in the process. Hermann further
clearly recognized the relation of the constant to the ec-
centricity of the conic sections. In the same year Hermann
gave the result wider circulation by summarizing his paper
in a letter to Johann I. Bernoulli which was published in the
Histoires et Memoires de I’Academie Royale des Sci-
ences.'8 The same volume of the Memoires contains a
rather acerbic answering letter by Bernoulli,'® who gener-
alizes Hermann’s derivation to allow for arbitrary orien-
tation of the orbit in its plane. In effect, Bernoulli’s proof
gave the directions of the Laplace vector as well as its
magnitude. Priority clearly belongs to Hermann and Johann
Bernoulli, but in view of the long traditional association with
Laplace it would seem most fitting to refer to the constant
of motion as the Hermann-Bernoulli-Laplace vector.29
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*H. V. Mclntosh, in Group Theory and its Applications, edited by E. M.
Loebl (Academic, New York, 1971), Vol. 11, p. 82. [The page numbers,
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To illustrate the power of the principles of symmetry and
superposition, the intriguing problem of the resistance be-
tween adjacent nodes of an infinite, two-dimensional, square
mesh of identical resistances is increasingly widely cited.!-3
It is perhaps appropriate therefore to call attention to an
error in one published solution.*

It correctly equates the specified circuit of Fig. 1(a) to
that of Fig. 1(b), but then it assumes that the current in any
branch of the circuit of Fig. 1(b) is the sum of those in the
corresponding branches of Figs. 2(a) and 2(b). The as-
sumption is valid only if the sources have infinite internal
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(b)
(a)
—
BOUNDARY AT INFINITY

Fig. 1. (a) Original circuit. (b) Equivalent circuit.
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