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Applying the tangent dynamics technique as generated by infinitesi
mal Lorentz transformations, it is shown that the components of an 
electromae;netic field correspond to the Lie-Cartan parameters of the 
group 80(3,1). Thus the maximum number of non-null components 
of the magnetic field (i.e., the number of the states of polarization) 
is not decided by the number of group generators. 
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1. ACTIVE LORENTZ TRANSFORMATIONS 
AND TANGENT KINEMATICS 

An accelerated motion of a test particle (generally, on a curved tra
jectory) can be considered as generated by a succession of infinites
imal active Lorentz boosts and rotations (see, e.g., [1]). The evolu-
tion of the four-velocity unit vector ua(x.B) = ua(r) (a= 0, 1, 2, 3), 
which is tangent to the world line and 1s defined by the relations 

is given by 
ua(r + dr) =Mer pu.B(r), 
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where 
M =eL~l+L. (3) 

I is the 4 x 4 unit matrix and L is an infinitesimal Lorentz transfor
mation matrix i.e., an element of the 80(3,1) group. The transfor
mation (2) can be called an active Lorentz tran8formation since we 
observe here a mapping of the four-vector ua(r), defined at a point 
x, into the four-vector ua(r + dr), defined at a point x + dx, both 
points being in the spacetime of a single observer. 

The matrix L has the form 

) ' (4) 

where the parameter vectors 

(5) 

and 
8</> = (8</>},8</>2,8¢3) (6) 

yield the six Lie-Cartan parameters of L. The matrices 

k = (k1, k2, k3) (generators of Lorentz boosts) (7) 

and 
8 = (81, 82, 83) (generators of spatial rotations) (8) 

are the six generators of the orthochronous proper Lorentz group 
80(3,1) (see, e.g., [2, 3]), i.e., 

c 1 0 0) c 0 1 0) 1 0 0 0 0 0 0 0 
kl = 0 0 0 0 ' k2 = 1 0 0 0 ' 

0 0 0 0 0 0 0 0 

(9) 

k,; 0 0 0 

D· G 
0 0 

~1). 0 0 0 0 
0 0 81 = 0 0 

1 0 0 0 1 

(10) 

.. ; n 0 0 

D· ., ~ (~ 
0 0 

D· 
0 0 0 -1 
0 0 1 0 

-1 0 0 0 0 

(11) 



Lorentz Transformations 

with the commutation relations 

[si, Sj] = C:ijkSk, 

[si, ki] = C:ijkkk, 

[ ki, kj] = -C:ijkSk, 

(i, j k = 1, 2, 3); 
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(12) 

(13) 

C:ijk is the real three-dimensional alternating symbol (purely anti
symmetric Levi-Civita tensor) and plays the role of commutation 
coefficients (numbers) for the basis of generators or structure con
stants of the restricted Lorentz group. 

It is important to remember that the infinitesimal Lorentz 
transformation matrix L defines the tangent kinematics which de
scribes the displacement motion which the particle traces out on its 
world line. We have next to define the tangent dynamics, i.e., the 
determination of the forces required to generate the tangent kine
matics. 

2. TANGENT DYNAMICS AND THE STATES 
OF POLARIZATION OF FREE PHOTONS 

Let us assume that a change 6v of the velocity of a particle is pro
duced by an external force field e(x) and a rotation 61/J is caused by 
another field b(x). Then we can wr1te 

Sv = Ce(x)dr, (14) 

61/J = Cb(x)dr, (15) 

where Cis a constant to be determined. In terms of these fields, we 
derive, from the Lorentz transformation (2), 

which, in a 3 + 1 spacetime representation, can be written as 

du0 

-=Cu·e 
dr ' 

(16) 

(17) 

(18) 
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In a four-dimensional tensorial form these relations may be 
expressed as 

duP_cpv~ u (19) 
dr - 'fJ vuU 

where :Fvu is given by 

) (20) 

and 'f/pv is the Minkowskian metric tensor. Equations (19) reproduce 
the equations of motion of a test particle in a field generated by an 
antisymmetric tensor :Fvu· If 

C=.!J.... 
m 

(21) 

and :Fvu is the electromagnetic field tensor 

(22) 

then Eqs. (19) are precisely the Lorentz equations of motion of a 
charged test particle under the action of an electromagnetic field. 

The electromagnetic field tensor can be expressed in a similar 
form to the Lorentz matrix ( 4), namely 

F = FQ fJ = E · k - B · s (23) 

where the six components of the electric and magnetic fields E and 
B are now assigned the role of the Lie-Cartan parameters. 

Thus, the magnetic field components correspond naturally to 
the Lie-Cartan parameters (associated with the generators of s{>atial 
rotations) and not to the three-dimensional basis (generators) of a 
linear vector space which may be defined here by the Lie algebra 
s0(3). Only if we were in a position to associate the magnetic field 
components with the three generators s of the spatial rotations would 
we be forced to admit the existence of a longitudinal polarization of 
photons. 

We observe, when operating within the realm of the quantum 
theory, that the angular momentum does satisfy of course precisely 
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the commutation relations of the generators of the rotation group, 
but there exists a problem of measurability of its components. It is 
well known that the only restrictions upon the measurability of the 
angular momentum of an atomic object are those which result from 
the commutation relations [4] 

[Ji, Ji] = in€ijkJk, 

[Ji, <Pi] = -iMii· 

(24) 

(25) 

Relation (24) defines the domain of comparison of the eigenvalues of 
the Casimir operator 

(26) 

having the classical magnitude of an angular momentum. As is well 
known, only in the limit of the principle of correspondence for large 
values of J with respect to n do the two quantities coincide, whereas 
in the quantum limit when J = h/2, for example for an electron, 
they differ by a factor of VJ. 

Relation (25) indicates that the angular-momentum operator 
is the generator of infinitesimal rotations of the dynamical angle vari
ables in a 3-dimensional Euclidean (physical) space. Furthermore, it 
represents a generalization of the classical Poisson bracket and leads 
to the uncertainty relation 

(27) 

It is important to note that this uncertainty relation when applied 
to an intrinsic spin along a given axis leads to the conclusion that 
it is impossible to associate a component of the spin with a rotation 
of the matter around the axis in question. This does not preclude 
by itself an observation of an angular momentum of the order of n. 
The definition of the angular momentum leads also to the conclusion 
that the (longitudinal) component of an orbital angular momentum 
along the direction of motion is zero since 

.{,. p = 0. (28) 

Thus, for longitudinal components, there exists a distinction between 
effects of the orbital angular momentum and those of the intrinsic 
spin which yield, in fact, the particle helicity. This elementary discus
sion indicates that the problem of measurability of longitudinal and 
transverse components which satisfy the angular momentum com
mutation relations, should be considered with caution. 
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We are faced here with two different physical quantities, the 
magnetic field and, respectively, the angular momentum which both 
can be associated with the rotation group S0(3) and its Lie alge
bra s0(3). However, there exists a clear difference: whereas the 
components of the angular momentum operator are associated with 
the matrices which form a basis of Lie algebra (or a representation 
of the infinitesimal generators of the group) the components of the 
magnetic field are associated with three Lte-Cartan parameters of 
the group of transformations. In the present case of the group S0(3) 
the number of generators of spatial rotations is precisely three, but 
the number of non-null Lie-Cartan parameters (and thus the num
ber of the components of the magnetic field, and also the number of 
states of polarizations) depends on other physical constraints. 

The final conclusion is that the states of polarizations of free 
photons correspond to the Lie-Cartan parameters and thus their 
maximum number is not decided by the number of generators of 
the group. This conclusion is in agreement with the transverse char
acter of free photons which is a well-established result obtained by 
experiments and other theoretical deductions. 

3. DISCUSSION 

First let us mention that our contribution refers to the motion of a 
charged te3t particle (not of a charged macroscopic body as a plasma, 
a dielectric medium etc) which, b~ definition, does not change the 
configuration of an external (free) electromagnetic field. We can 
always couple the Lorentz equation for a charged test particle with 
Maxwell's equations for a free electromagnetic field (in a vacuum) in 
order to study the properties of the latter. Hence, our result refers 
to a free electroma~netic field. 

Our result (association of electromagnetic field components 
with the Lie-Cartan parameters) is obtained (via the technique of 
tangent dynamics) applying Lorentz transformations and the Lorentz 
force equation. Since Lorentz equation is postulated separately and 
independently from the Maxwell field equations, we can assert that 
our result is also independent of Maxwell equations. We established 
that the magnetic field components correspond to the Lie-Cartan 
parameters (associated with the generators of spatial rotations) and 
not to the generators themselves whose number is fixed and equal to 
three. Thus, as mentioned also in the abstract, the (maximum) num
ber of non-null components of the magnetic field (i.e., the number of 
the states of polarization) is not fixed by the number of group gener
ators but by the number of Lie-Cartan parameters (associated with 
the generators of spatial rotations) which can generally be 0, 1, 2, 
3, depending on the type of the fiefd defined by the skew-symmetric 
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second rank tensor which enters into the Lorentz equation. At this 
point, and for an electromagnetic field, the Maxwell equations are 
becoming relevant to the argument and determine what number of 
the sequence 0, 1, 2, 3, the nature chooses. And, as we infer from 
Maxwell's equations, the number is 2, that is free photons have a 
transverse character, a fact confirmed by experiments and other the
oretical deductions. For the time being there are no known experi
ments which contradict transversality. 

A longitudinal photon would possess a very small mass. The 
best available upper limit on the rest mass of a longitudinal pho
ton is 10-53 gm or 10-60gm (see, e.g., [5-7]); we assert that there 
does not exist any laboratory equipment to confirm such a mass. "A 
small photon mass may lead to a catastrophic emission of longitu
dinal photons" [8). We emphasize that some experiments refering 
to longitudinal components of electromagnetic waves are not related 
to free photons but to nonlinear interactions between a medium and 
electromagnetic waves in which a photon may achieve an "effective" 
mass due to the interaction. (We parenthetically note that a similar 
situation arises in the case of "free" electrons in metals where the 
electrons have an effective mass due to electron-electron and electron
phonon interactions.) And if indeed a free longitudinal photon will 
emerge in experiments, a theory is ready to explain this, namely the 
Proca theory. We note that the result of our work does not forbid 
the existence of the third polarization of the photon but shows that 
we are not obliged to admit the existence of a longitudinal photon 
within the framework of relativistic electrodynamics. 

Our result can be obtained also independently of the Lorentz 
force. The electromagnetic field tensor has the same structure as the 
matrix of the Lie-Cartan parameters which correspond to infinitesi
mal Lorentz transformations. The classification of the infinitesimal 
Lorentz transformations (dual, screw-like etc) coincides with the clas
sification of the electromagnetic field tensor. We can assert that 
there exists a mapping between vectors ( E + i B) of the carrier space 
of the S0(3,C) representation matrices and the second rank skew
symmetric tensors (Fap) of the Minkowski spacetime. In all these 
analogies the components of the electromagnetic field are associated 
with the Lie-Cartan parameters. 

When we study the electromagnetic field in term of vectors E 
and B, the number of the states of polarisation is fixed by the number 
of independent components of one of these vectors. Alternatively, if 
we study the electromagnetic field in terms of the four-potential A a, 
the number of states of polarization is given by the number of com
ponents of A a. Maxwell's equations and quantum theory decide how 
many of these states of polarization are physically realizable. In the 
case of a plane wave, the non-null components of the magnetic field 
vector B (as also of the electric field vector E) are proportional to 



284 Argyris et at. 

the non-null components of the four-potential Aa (or, equivalently, 
to the non-null components of the polarization vector, see, e.g., Ref. 
[9], p. 105, eq. 3.42). 

As is well known, Maxwell equations can be put in a man
ifestly covariant form by introducing the four-vector potential A a 
which leads to four orthogonal polarization unit vectors (two are 
spacelike-transverse, one is spacelike-longitudinal, and one is timelike
scalar ). There arise complications when quantising the electromag
netic field because this possesses only two independent components, 
but is covariantly described by the four components of A a. In choos
ing two of these components as the physical ones, and thence quantis
ing them, we loose evidently the covariance. If, on the other hand, we 
wish to keep covariance, we have two redundant components. Hence, 
at this point, we require a constraint condition by virtue of which 
unwanted photons (e.g. scalar photons which produce states with 
negative norms) in physical states are excluded. This constraint is 
represented by a gauge condition. We see that a gauge condition 
(such as the Coulomb gauge) does not transversalize the field but 
only expresses a physical and formal necessity. Gauge conditions are 
also currently applied in the non-Abelian gauge field theory. 

We finally note that we are aware of the efforts of Evans and 
Vigier to find a magnetic field whose components are proportional 
to the SU(2)-group generators. Consequently this would si~nal the 
necessity of the existence of a longitudinal photon (see, e.g., [10]). In 
simple models with groups of higher dimensions, the electromagnetic 
gauge symmetry U(1 )em is always maintained as part of a larger sym
metry since all known interactions conserve the charge. In general, 
however, this need not be the case and the U(1)em may temporar
ily be broken [11]. We appreciate the merits of the aforementioned 
authors in having introduced for the first time the idea of a field 
described by a light-like four-vector potential. This led us to the 
conclusion that such a field may be associated with a rotating body 
via the Kerr metric [12]. 
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