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1. — Asis known, there have been attempts to introduce new algebraic structures
in physics other than Lie algebras (L.A.). One of the most interesting attempts is
the Jordan investigation on the «r-number algebras». today called (commutative)
Jordan algebras (C.J.A.) (1), which however have not been successful in their
physical applications.

We personally think that a possible reason for this disappointment in elementary-
particle physics may be the want of L.A. content in the C.J.A. In other words I..A.
should not be abandoned, but might be expanded. For instance the validity of L.A.
for free particles is well known. It may be interesting to investigate the possible
validity of new algebraic structures for an interacting or decaying region but only
in such a way that the standard procedures corresponding to the free states remain
unchanged. that is preserving in any case a well-defined L.A. content.

In this connection in the present paper we introduce an imbedding of I.A. in
more general nonassociative structures, we choose a suitable nonassociative algebra
for our extension and we briefly discuss the possibilities of physical applications.

2. — In the imbedding
(1) L4

of a given L.A. L into any algebra A, which we call the extension of L, a uscful
intermediate concept for preserving a Lie content is given by the concept of Lie-
admissible algebras introduced by ALBERT (). An algebra .4 with product ab is called

(*) Notes on a lecture given at the ICTD, Trieste, June 27, 1967,

(**) Present address: University of Miami, Center for Theoretical Studies, Coral Gables, Fla.

(1) The C.J.A. arc nonassociative algcbras defincd by the relations: i) ab=ba, and
ii) (a*b)a = «*(ba), They are subdivided into: i) the special C.J.A., which are characterized by the
product ab= (a b+ b-a) = :‘_r{a, b} (we call ¢-h the associative product), and ii) the exceptional
C.J.A., i.e. the algebras which are not special. For an extensive bibliography on C.J.A. see H, BRATN
and M., Kocair: Jorddn-Algebren (Berlin, 1966).,

(%) A, A. ALpenrT: Trans, L.M.S., 64, 552 (1943).
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Lic-admissible if the algebra 1=, which is the same veetor space as 4 with the product
ab—ba =Ta, b]. is a Lic algebra. For example, if 4 is an associative algebra, then 4~
is the Lie algebra in the standard form known by the physicist; if 4 is a L.A. with
product ab =a-b—b-a, then .17 is still a T..A. with product ab—ba = 2(a-b—0b-a).
Hence associative and Lie algebras are ILie-admissible. On the contrary C.J.A.
are trivially Lie-admissible, since A~ is always a zero algebra (i.e. a nilpotent algebra
of degree 2).

In the following we arc interested in the general case where A is a nonassociative
algebra. Then. by using the Lie-admissibility concept, the imbedding (1) may be
performed according to

(2) L—-A">4,

that is by imbedding the considered L.A. L in a nonassociative extension A such that A~
is isomorphic to L. The insufficiency of the C.J.A. for this type of imbedding then
appears clear because of the commutativity of the product. Hence we must search
for large algebraic structures.

In order of to find the explicit condition for Lic-admissibility, we note that the
product of A~ is anticommutative by construction. Hence A is Lie-admissible if
and only if .~ satisfics the Jacoby identity, that is

(3) [a, b, ]+ [b.c.a]l + [e. a, b] = [e. . a] + [b. a. c] 4 [a, e, b], a.b,ced,

where [a, b, ¢] = (ab)c— a(bc) is the associator. a quantity which represents the
amount by which the clements of a nonassociative algebra fail to obey the associative
law of multiplication.

It we introduce flexibility, a weaker condition than associativity expressed by
(ab)a = a(ba) for every a,bec A, then the Lic-admissibility condition is given by the
reduced form

(4) [a. b, ]+ b.e.a] -+ [e,a,b]= 0.

which looks like a generalization of the Jacoby identity.

Tlhere is also the Jordan-admissibility concept (2) which will be uscful for a more
exhaustive characterization of the imbedding. An algebra 4 with product ab is
said to be Jordan-admissible if the attached algebra A%, which is the same vector
space as A with the product §(ab -+ be)= ! {a. b}, is a C.J.A., that is the following
relaton is verified:

(9) (a*b)a + a(ba®) |- (ba*)a -+ a(a*h) = a*(ba) -+ (ab)a® + a*(ab) + (ba)a®.

We note that associative and (commutative) Jordan algebras are Jordan-admissible.
but L.A. are trivially Jordan-admissible sinee 4% is a zero algebra. Morcover an
algebra which is (nontrivially) Lie- and Jordan-admissible is the associative algebra.

3. — Clearly there is a great number of nonassociative Lie-admissible algebras.
In order that our investigation may give rise to an explicit choice with interesting
physical possibilities some suitable supplementary conditions on A must be intro-
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duced. In the present paper we consider the case when A is power-associative, trace-
admissible and noermed; fthen the simple nonassociative extensions A are only the
noncommutative Jordan algebras (N.C.J.A.) () and among them (¢) the most in-
teresting Lie-admissible algebras are the (split) quasi-associative algebras A(A) (2),
that is algebras characterized by the free scalar 1 and the product

(6) ab=Aab +(1—A)b-a= Ala,b]+ b-a,

which constitute the hasie algebras of the N.C.J.A.

Indeed (°) the only power-associative, simple and trace-admissible algebras are:
i) the C.J.A.; ii) the quasi-associative algebras; iii) the flexible algebras of
degree 2 (4). Furthermore (Scuarer (1955) (3)) every N.C.J.A.is power-associative
and trace-admissible, and every flexible Jordan-admissible algebra is a N.C.J.A,,
while (McCrivMmoN (1965) (3)) every normed algebra is a separable N.C.J.A. Finally
we note that (ScHarer (1965) (3)) the radical B of a N.C.J.A. coincides with the
radical of the Jordan algebra 4%, 4 © R is semi-simple and may be expressed as a
direct sum of simple algebras.

The Jordan-admissibility concept has the following property (°): when A is
power-associative and trace-admissible, then A is simple if and only if 4" is simple.
Consequently the imbedding (2) may be used for simple L.A. L

(7) L>A"—>A<A%;

the preservation of the simplicity for a power-associative trace-admissible exten-
sion A is guaranteed by the simplicity of A%, 4 and A™ also possessing the same
radical. Our choice of power-associative trace-admissible algebras, that is the algebras
of quasi-associative type, concerns algebras which are simultaneously (nontrivial)
Lie- and Jordan-admissible as the associative algebras. Indeed ab—ab= (24—1)*
“(a-b—>b-a) and }(ab+ ba)=}(a-b - b-a). Furthermore A(1l) is isomorphic to an
associative algebra; A(0) is antiisomorphic to an associative algebra and A(4) is
isomorphic to a special C.J.A. However in the A(1) algebra there is no finite valne
of 1 to reduce the product (6) to the commutator (°), which lessens the physical
interest. In this connection we now investigate a generalization of the 4(A4) algebras.

4. — Let A be any algebra with product ab over a field F and 1, & be free scalars
belonging to F. We define the algebra A(A. u) to be the (4, p)-mutation of the original

(%) The N.C.J.A. are nonassocintive algebras neither anticommutative nor commutative defined
by the relations: i) (ab)a = a(ba), and ii) («*bYa = a*(ba). They were first defined by R. D. ScHa-
FER: Proc. AM.S., 6, 472 (1955). Sve also: BRAUN and KoOECHER (Y): R. D. SCHAFER: dn
Introduction to Nonassociative Algebras (New York, 1966); Proc, A.M.S., 9, 110 (195%); Trans.
ADM.S., 9%, 310 (1960); L. A. Koxoris: Proc. 4.M.S., 9, 164 (1958); Canad. Journ. Math., 12,
448 (1960); L. J. Paie: Port. Math., 16, 15 (1957): R. H, OraMks: Trans. 4.0M.8., 87, 226 (1958);
Proc. A.M.S., 12, 151 (1961); K. MoCriMMoN: Pacific Journ. Math., 15, 925 (1965); Proe, A.3.8.,
17, 1455 (1966); Trans. A.M.S., 121, 187 (1966).

() The simple N.C.J,A. of characteristic zero (we consider only algebras and fields of charac-
teristic zero) have heen classified by SCHAFER (1955) (°) according to: i) the simple C.J.A.: ii) the
simple quasi-associative algebras; iii) the gimple flexible algebras of degree 2.

(*) A. A. ALBERT: Pror. N.4.8,, 35, 317 (1949).

(*) UHowever, for 4—oo, ab— [a, b]. The author is indebted to Prof. A, Sarnay for this remark.
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algebra, that is the same vector space as .1 but with the produet (%)

A=oc+9,

(8) (a, b) = iab + uba = g[a.b] + o{a, b},
U=0c—g.

We see clearly that: i) (1. 0) is isomorphic to 4 ; ii) .1(0, 1) is antiisomorphic to 4;
ii) A(1.—1) is isomorphic to A~; iv) A(3, 1) is isomorphic to .1*; v) A(A. 1—24)
is isomorphic to the A-mutations of A.

Theorem 1. (A, n) is power-associative for every A# — pu if and only if 4 is
power-associative and for A= —p it is trivially power-associative. Proof: the
identitics [a, a@. @] = 0 and [a, @, a®]= 0 arc sufficient to guarantec the power-asso-
ciativity of an algebra (for ficlds of characteristic zero as in our case). The power-
associativity of A(4, y) is then easily reduced to the validity of the above relations
for 4.

Let us also note that the algebras A(A. p) satisfy the relation

(9) (a, a) = yaa (y=2 = A4 u),

namely powers in A(A. p) and 4 do not coincide for ys£1. This is the first essen-
tial difference between the (A, x)- and A-mutations of an algebra. If y =1 then
the (4, #)- and A-mutations are equivalent. Indeed

(a. by = gla,b]+ 3{a. b} = (o + })ab + (3~ 0)ba = Aab+ (1 — A)ba

for A=o0+ 1.

Theorem 2. .A(A. ) is flexible for every 2, ueF if and only if A is flexible.
Proof: we have

((a, b), a) = ix@b)a + iu(ba)a + Analab) + u2a(ba)
and
(@, (b, @)) = A2a(ba) + Ana(ab) + Au(ba)a + Au(ba)a + p*(ab)a .

Hence, if (ab)a = a(ba), then ((a,b), a) = (a, (a, a)).

Theorem 3. A(4, u) is Lie-admissible for every 2+ u if and only if A is Lie-
admissible. Proof: A~ and [A(4, )]~ are defined by the respective produets ab— ba
and (a, b) — (b, @) = (A— pt)(@b — ba). Hence for A= [A(4, p)]- is isomorphie to the
isotopic algebra A*~ (%) with product a%b—bka= (1 — 1) ab— (A — u) ba.

For A=y, A(A, p) is trivially Lie-admissible.

(") For the case with .{=associative algebra see also: R. M., SaNTIiLLr and (. SOLIANI:
<A statistics and parastatistics formal unification, to appear.

(®) Given an algebra .4 with product ab and an invertible c¢lement ¢ we can form an algebra AA*,
called the isolope of A, with the product @ * b= ach. As a particular case we may have ¢ = «l,
where ~ is a free (nonzero) scalar., Then the new multiplication in 4* is simply « times the old multi-
plication in A: a*b = ~xab.
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Theorem 4. A(Z, p) i8 Jordan-admissible for every i## — u if and only if 4 is
Jordan-admissible. Proof: A% and [A(A, p)]" are characterized by the respective
products 3 (ab+ ba) and Ll{a. D)+ (b. @)l =L (A4 p)(ab + ba). Hence [A(X, w)}* is
isomorphic to the isotopic algebra 4*" with product 3 (a%b+bka)=%(i+u)(ab+ba).

For A=—yu, A(A u) is trivially Jordan-admissible.

Theorem 5. If U= A(4, p). then, for A4 4 u, A = U(a. ). where a= A/(A%2— p?)
and B= u/(u®— 2%). Proof: since

(@, b) — (b, @) = (A — u)tab — ba) and (@, b) 4 (b. @) = (A + u)(ab + ba) ,

we have

Loan+ 1 wa
= —  (a. b — ,a).
}’2__){12 ;12__ Z‘.’.

(10) ab

Theorem 5 has the following consequences: as for the A(4) algebra (3). if B is a
two-sided ideal of A, that is ba and aebe R for every be Il and ae A, then (a. b)
and (b,a)eR. If A=B@ER, then A(1, u)=DB(1 1)@ R(4, ). R(A.p) is solvable
(nilpotent) if R is solvable (nilpotent), and the maximal solvable ideal of A(Z, p)
coinecides with that of 4. Hence A(4, ) is simple if 4 i3 simple, and A(4, u) can be
given as a direct sum of simple algebras when the radical is zero, if the same occurs for 1.

The possible interest of the (4, u)-mutations for physical applications is essentially
given by the mutations of associative algebras 4. In this case it is easy to show
that A(4, ) is a realization of the N.C.J.A.. since it is flexible and Jordan-admissible.
Furthermore A(4, ) is an algebra of quasi-associative type (for Az — w). indeed
the associators in A(4, ) and [4(A, p)}" are conneccted by the relation [a. b, c] =
= (1—9)[a, b, e]*, where 0= ((A—p)/(A+ 1))? is the discriminant of the algebra
(McCrimMoN (1966) (3} (%).

The (4, p)-mutations of an assoeiative algebra satisfy the following cssential
relations:

1) {ab)a = a(ba) .

i) (a?bya = a*(ba).
(11
iii) a’= ya-a (yelrl),

iv) f(a,b.¢] +[b.c.al+ le,a,b]=0.

where i) and ii) are the fundamental relations of the N.C.J.A., iii) connects powers
in the associative algebra and powers in the corresponding mutation, and 1iv) rep-
resents the Lie-admissibility condition for flexible algebras.

() 'The author is indebted to Prot. K, McURIMMON for a very kind letter (of June 12, 1967), where
the conucctions between the (2, ;) and () algebras are explicitly investigated. McCRIMMON
notes that for ¢, #0, by putting =20, ¥ = 4/r and p -- p/r, we have A2+ p =1. Then
(a, by = 2'1a-b+ p'th-a=Aa*-b+ (L —A)b* -a. Hence .{(1, ¢) is just the (A/2¢)-mutation of the
isotopic algebra (1*, i.e. A(A, p) is isomorphic to {*(4/20). In addition we note that, sinee 6 = 41+ 4,
the isotopic algebra 4* characterized by the product a* b = (2 + )a-b is the zero algebra for
A= —pu. ¥urthermore for 4 = -—u .4(A, i) corregponds to the co-mutation of the A* (zcero) algebra
(sce also footnote (%). llence the .4(4, x) and :A(1) algebras are equivalent for every A% —yp,
while the case 2 — — u corresponds to the explicit Lic content of the L£(4, ») algebras which oceurs
when the discriminant has the degencrate value oo,
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Theorem 6. 1f A(A.u) is an algebra of quasi-associative type. then A(4, w) is
solvable if it is a nilalgebra and it is strongly nilpotent if it is solvable; the radical
R(A, p) is the maximal solvable ideal such that A(4. ) © R(A, pt) 18 semi-simple and
has no nonzero nilideals; every semi-simple A (4. i) algebra can be given as a direct
sum of simple algebras. Proof: The above statements hold for A-mutations of an asso-
ciative algebra (2). Hence they also hold for [4/(A+ g)]-mutations of the isotopic
algebras A* with the produet a*-b= (14 p)a-b.

For the case 1=—u we prove the following

Theorem 7. If y = 0. then relations (11) define a Lic algebra. Proof: If =0,
the condition @®= 0. which is the first relation for I..A., implies that the product
is anticommutative. i.e. ab = —ba. Then the Lic-admissibility condition becomes
the Jacoby identity, since [a, b, e] + [b. ¢, a] + [c. a. b] = 2{(ab)c 4 (be)a -+ (ca)b] = 0.
Furthermore flexibility becomes inessential since all Lie algebras are flexible, and
condition ii) is trivially satisfied since a®= 0.

We conelude by noting that starting from a given Lie algebra which is the (1, —1)-
mutation of an associative algebra, it is possible to perform an imbedding according
to (7) by taking as extension the (1. g)-mutation of the original associative algebra,
while the two-sided ideal, the derivations, the antomorphisms and many other
characteristies remain unchanged. In addition the given mathematical tool presents
two free quantities belonging to the field which may have some physical interest.
Particularly the (4, p)-product may be used: i) in the general form (a, b) =
=pola. b]l+ o{a, b}, i.e. with two free scalars; ii) in the reduced form (a,d)=
=cos a[a, b] + sin a{a. b}, i.e. with the supplementary econdition 24 o2=1;
iii) in the contracted form (a.b)=[a.b]+ o {u. . i.e. ¢ =1 and only the sealar ¢
is free for « perturbation » of the Lic content.

Further investigations on the :A(4, ) algebras particularly for what concerns
the explicit construction of the basis, the classifieation of the matrix representations
and the Pieree decomposition are in progress.

5. — Let us now discuss the possibilities of physical applications. At a classieal
level for nonconservative systems (1) there is already a physical application of im-
bedding (2) given by pscudo-Hamiltonian mechanics. introduced by DUFFIN,

where the Poisson bracket may be imbedded in the more general Lie-admissible
n

form (1) (a. b)e =" (A4(2a/Cq,)(Bbjap,) + u(@ajop,)(@bjog,)).
il
At a quantum-mechanical level for elementary-particle interacting or deecaying
regions (1) there are many problems to be investigated in order to evaluate the pos-
sibilities of application of the given procedure. Among these problems one of the most
crucial is the possibility that imbedding implies a change of the statistical Bose or
Fermi character of the particles in interaction or decay (11413),

(') Clearly for conservative systems the Hamiltonian micehanics and Lie algebra are completely
satisfactory.

(") R, M. SANTILLI: Some remarks on pseudo-Hamiltonian mechanices, to appear.

(**) Of course for free states Lic algebras are completely satisfactory. Their validity howcver
becomes problematic for the same particles is interactions of fer problams like the reladivistic extension
of the internal symmetries where infinite parameter Lie algobras accurs. See for instance: J. Fok-
MANEK: Czech. Journ. Phys., B3 18, 1, 281 (1966),

(**) For instance, in the decay m—p+v there in the transition from bosons to fermions, which
leaves open the problem of characterization of the decaying region from a statistical viewpoint (7).
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In this connection the following approaches are being attempted:

i) g—1, 60 (or the «angle» «—0). In this case it is possible to inves-
tigate the connection between the given procedure and the approximation methods
or the «neighbouring algebras» by SEGar ().

ii) g, o = fimed quantities (or o« = fixed «angle»). In this case, by recalling
that the fundamental representations of the SU, Lie algebras are closed under both
commutators and anticommutators (hence they are closed also for the A(4, pu)
algebra), it may be interesting to investigate the imbedding of the SU, (or SUs)
model in order to see if the given procedure may give a contribution to the problem
of the (non) observability of the quarks and a more exact mathematical character-
ization of the physical numbers. Clearly it may be interesting also to investigate
the imbedding of the equal-time commutation relations, current algebra and sum rules.

iii) g, 0 = variable quantities (or « = variable «angle»). In this case it is pos-
sible, for instance, to consider a physical region with ¢ everywhere zero (i.e. we
have L.A. everywhere) and only a well-defined (and limited) region of validity of the
imbedding with ¢+# 0 (or a5 0). In this last case the physical acceptance of the
procedurc might be allowed by the indetermination principle.

* %k K

The author is indebted to Prof. G. WaragHIN for continuous encouragement.
Thanks are due to Profs. A. SarnaMm, R. Raczka and I. T. Toporov for interesting
conversations during a stay at the ICTP, Trieste in June. Thanks are also due to
Profs. M. Korcukr, H. BrRaun and K. McCriMMoON for some very interesting cor-
respondence on mathematical problems.

(%) I. E. SEGAL: Duke Math. Journ., 18, 221 (1951).
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