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We propose a mechanism for the quenching of the Shubnikov–de Haas oscillations and the quantum

Hall effect observed in epitaxial graphene. Experimental data show that the scattering time of the

conduction electron is magnetic field dependent and of the order of the cyclotron orbit period, i.e., it

can be much smaller than the zero field scattering time. Our scenario involves the extraordinary graphene

n ¼ 0 Landau level of the uncharged layers which is pinned at the Fermi level. We find that the coupling

between this n ¼ 0 Landau level and the conducting states of the doped plane leads to a scattering

mechanism having the right magnitude to explain the experimental data.
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Electrons in two-dimensional graphene obey an effec-
tive Dirac equation, in the continuum limit, and their
properties are fundamentally different from those of elec-
trons in standard semiconductors which obey the
Schrödinger equation. A remarkable example is the quan-
tum Hall effect which is quantized with integer plus half
values [1,2] and has even been observed at room tempera-
ture [3]. Another major fact is the large electronic coher-
ence [4,5], which is observed even at room temperature and
gives hope to the possibility of producing devices with new
properties. Graphene can be either exfoliated [1,2] or
epitaxial [4–7]. Both methods produce graphene samples
with spectacular electron coherence properties. Yet mag-
netotransport remains puzzling in epitaxial graphene. On
one hand, at low magnetic field, the experimental results
indicate electronic mean free paths of more than half a
micron at 4 K [5,8]. On the other hand, Shubnikov–de Haas
oscillations of the magnetoresistance are weak and the
quantum Hall effect is not observed. Here we show, by
analyzing the experimental data, that the results can be
explained by a scattering time of the conduction electron
which is magnetic field dependent, and reduced to the
order of the cyclotron orbit period. We argue that the
conducting states in a doped layer can couple to the zeroth
Landau levels in an undoped layer, which is on top of the
doped one. As a consequence, the conducting electrons of
the doped layer are subjected to a scattering mechanism
that increases with magnetic field because the number of
states in the zeroth Landau level increases with magnetic
field. At low magnetic field the scattering time � can be
long but at stronger field � decreases in such a way that
!� ’ 1, where ! is the cyclotron frequency. This forbids
the observation of strong Shubnikov–de Haas oscillations.
We show also that in some limits the magnetoresistance
increases linearly with the magnetic field. This has been
observed recently in epitaxial graphene multilayers, and
the magnitude of the linear magnetoresistance is in quan-
titative agreement with our model.

In this Letter, we present first the experimental results,
and show that they can be explained by a linear dependence
of the scattering rate with the magnetic field. Based on
experiments we propose a simple model of electronic
structure which we analyze. The magnetotransport proper-
ties of this model are in good agreement with the experi-
mental observations.
Summary of previous experimental results.—Electronic

properties of epitaxial graphene have been analyzed in
great detail. They clearly point to the existence of a
electron-doped plane at the SiC/graphene interface [9,10]
carrying the main part of the current [5]. Since the screen-
ing length is of 1–2 interlayer spacing, only 2–3 planes are
doped, and the other planes are quasineutral, as shown in
infrared spectroscopy [11], and are thus comparatively
poor conductors. The experimental evidence that one of
the doped planes carries the main part of the current
suggests that the other doped planes have a low conduc-
tivity due to the impurities’ spatial distribution. The doped
and quasineutral planes all have the characteristics of an
isolated graphene plane, i.e., massless Dirac electrons
[5,9–11]. This was initially surprising since the epitaxial
graphene samples studied in [5,11] consist of several
stacked graphene planes. Yet, as proven recently, these
planes are rotationally stacked [12] and the relative rota-
tion strongly diminishes the effective electronic coupling
between the planes as compared to the case of A-B (Bernal)
stacking [12–16].
Analysis and interpretation of experimental results.—

The magnetotransport coefficients �xx and �xy for three

samples of various widths (0.27, 5, and 1000 �m) are
plotted in Fig. 1. Because the quantum corrections to the
conductivity are small [8] a semiclassical one band model
should be a fair approximation. The transverse magneto-
resistance �xy increases essentially linearly with the mag-

netic field B and is indeed consistent with a semiclassical
model. Yet, the longitudinal magnetoresistance �xx in-
creases linearly with B.
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From these experimental results, it is possible to plot the
ratio!� and consequently to extract the scattering rate 1=�
(Fig. 1). This clearly indicates that the scattering rate
linearly increases with the magnetic field. We note that
there is also experimental evidence from optical measure-
ments that the scattering rate increases with increasing
magnetic field in these systems as it does in graphite

[17]. Since ! is given by @! ¼ eBVF

kF
(where @! corre-

sponds to the level spacing between two Landau levels),
and is linear with B, we can deduce from experiments

@

�ðBÞ ’ @

�ðB ¼ 0Þ þ �@!; (1)

where � is a positive constant. Note that 1=�ðBÞ>
1=�ðB ¼ 0Þ, and !� < 1=� (with � equal to 0.4, 0.45,
and 1.25 for the present 1 �m� 5 �m, 0:27 �m�
6 �m, and 100 �m� 1000 �m samples). Moreover, we
clearly see (Fig. 1) that !� is directly related to the
system’s ability to exhibit Shubnikov–de Haas oscillations:
At low !�, the system does not exhibit such oscillations,
while higher values are concomitant with the appearance
of well-separated Landau level in the electronic structure.
A scattering rate 1=� linear with B can thus explain both
the unusual magnetoresistance behavior and the quenching
of Shubnikov–de Haas oscillations. If one assumes that the
coupling between the different planes is negligible, it
might seem quite difficult to explain a scattering rate that
varies linearly with the magnetic field. Indeed, the conven-
tional theory only predicts a quadratic correction to the
magnetoresistance [18]. Yet, a scattering mechanism due
to coupling between the doped and undoped planes will

depend on the magnetic field since the electronic structure
of the undoped planes depends on the magnetic field. Even
in weak magnetic fields the Fermi level in the nearly
neutral planes will be in the low index Landau levels and
it will be in the zeroth Landau level as soon as B> BC ¼
hnd=2e, where nd is the electron density. Infrared Landau
spectroscopy for the nearly undoped planes indicates nd is
less than 1010 cm�2, i.e., BC � 1 T [11]. We will see that
this scattering mechanism implies an increasing scattering
rate with an order of magnitude of�½@=�ðBÞ� ’ @!, with �
close to 1, compatible with the experiments.
Model of electronic structure.—We consider that the

perfect rotationally stacked planes are essentially de-
coupled since the coupling between different states close
to the Dirac point is of the order of 1 meV (compared to
0.2–0.3 eV for A-B stacking) [12]. It is important to note
that the hopping matrix elements between neighboring
orbitals of the two rotated planes are of the order of 0.2–
0.3 eV, and that the effective electronic decoupling is due to
an averaging specific to the perfect structure. This averag-
ing is destroyed by disorder, and consequently the defects
in one plane will introduce a scattering in that plane and a
coupling with electronic states in the other plane. Defects
that spread on both planes also introduce in-plane scatter-
ing and interplane coupling. Here we consider a model
with one doped plane and one plane which is essentially
neutral, for which the zeroth Landau level is half filled at
all values of the magnetic field. The two planes are de-
coupled in the absence of disorder but are coupled by
disorder. In the following plane 1 is the doped plane and
plane 2 the undoped one.
We consider also that the electronic states in plane 1 are

coupled essentially to the zeroth order Landau level of
plane 2 only. Indeed, we note that for B ¼ 1 T the index
of the Landau levels of the doped plane is n ’ 30–40 and
there are about 2NL ’ 15 Landau levels of the doped plane
which are closer to the zeroth Landau level than to the
other Landau levels of plane 2. In the following we shall
treat NL as a large number.
The model for the Green functions of the uncoupled and

perfect planes 1 and 2 are G1;0ðzÞ and G2;0ðzÞ:

G1;0ðzÞ ¼
Xn¼NL

n¼�NL

NðBÞ
z� n@!

; G2;0ðzÞ ¼ RNðBÞ
z� EL0

; (2)

with @! ¼ eBVF

kF
and NðBÞ

@! ¼ n0 ¼ 2kF
�@VF

. kF is the Fermi

wave vector of the doped plane and n0 its density of states
at the Femi energy, without magnetic field. In this model
we assume that the Landau levels of plane 1 are equally
spaced by @!where! is the cyclotron frequency (which is
valid as long as their index is high). EL0 is the energy of the
zeroth Landau level (EL0 � NL@! varies with B so that
the zeroth Landau level stays half filled), and R is the ratio
between the number of states in the zeroth Landau level of
plane 2 and in a Landau level of plane 1. R is equal to 1 if
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FIG. 1 (color online). Left: Experimental values of resistivity
as a function of B for a 100 �m� 1000 �m (dashed line), a
1 �m� 5 �m (dash-dotted line), and a 0:27 �m� 6 �m (full
line) sample. Main panel: Longitudinal magnetoresistance �xx;
inset: transverse magnetoresistance �xy. Right: �xy=�xx (which

is equal to !� in the one band model) (bottom panel) and
deduced scattering rate (top panel). Note that the longitudinal
magnetoresistances �xx have already been published in the case
of the 0:27 �m� 6 �m [5] and the 100 �m� 1000 �m [8]
samples.
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the two planes are equivalent (apart from the doping). We
can also simulate the case where the doped plane is
coupled to two undoped planes by taking R ¼ 2. The
degeneracy of a zeroth Landau level of a bilayer in A-B
stacking is also R ¼ 2 [19]. Thus different configurations
can lead to different values of R, and this parameter is
adjustable in the following.

In order to treat the effect of in-plane scattering by
disorder and intraplane coupling by disorder we use a
standard self-consistent Born approximation (SCBA).
Despite its limitations, SCBA constitutes the ‘‘standard’’
simplest approximation for the description of the coupling
potential effect on the electronic structure. Since we are
interested in the description of the electronic structure
close to the Fermi energy, this approximation will provide
us with a self-consistent Fermi golden rule picture. We
introduce the Green function GPðzÞ and the self-energies
�PðzÞ of plane ‘‘P’’ (P ¼ 1 or P ¼ 2). The density of
states per unit surface in plane P is given by nPðEÞ ¼
�ð1=�Þ Im½GPðz ¼ Eþ i�Þ�, where � is an infinitely
small positive real number. One gets:

GPðzÞ ¼ GP;0½z� �PðzÞ� (3)

�PðzÞ ¼ jVj2GP0 ðzÞ � i
@

2�P;P
: (4)

P0 is the plane coupled to plane P (P0 ¼ 1 if P ¼ 2 and
vice versa). V2 is an average value of the square coupling
between states in plane 1 and in plane 2. This coupling
strength between the states in planes 1 and 2 at the energies
E1 and E2 is considered to be independent of E1 and E2,
due to the local nature of the interlayer interaction. In
accordance with that, we assume that the change in eigen-
states induced by the magnetic field does not affect the
coupling strength. The terms @=2�P;P represent the effect

of in-plane scattering for each plane P (�P;P is the in-plane

scattering time).
In Eqs. (2)–(4) the two important parameters for the

effect of the interplane coupling are R and V. We analyze
below the regimes of large and small R or V. We show that
in the large V limit the experimental magnetic field depen-
dence of the scattering rate (see Fig. 1) is explained with a
reasonable value of the parameter R. We emphasize that
the physics described below presents some analogies with
the coupling between localized d orbitals with extended sp
states [20].

Large and small R regimes.—In this part, we focus on
the case z ¼ EL0 þ i�. Since the zeroth Landau level is
half filled, EL0 is always close to the Fermi level. Let us
assume that G1ðz ¼ EL0 þ i�Þ ’ �i�n0 and thus
n1ðEL0Þ ’ n0 (we show below that this corresponds to the
large R limit). After (2)–(4), this occurs for jIm�1ðEL0 þ
i�Þj=@! � 1. In this limit, the real parts ReG2ðEL0 þ i�Þ,
ReG1ðEL0 þ i�Þ, Re�2ðEL0 þ i�Þ, Re�1ðEL0 þ i�Þ are all
negligible. Using the correspondence @=� ¼ 2 Im�, where

� is an electron lifetime, one may write the SCBA equa-
tions in a form similar to the Fermi golden rule, i.e., @

�P
¼

@

�P;P
þ 2�V2nP0 with n1 ’ n0 and n2 ¼ RNðBÞ 2�2�@ the den-

sities of states at z ¼ EL0 þ i�, and then

@

�1
’ @

�1;1
þ 2R

�

@!

1þ �
; (5)

with � ¼ @=�2;2
2�V2n0

. Here @=�2;2 and 2�V2n0 are, respec-

tively, the width of the zeroth Landau level due to disorder
in plane 2 and to coupling with plane 1 in the limit where
its density is n0. One sees that if disorder in plane 2 (term
@=�2;2) increases then the scattering rate @=�1 decreases.

Indeed the scattering by plane 2 is favored by a strong
density of states in plane 2, whereas the term @=�2;2 tends
to decrease this density. If � � 1, the coupling between
planes 1 and 2 has essentially no effect (i.e., !�1 ’ !�1;1),
but in the opposite limit � � 1 the scattering rate for
electrons in plane 1 increases linearly with the magnetic
field and !�1 � �=2R.
We show now that one gets the regime G1ðz ¼ EL0 þ

i�Þ ’ �i�n0 at sufficiently large values of R. For simplic-
ity we consider the limit @=�2;2 ¼ @=�1;1 ¼ 0, but let us
just note that @=�1;1 and @=�2;2 have opposite effects, since
@=�1;1 favors the large R regimewhile @=�2;2 favors a small

R regime. The SCBA equations can be written with dimen-

sionless quantities FP ¼ ~FPð z
@! ;

EL0

@! ; 2�V
2n0

@! ; RÞ, where

FP ¼ GPðzÞ
n0

or FP ¼ �PðzÞ
@! . At z ¼ EL0 þ i� one get for

G1ðzÞ, after (2)–(4), G1ðzÞ ¼ G1;0½z� R NðBÞ
G1ðzÞ�. This equa-

tion is independent of the coupling parameter V, and in that
case n1=n0 and 2 Im�1=@! ¼ 1=!�1 are functions only of
EL0=@! and R.
We consider EL0=@! ¼ 0 and EL0=@! ¼ 1=2 for which

by symmetry EL0 ¼ EF and the real parts of the self-
energies and Green’s functions are zero. The result is
shown in Fig. 2. For large R, typically R * 1:5–2, one
has n1ðEFÞ=n0 ’ 1, which is the criterion for the strong
scattering regime. In that case one recovers the strong
scattering limit @=�1 ’ 2R=�@! that is !�1 ¼ �=2R.
Note also that in the large R regime the results are essen-
tially independent of EL0=@!. At R ¼ 1 (i.e., not in the
large R regime) and for EL0=@! ¼ 0 the density of states
n1ðEFÞ diverges. Indeed, as soon as R< 1 there are less
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FIG. 2 (color online). Left: Value of n1ðEFÞ=n0 as a function
of R for EL0=@! ¼ 0 (full line) and for EL0=@! ¼ 1=2 (dashed
line). Right: Same for the ratio !�.
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states in the zeroth Landau level of plane 2 than in Landau
levels of plane 1. This means that there exist uncoupled
states of the Landau level of plane 1 and thus an infinite
density n1ðEFÞ as soon as R< 1.

Large and small V regimes.—We define the large and
small V regimes, respectively, by 2�V2n0=@! � 1 and
2�V2n0=@! � 1. After the dimensional analysis the
width W of the zeroth Landau level of plane 2 and
thus the energy range on which the electronic structure
is modified by the coupling satisfies W=@! ¼
~WðEL0=@!;V2n0=@!;RÞ.
In the large V regime, as long as jz� EL0j=@! �

2�V2n0=@! the term jz� EL0j � jV2G1ðzÞj and one re-

covers G1ðzÞ ¼ G1;0½z� R NðBÞ
G1ðzÞ�. The dimensionless

G1ðzÞ=n0 and �1ðzÞ=@! depend on z=@! and R but not
on EL0=@! and 2�V2n0=@!. Note that the periodicity @!
of G1;0ðz ¼ Eþ i�Þ (2) implies the same periodicity for

G1ðz ¼ Eþ i�Þ and n1ðEÞ in this limit. For the density of
states in plane 2 one has after (2)–(4) n2ðEÞ=n0 ¼
ðR=�2Þð@!=V2n0Þ½n0=n1ðEÞ�. Thus n2ðEÞ=n0 presents
the same periodicity (within the range W) and is very
small. The spectral weight RNðBÞ of the zeroth Landau
level spreads on a width W, and thus since n2ðEÞ=n0 ’
ðR=�2Þð@!=V2n0Þ one has W=@! ’ �2V2n0=@!. Finally,
in the small V regime 2�V2n0=@! � 1 the width
W=@! � 1 and the Landau levels of plane 1 and 2 are
only slightly hybridized (see Fig. 3).

Magnetotransport.—When the density of states is uni-
form on an energy scaleW � @!, which is the case in the
large R and V regime (see Fig. 3), we can apply the
semiclassical theory of transport. The scattering time �1
is given by @=�1 ¼ @=�1;1 þ 2@!R=½�ð1þ �Þ�, where

@=�1;1 is the in-plane scattering rate. As long as � is not

too large we expect the term 2@!R=½�ð1þ �Þ� to be
of order @! and the model is consistent with the experi-
mental results presented above [see Fig. 1 and Eq. (1)].

Shubnikov–de Haas oscillations can occur when the field
dependent scattering studied here is destroyed, that is, for
� � 1. This can be due, for example, to disorder in plane 2
or even to a confinement effect as in a ribbon of finite width
[21], as in Fig. 1. Shubnikov–de Haas oscillations can thus
be enhanced by disorder or by confinement effects. This
spectacular effect is clearly observed in experiments [4].
To conclude, we have shown that the quenching of the

Shubnikov–de Haas oscillations and of the quantum Hall
effect on epitaxial graphene is consistent with a scattering
time that is magnetic field dependent and is reduced to the
order of the cyclotron period. This can be explained by a
mechanism where the conducting electrons of the doped
plane are scattered due to their coupling with the zeroth
Landau level of the undoped planes.
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FIG. 3 (color online). Left: Dimensionless density of states in
plane 1 [n1ðEÞ=n0] as a function of energy for different coupling
V2n0=@! ¼ 1 (dash-dotted line); 6� 10�2 (full line); 1� 10�3

(dotted line) and R ¼ 2, EL0=@! ¼ 1=2. Right: Same for the
dimensionless density of states [n2ðEÞ=n0] in plane 2.
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