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Abstract

The paper illustrates the use of a symbolic software package GeM for Maple to compute lo-
cal symmetries of nonlinear and linear differential equations (DE). In the cases when a given
DE system contains arbitrary functions or parameters, symbolic symmetry classification is per-
formed.

Special attention is devoted to the computation of point symmetries of linear PDE systems.
Routines are available that effectively eliminate infinite obvious symmetries of linear differential
equations.

1 Introduction

A symmetry of a system of ordinary or partial differential equations (ODE, PDE) is any trans-
formation of its solution manifold into itself, i.e., a symmetry maps any solution of a DE system
to another solution of the same system. Continuous symmetries of DE systems are hence defined
topologically, and in principle, any nontrivial DE system has symmetries. The practical problem
consists in finding algorithmic ways of computation of such symmetries. In the latter part of the
19th century, Sophus Lie showed that the problem of finding the Lie group of point transformations
(point symmetries) leaving invariant an equation (algebraic, or ODE, or PDE), reduced to solving
related linear systems of determining equations for components of its infinitesimal generators. Lie’s
algorithm for finding point symmetries of a DE system can be extended to find more general local
symmetries admitted by DEs, where one allows the symmetry components to depend on derivatives
of dependent variables.

The structure of local symmetry groups admitted by different ODE and PDE systems contains
essential information about the given DE system, and thus can vary greatly. For example, every
first-order scalar ODE has an infinite-parameter Lie group of point symmetries. A second-order
scalar ODE has at most an eight-parameter Lie group of point symmetries; a scalar ODE of order
n ≥ 3 has at most n + 4 independent point symmetries (see [1], Section 3.7). PDEs and PDE
systems can have finite- or infinite-parameter Lie groups of point transformations. In particular,
linear PDE systems and PDE systems that can be mapped into linear PDE systems through an
invertible transformation admit infinite-parameter Lie groups of point symmetries.

Symmetries of ordinary differential equations are used for reduction of order and complete in-
tegration, as well as for the construction of invariant solutions ( [1], Chapter 3). Symmetries of
partial differential equations yield reductions of order and/or number of variables. Invariant (in
particular, self-similar) solutions that arise from reduced systems often have transparent physical
meaning. Many appropriate examples are found in [2]. Infinite-dimensional symmetry groups are
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used for the construction of families of new exact solutions from known ones (e.g. [3]). For a non-
linear PDE system, from its admitted symmetry group, one can determine whether or not it can
be mapped into a linear system by an invertible transformation, and find the explicit form of that
transformation ( [4], Chapter 2).

Many extensions of the notion of local symmetries are known, including nonlocal symmetries,
approximate symmetries, the nonclassical method, etc. For a detailed review, the reader is referred
to [2, 4, 5] and references therein.

Application of Lie’s symmetry method and its extensions to nontrivial DE systems often requires
extensive algebraic manipulation. For many contemporary DE models, especially those that do
possess non-trivial symmetry structure, such analysis presents a significant computational challenge.
In particular, symmetry determining equations split into overdetermined systems of linear PDEs
for the unknown symmetry components; such linear overdetermined systems can commonly contain
hundreds or thousands of determining equations. To treat such huge systems, symbolic computer
software is normally used.

A symbolic package for computations of symmetries naturally consists of two parts. The first part
contains user routines that interpret equations, use a specified ansatz for symmetry components
or conservation law multipliers, generate determining equations, and split them into an overdeter-
mined linear PDE system. The second part contains routines for effective symbolic reduction and
solution of large overdetermined PDE systems. Since DE systems often involve arbitrary consti-
tutive functions and/or parameters, it is highly beneficial when the reduction algorithm allows for
case splitting, i.e., the isolation of special forms of constitutive functions and/or parameters, for
which additional symmetries arise.

Several methods for reduction of large overdetermined systems of partial differential equations
have been developed (for review, see e.g. [8–11].) Many of these methods have been implemented in
various symbolic software packages. In particular, the excellent rif package of Maple based on the
work in [17–19] is one of the core components of Maple’s symbolic differential equations toolbox.

To date, a number of packages for the computation of symmetries has been developed for different
computer algebra systems (CAS). For example, one can name a set of programs LiePDE, ApplySym
[6] that provide a user interface for local symmetry computation in CAS REDUCE; a set of programs
for symmetry computations in Mathematica is described in [7]. For reviews of symbolic software
for symmetry analysis and related problems, the reader is referred to [8–11] and [4], Chapter 5.

The package GeM for Maple described in this work offers a set of simple and general routines that
generate and split the systems of determining equations for the computations of local conserva-
tion laws, symmetries and approximate symmetries for wide classes of differential equations and
DE systems. It subsequently uses rif for case splitting and solution of overdetermined systems,
and contains additional of routines for the symmetry output, as well as other important routines
described in this paper.

The current paper explains and illustrates the use of the latest version of GeM package to perform
symbolic computations of local symmetries of linear and nonlinear differential equations.

In Section 2, the notation and general algorithms for local symmetry analysis are briefly re-
viewed. A special computational difficulty is presented by systems of linear PDEs, since they
admit an infinite set of obvious point symmetries, corresponding to addition of arbitrary solutions
of the corresponding linear homogeneous system. In Section 2.3, theorems and a general conjecture
pertaining to point symmetries of linear equations are presented and discussed.

In Section 3, the principal sequence of symmetry analysis using GeM package for Maple is reviewed,
and some features of the package structure and its routines are highlighted.

Section 4 contains run examples for point symmetry analysis of a third-order nonlinear ODE and
higher-order symmetry computations for the Korteweg-de Vries equation [25].
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To study symmetries of DE systems involving arbitrary function(s) and/or constant parameter(s),
a symmetry classification must be performed. Section 5 discusses this problem, the related problem
of finding and using equivalence transformations, and their symbolic implementations. As an
example, equivalence transformations are computed and point symmetries are classified for a family
of a nonlinear diffusion equations.

Section 6 contains an example of symmetry analysis of a linear PDE system. The example employs
GeM package routines which use a special ansatz discussed in Section 2.3, in order to automatically
exclude obvious infinite symmetries of linear equations.

Section 7 concludes the paper with some discussion.

2 Local symmetries of differential equations

Consider a system of N differential equations of order k, with n independent variables x =
(x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x)), given by

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (2.1)

[For ODE systems, N = 1.] The notation

∂u ≡ ∂1u =
(
u1

1(x), . . . , u1
n(x), . . . , um

1 (x), . . . , um
n (x)

)

denotes the set of all first-order partial derivatives;

∂pu =
{

uµ
i1...ip

| µ = 1, . . . , m; i1, . . . , ip = 1, . . . , n
}

=
{

∂puµ(x)
∂xi1 . . . ∂xip

| µ = 1, . . . , m; i1, . . . , ip = 1, . . . , n

}

denote higher-order derivatives.
Summation in any pair of repeated indices is assumed throughout the paper.

2.1 Point symmetries

Consider a one-parameter Lie group of point transformations

(x∗)i = f i(x, u; ε) = xi + εξi(x, u) + O(ε2), i = 1, . . . , n,
(u∗)µ = gµ(x, u; ε) = uµ + εηµ(x, u) + O(ε2), µ = 1, . . . ,m,

(2.2)

with the corresponding infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ηµ(x, u)

∂

∂uµ
. (2.3)

The kth extension (prolongation) of (2.3) is given by

X(k) = ξi(x, u)
∂

∂xi
+ ηµ(x, u)

∂

∂uµ
+ η

(1) µ
i (x, u, ∂u)

∂

∂uµ
i

+ . . . + η
(k) µ
i1...ik

(x, u, ∂u, . . . , ∂ku)
∂

∂uµ
i1...ik

,
(2.4)

where the prolonged components η
(1) µ
i , . . ., η

(k) µ
i1...ik

are defined in terms of {ξi(x, u), ηµ(x, u)} by

η
(1) µ
i = Diη

µ − (Diξ
j)uµ

j , (2.5)
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and

η
(k) µ
i1...ik

= Dikη
(k−1) µ
i1...ik−1

− (Dikξj)uµ
i1...ik−1j , (2.6)

for µ = 1, . . . , m, and i, ij = 1, . . . , n for j = 1, . . . , k, and

Di =
∂

∂xi
+ uµ

i

∂

∂uµ
+ uµ

ii1

∂

∂uµ
i1

+ uµ
ii1i2

∂

∂uµ
i1i2

+ · · · , (2.7)

i = 1, . . . , n.

Definition 2.1. A one-parameter Lie group of point transformations (2.2) leaves the DE system
(2.1) invariant if and only if its kth extension (2.4) leaves invariant the solution manifold of (2.1)
in (x, u, ∂u, . . . , ∂ku)-space, i.e., it maps any family of solution surfaces u = u(x) of the DE system
(2.1) into another family of solution surfaces u∗ = u∗(x∗) of DE system (2.1). In this case, the
one-parameter Lie group of point transformations (2.2) is called a point symmetry of the DE system
(2.1).

Lie’s algorithm to find the point symmetries of a given DE system (2.1) is given by the following
theorem.

Theorem 2.1. Let (2.3) be the infinitesimal generator of a one-parameter Lie group of point
transformations (2.2). Let (2.4) be its kth extension. Then the transformation (2.2) is a point
symmetry of the DE system (2.1) if and only if for each α = 1, . . . , N ,

X(k)Rα(x, u, ∂u, . . . , ∂ku) = 0, (2.8)

when

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (2.9)

The proof appears in [12], with the restriction that the given system (2.1) can be written in a
solved form in terms of a set of leading derivatives.

In order to find point symmetries admitted by a given DE system (2.1), one needs to determine the
unknown symmetry components ξi, ηµ that appear in the symmetry generator (2.3). The algorithm
proceeds in the following steps.

1. Obtain determining equations by substituting the given DEs (2.9) (as well as, possibly, dif-
ferential consequences of (2.9)) into the invariance condition (2.8) (in order to restrict to the
solution manifold).

2. Obtain the split system of determining equations, using the fact that ξi, ηµ do not depend
on derivatives of u, i.e., setting coefficients at all independent combinations of derivatives of
dependent variables in determining equations to zero.

In practice, split systems of determining equations can be rather large. For example, for the
system of adiabatic compressible plasma equilibrium equations, one obtains 188 linear PDEs for 13
unknown functions [13]. Split systems containing over a thousand determining equations are also
not uncommon.

4



The evolutionary form

The point symmetry generator (2.3) can be equivalently rewritten in the evolutionary (character-
istic) form

X̂ = η̂µ(x, u)
∂

∂uµ
=

[
ηµ(x, u)− uµ

i ξi(x, u)
] ∂

∂uµ
. (2.10)

Note that in the evolutionary form, the independent variables are invariant, and the action of a
group of point transformations is strictly an action on the dependent variables of the DE system,
so that solutions are directly mapped into other solutions under the group action.

In evolutionary form, the components of point symmetry infinitesimal generators for dependent
variables have at most a linear dependence on the first derivatives of the dependent variables (the
coefficients of the first derivatives are the components of the independent variables when not in
evolutionary form).

2.2 Local symmetries

The notion of evolutionary (characteristic) form allows one to readily extend Lie’s algorithm to
seek higher-order symmetries (order q) by letting the infinitesimal generators in evolutionary form
to depend on derivatives of dependent variables to any finite order s ≥ 1:

X̂ = η̂µ(x, u, ∂u, ..., ∂su)
∂

∂uµ
. (2.11)

This corresponds to local transformations

(x∗)i = xi, i = 1, . . . , n,
(u∗)µ = uµ + εη̂µ(x, u, ∂u, . . . , ∂su) + O(ε2), µ = 1, . . . ,m.

(2.12)

In contact symmetries, the components of infinitesimal generators for dependent variables can
depend at most on the first derivatives of the dependent variable of a given scalar DE. Contact
symmetries preserve the contact condition du∗ = u∗jdx∗j . A contact transformation is equivalent to a
point transformation acting on the space of the given independent variables, the dependent variable
and its first derivatives, and, through this, can be naturally extended to point transformations acting
on the space of the given independent variables, the dependent variable and its derivatives to any
finite order greater than one. In the case of one dependent variable (m = 1), contact symmetries
are first-order symmetries. When m = 2, contact symmetries are point symmetries.

It turns out that higher-order symmetries are not equivalent to point transformations acting on
a finite-dimensional manifold including the independent variables, the dependent variables and
their derivatives to some finite order. However, they are local symmetries in the sense that the
components of the dependent variables in their infinitesimal generators depend at most on a finite
number of derivatives of the given DE system’s dependent variables so that their calculation only
depends on the local behaviour of solutions of the given DE system.

The notion of local symmetries includes point symmetries, contact symmetries and higher-order
symmetries. Local symmetries are uniquely determined when infinitesimal generators are repre-
sented in evolutionary form.

The infinitesimal criterion of invariance under a one-parameter local transformation is provided
by the following theorem.

Theorem 2.2. Let (2.11) be the infinitesimal generator of a one-parameter local transformation,
and let X̂(k) be its kth extension. Then the transformation (2.12) is a local (point, contact or
higher-order) symmetry of the DE system (2.1) if and only if for each α = 1, . . . , N ,

X̂(k)Rα(x, u, ∂u, . . . , ∂ku) = 0, (2.13)
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when

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N,

∂lRσ(x, u, ∂u, . . . , ∂ku) = 0, l = 1, . . . , s, σ = 1, . . . , N. (2.14)

[Note that if a particular DE Rσ(x, u, ∂u, . . . , ∂k′u) = 0 has order k′ < k, then all its differential
consequences ∂lRσ(x, u, ∂u, . . . , ∂k′u) = 0, l = 1, . . . , s + k − k′, must be computed and used in
substitutions.]

The local symmetry analysis algorithm therefore consists in determining the symmetry compo-
nents η̂µ(x, u, ∂u, ..., ∂su), and involves the following steps.

1. Obtain determining equations by substituting the given DEs (2.14) and their differential
consequences into the invariance condition (2.13) (in order to restrict to the solution manifold).

2. Obtain the split system of determining equations, using the fact that η̂µ only depend on deriva-
tives of order up to s, i.e., setting coefficients at all independent combinations of derivatives
of dependent variables of order greater than s to zero in determining equations.

2.3 Point symmetries of linear DEs

Consider a linear DE system of order k, with n independent variables x = (x1, . . . , xn), n ≥ 2, and
m dependent variables u(x) = (u1(x), . . . , um(x)), m ≥ 1. Such system can be written as

Lσ(x, u, ∂u, . . . , ∂ku) = F σ(x), σ = 1, . . . , N, (2.15)

where each Lσ(x, u, ∂u, . . . , ∂ku) is a linear homogeneous differential expression in u(x). It is
obvious that if u(x) is a solution of the linear system (2.15), and w(x) is any solution of the linear
homogeneous system

Lσ(x, w, ∂w, . . . , ∂kw) = 0, σ = 1, . . . , N, (2.16)

then û(x) = u(x) + w(x) is also a solution of (2.15). The transformation u(x) → u(x) + w(x)
corresponds to obvious infinite point symmetries

Xtr = wµ(x)
∂

∂uµ
(2.17)

of the linear DE system (2.15). [Symmetries (2.17) may be called trivial symmetries.]

For partial differential equations, it follows that the set of point symmetries admitted by any
linear PDE system (2.15) is infinite. In particular, the symmetry components ηµ(x, u) in (2.3) are
arbitrary solutions of the linear homogeneous PDE system (2.16).

In practice, one is only interested in finding nontrivial point symmetries, i.e., performing the
symmetry analysis modulo the obvious symmetries (2.17). Moreover, the presence of an infinite
number of symmetries often makes the complete symbolic symmetry computation impossible, hence
one needs to explicitly exclude them from computations.

For linear ODEs, one of course also has trivial point symmetries (2.17). Unlike the case for PDEs,
here the dimension of Lie group is always finite, which is better from the point of view of symbolic
computations. However, if the explicit form of the general solution of the corresponding linear
homogeneous ODE is unknown, the software will still not be able to compute all point symmetries
explicitly.

The following helpful theorems has been established in [14].
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Theorem 2.3. Suppose (2.15) is a scalar linear PDE (i.e., N = m = 1, n ≥ 2) of order k ≥ 2.
Then components ξi, η of all of its point transformations (2.2) satisfy

∂ξi

∂u
=

∂2η

∂u2
= 0, i = 1, . . . , n. (2.18)

Theorem 2.4. Suppose (2.15) is a scalar linear ODE (i.e., N = m = n = 1) of order k ≥ 3. Then
components ξ, η of all of its point transformations (2.2) satisfy

∂ξ

∂u
=

∂2η

∂u2
= 0. (2.19)

Ovsiannikov ( [15], Chapter 6) states that the above result, i.e., independence of ξ’s on the depen-
dent variables, and linear dependence of η’s on the dependent variables, holds for the “majority of
linear DEs” (that is, PDE and ODE systems). In general, this “linear DE conjecture” is formulated
as follows.

Conjecture 2.1. For a linear DE system (2.15), components ξi, ηµ of any its point transformation
(2.2) satisfy

∂ξi

∂uν
= 0,

∂2ηµ

∂uνuλ
= 0, i = 1, . . . , n, µ, ν, λ = 1, . . . ,m. (2.20)

If Conjecture 2.1 holds for a given DE system, it follows that its point symmetry generator has
the form

X = ξi(x)
∂

∂xi
+ (fµ

ν (x)uν + gµ(x))
∂

∂uµ
. (2.21)

or alternatively, in the evolutionary form,

X̂ =
(
fµ

ν (x)uν + gµ(x)− uµ
i ξi(x)

) ∂

∂uµ
. (2.22)

The trivial linear symmetries (2.17) evidently correspond to gµ(x) 6= 0 in (2.21). Two cases arise.

Case 1. Linear homogeneous equations. If the given DE system (2.15) is linear homogeneous,
i.e., all F σ(x) = 0, then the symmetry determining equations (2.13), (2.14) yield

Lσ(x, g, ∂g, . . . , ∂kg) = 0, σ = 1, . . . , N,

where g = (g1(x), . . . , gm(x)). Thus to find all nontrivial point symmetries of a given linear homo-
geneous DE system satisfying Conjecture 2.1, one may use a homogeneous simplified ansatz

Xs.hom. = ξi(x)
∂

∂xi
+ fµ

ν (x)uν ∂

∂uµ
(⇔ gµ(x) := 0). (2.23)

Case 2. Linear non-homogeneous equations. If the given DE system (2.15) is linear non-
homogeneous, then using the symmetry determining equations (2.13), (2.14), one obtains that the
functions g = (g1(x), . . . , gm(x)) satisfy a non-homogeneous linear system

Lσ(x, g, ∂g, . . . , ∂kg) = F̃ (x), σ = 1, . . . , N, (2.24)

where F̃ (x) are generally nonzero expressions depending on functions F σ(x) from (2.15), their
derivatives, and coefficients of Lσ. Thus to find all nontrivial point symmetries of a linear non-
homogeneous DE system satisfying Conjecture 2.1, one needs to take only one particular solution
g = (g1(x), . . . , gm(x)) of DEs (2.24); the trivial symmetries are contained in the general homoge-
neous solution of (2.24).
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Remark 2.1. (When does Conjecture 2.1 hold?) In general, conditions on linear DE systems
that satisfy Conjecture 2.1 are unknown. The experience of the author confirms that the Conjecture
holds for almost all linear DE systems he examined. The Conjecture generally does not hold
for scalar second-order linear ODEs. For linear PDEs, a simple counterexample is provided by
the following PDE system. Consider the linear constant-coefficient wave equation utt = uxx for
u = u(x, t). The simplest of its potential systems is given by

vt = ux, vx = ut. (2.25)

One can show that the linear PDE system (2.25) has a point symmetry

Z = (u2 + v2)
∂

∂u
+ 2uv

∂

∂v
, (2.26)

which contradicts the Conjecture 2.1. [The symmetry (2.26) is a nonlocal (potential) symmetry of
the PDE utt = uxx.]

Remark 2.2. (Nontrivial infinite symmetries.) It is well-known that linear DE systems can
have an infinite number of point symmetries, even modulo the trivial symmetries (2.17). This
happens when a set of functions {ξi(x), fµ

ν (x)} involves arbitrary functions. In particular, all linear
PDE systems with constant coefficients have this property. Moreover, if there exists an invertible
transformation mapping a given variable coefficient linear PDE system to a constant coefficient
linear PDE system, then the given linear PDE system has an infinite number of nontrivial point
symmetries ( [1], Section 6.5).

3 Local symmetry analysis using “GeM” package

A Maple – based package GeM has been recently developed by the author. The package routines
are capable of finding local (point, contact and higher-order) symmetries, adjoint symmetries and
conservation laws of any ODE/PDE system without significant limitations on orders of derivatives
and numbers of variables.

The GeM package employs an efficient representation of the system under consideration and result-
ing determining equations: all dependent variables and derivatives are treated as Maple symbols,
rather than functions or expressions: ∂B1/∂x ≡ B1x, etc. For example, the resulting Maple expres-
sion for the divergence of a 3-vector B(x, y, z) = (B1(x, y, z), B2(x, y, z), B3(x, y, z)) becomes

∂

∂x
B1(x, y, z) +

∂

∂y
B2(x, y, z) +

∂

∂z
B3(x, y, z) = B1x + B2y + B3z. (3.1)

This significantly speeds up the computation involving establishing, splitting and solution of sym-
metry and conservation law determining equations. The final overdetermined linear PDE systems
are reduced using Maple rifsimp [19] routine.

The reduction of overdetermined systems of linear determining equations is usually the most
resource-demanding task, in particular, in problems that involve classification. Reduced systems of
determining equations are normally much simpler and can be subsequently integrated automatically
(Maple pdsolve, dsolve) or even by hand.

After the determining equations are solved, a GeM routine is called that outputs all symmetry
generators, thus completing the symmetry analysis.

The program sequence for local symmetry analysis includes the following steps.

1. Declaration of variables and the given DE system.

2. Construction of a set of split symmetry determining equations.
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3. Simplification and reduction of the overdetermined set of determining equations.

4. Solution of the simplified set of determining equations.

5. Output of symmetry generators.

If the given DE system contains constitutive function(s) and/or constant parameter(s), a classifi-
cation and case splitting need to be performed (see Section 5 below).

For linear DE systems, where one is only interested in finding nontrivial point symmetries, in
step 4, special GeM routine can be called that verifies whether Conjecture 2.1 holds. Then one
subsequently uses the symmetry form (2.21) (and moreover, for homogeneous linear systems, the
simplified ansatz (2.23)) to exclude trivial point symmetries. These important routines are demon-
strated in the example in Section 6.

For symmetry analysis, it is necessary that a given DE system is provided in a form solvable
with respect to a set of leading derivatives. The expressions for these leading derivatives are
automatically substituted into the symmetry determining equations by GeM package routines, so
that the determining equations are considered on the solutions of the given DE system. [In the
computation of higher-order symmetries, differential consequences of solved equations are also used.]

It is also important to note that if the differential orders of the equations in the given system
are not the same, the GeM package routines automatically compute differential consequences of the
lower-order DEs, up to the order equal to the maximal differential order of the DEs in the given
system. For example, consider a PDE system in a solved form, given by two equations

utt = xuvx,
vt = v2 + uux.

For this system, the maximal differential order is two. Hence for the second equation, all its
differential consequences up to second order will be automatically computed:

vtt = 2v(v2 + uux) + utux + uutx,
vtx = 2vvx + uuxx + u2

x.

The full list of features of GeM package, with corresponding descriptions and examples, is available
[20].

Some run examples are presented in the following sections.

4 Examples of symmetry analysis of nonlinear systems of differ-
ential equations using “GeM” package

4.1 Computation of point symmetries of a third-order nonlinear ODE

As a first example, we find point symmetries of a third-order nonlinear ODE given by

y′′′(x) = Ax−3(y′′(x))3, A = const 6= 0. (4.2)

First, the GeM package is initialized using the command

with(GeM):

Second, one defines variables and differential equations, as follows.

gem_decl_vars(indeps=[x], deps=[Y(x)]);
gem_decl_eqs([diff(Y(x),x,x,x)=A*x^(-3)*diff(Y(x),x,x)^3],
solve_for=[diff(Y(x),x,x,x)]);
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Third, one generates the symmetry determining equations, using the command

det_eqs:=gem_symm_det_eqs([x, Y(x)]);

The arguments of the command define the dependence of symmetry components. Here point
symmetry components will depend on x and Y (x).

Next, the overdetermined system is simplified, as follows.

sym_components:=gem_symm_components();
simplified_eqs:=DEtools[rifsimp](det_eqs, sym_components, mindim=1);

In particular, the option mindim=1 forces the output of the number of linearly independent solutions
of equations simplified_eqs, i.e., the number of point symmetries of the ODE system (4.2). In
this example, there are three point symmetries.

Finally, the determining equations are solved, e.g., using the internal Maple solver

symm_sol:=pdsolve(simplified_eqs[Solved]);

This yields symmetry components containing three arbitrary constants. The command

gem_output_symm(symm_sol);

prints the three point symmetries separately:

X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = x

∂

∂x
+ 3y

∂

∂y
.

4.2 Computation of point symmetries of a nonlinear PDE system of gas dy-
namics equations in one space dimension

Now consider the nonlinear PDE system of polytropic Euler planar gas dynamics equations [21,22],
given by

ρt + (ρv)x = 0,

ρ(vt + vvx) + px = 0,

pt + vpx + γpvx = 0,

(4.3)

for the particular case of the polytropic exponent γ = 3. The Maple program using GeM routines is
initialized as follows.

with(GeM):
gem_decl_vars(indeps=[x,t], deps=[V(x,t),P(x,t),R(x,t)]);
gem_decl_eqs([
diff(R(x,t),t)+diff(R(x,t)*V(x,t),x),
R(x,t)( diff(V(x,t),t)+V(x,t)*diff(V(x,t),x) )
+ diff(P(x,t),x)=0,
diff(P(x,t),t)+V(x,t)*diff(P(x,t),x)
+ 3*P(x,t)*diff(V(x,t),x)=0
],

solve_for=[diff(R(x,t),t), diff(V(x,t),t), diff(P(x,t),t)]);

The point symmetry determining equations are generated using the command

det_eqs:=gem_symm_det_eqs([x,t, R(x,t),V(x,t),P(x,t)]);
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The variable det_eqs now contains the split overdetermined system of 27 determining equations for
the unknown point symmetry components depending on x, t, ρ, v and p. Next, the overdetermined
system is simplified, as follows.

sym_components:=gem_symm_components();
simplified_eqs:=DEtools[rifsimp](det_eqs, sym_components, mindim=1);

The option mindim=1 forces the output of the dimension of the solution set, which is seven for
the current example. The determining equations are solved, and symmetries are output using the
commands

symm_sol:=pdsolve(simplified_eqs[Solved]);
gem_output_symm(symm_sol);

As a result, one obtains the seven point symmetry generators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = t

∂

∂t
+ x

∂

∂x
,

X4 = t
∂

∂x
+

∂

∂v
, X5 = x

∂

∂x
+ v

∂

∂v
+ p

∂

∂p
− ρ

∂

∂ρ
, X6 = p

∂

∂p
+ ρ

∂

∂ρ
,

X7 = xt
∂

∂x
+ t2

∂

∂t
+ (x− vt)

∂

∂v
.

4.3 Computation of local symmetries of the Korteweg-de Vries equation

As a third example, consider the KdV equation [25]

ut + uux + uxxx = 0. (4.4)

We now use GeM software to compute point and higher-order symmetries (2.11) of the PDE (4.4)
depending on x-derivatives of orders up to 5.

First, variables and equations are defined.

with(GeM):gem_decl_vars(indeps=[x,t], deps=[U(x,t)]);
gem_decl_eqs([diff(U(x,t),t)+U(x,t)*diff(U(x,t),x)+diff(U(x,t),x,x,x)=0],
solve_for=[diff(U(x,t),t)]);

Then, the symmetry determining equations are generated.

det_eqs:=gem_symm_det_eqs([x,t, U(x,t), diff(U(x,t),x),
diff(U(x,t),x,x), diff(U(x,t),x,x,x), diff(U(x,t),x,x,x,x),
diff(U(x,t),x,x,x,x,x)],
in_evolutionary_form=true);

[Note that derivatives containing t can be omitted since they are expressible in terms of x-derivatives
from the PDE (4.4).] The option in_evolutionary_form=true enforces the computation in the
evolutionary form (2.11). For uniqueness, all higher-order symmetries are normally computed in
the evolutionary form.

Next, the overdetermined system is simplified, as follows.

sym_components:=gem_symm_components();
simplified_eqs:=DEtools[rifsimp](det_eqs, sym_components, mindim=1);

Finally, the determining equations are solved, and symmetries are output using the commands

symm_sol:=pdsolve(simplified_eqs[Solved]);
gem_output_symm(symm_sol);
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which yield the five local symmetries

X1 = ux
∂

∂u
, X2 = (tux − 1)

∂

∂u
, X3 = (uux + uxxx)

∂

∂u
,

X4 = (2u + (x− 3tu)ux − 3tuxxx)
∂

∂u
,

X5 =
((

1
4u2ux + uxx

)
ux + 1

2uuxxx + 3
10uxxxxx

) ∂

∂u
.

5 Symmetry classification problems

5.1 Equivalence transformations and their symbolic computation. Procedure
of symmetry classification

When a given DE system contains classifying (“constitutive”) functions and/or parameters, finding
its symmetries leads to a classification problem, which consists in the isolation of particular forms
of constitutive functions and/or parameter values for which the given system possesses an extended
symmetry structure. Such classification problems often arise in applications.

For such families of DE systems, it is useful to consider their equivalence transformations – trans-
formations that preserve the form of the equations in the system but may change the form of the
constitutive functions and/or parameters. In particular, symmetry classification tables are usually
presented modulo known equivalence transformations: symmetries are computed only for simplest
forms of constitutive functions and/or parameters that are essentially different (i.e., not related by
an equivalence transformation). For all other forms of constitutive functions and/or parameters,
symmetries can be easily derived using equivalence transformations. Work on equivalence trans-
formations was initiated in [16]. For further details and references, see, for example, [4] (Chapter
1).

Equivalence transformations

Consider the family FK of DE systems (2.1), involving L constitutive functions and/or parameters
K = (K1, . . . , KL). Such functions may depend on particular dependent and independent variables
of the system, as well as derivatives of dependent variables.

Definition 5.2. A one-parameter Lie group of equivalence transformations of a family FK of DE
systems is a one-parameter Lie group of transformations given by

x̃i = f i(x, u; ε), i = 1, . . . , n,
ũµ = gµ(x, u; ε), µ = 1, . . . , m,

K̃l = Gl(x, u, K; ε), l = 1, . . . , L,

(5.5)

which maps a DE system (2.1) in FK into another DE system in the same family.

[Note: if constitutive functions/parameters K are not modified under the transformations (5.5),
then the transformation (5.5) is simply a point symmetry of each DE system in the family FK .]

Simple one-parameter Lie groups of equivalence transformations (like translation and scaling of
constitutive functions/parameters) can be often found by inspection.

Symbolic computation of equivalence transformations using the “GeM” package

The sequence for computation of equivalence transformations is rather similar to that for point
symmetry computations (Section 3).
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1. Declaration of variables and the given DE system, treating constitutive functions/parameters
as new dependent variables.

2. Construction of a split system of symmetry determining equations.

3. Simplification and reduction of the determining equations.

4. Solution of the simplified set of determining equations (using, e.g., Maple internal solver
pdsolve).

5. Output of infinitesimal generators (candidates for equivalence transformations).

Then the user integrates the infinitesimal generators, to obtain the finite form of equivalence trans-
formations; this also can be done using Maple internal solvers.

As an example, consider the family of nonlinear diffusion equations [23]

ut − (K(u)ux)x = 0 (5.6)

involving a the constitutive function K(u), K ′(u) 6= 0. In order to find one-parameter Lie groups of
equivalence transformations of the family (5.6), one applies the standard Lie symmetry algorithm
to the general DE (5.6), treating the constitutive function K(u) as a new dependent variable. As
remarked above, one needs to assume that the symmetry components for t, x and u are independent
of K(u), following the definition (5.5).

The Maple code for the program is as follows.

with(GeM):
gem_decl_vars(indeps=[x,t], deps=[U(x,t), K(x,t)]);
gem_decl_eqs([diff(U(x,t),t)=diff(K(x,t)*diff(U(x,t),x),x)],

solve_for=[diff(U(x,t),t)]);

The symmetry determining equations are generated using

det_eqs:=gem_symm_det_eqs([x,t, U(x,t),K(x,t)]);

which yields 29 determining equations. Conditions of independence of symmetry components for
t, x and u of K(u) are appended using the command

det_eqs1:= [ det_eqs[], diff(xi_t(x,t,U,K),K)=0, diff(xi_x(x,t,U,K),K)=0,
diff(eta_U(x,t,U,K),K)=0]:

Then the reduction of the determining equations stored in det_eqs1 is performed:

sym_components:=gem_symm_components();
simplified_eqs:=DEtools[rifsimp](det_eqs1, sym_components, mindim=1);

The simplified determining equations simplified_eqs are solved, and symmetries are output using
the commands

symm_sol:=pdsolve(simplified_eqs[Solved]);
gem_output_symm(symm_sol);

The resulting six generators are given by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂u
, X4 = x

∂

∂x
+ 2t

∂

∂t
,

X5 = u
∂

∂u
, X6 = F (t)

∂

∂t
−KF ′(t)

∂

∂K
.

(5.7)
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One can check that for the generators X6 with the arbitrary function F (t), when F ′′(t) 6= 0 the
transformed function K̃ is not a function of ũ only. Therefore these generators do not correspond
to equivalence transformations of the family (5.6).

The finite form of the equivalence transformations of the family of PDEs (5.6) arises from the six
generators X1, . . . , X6 (F ′(t) = const) and therefore involves six arbitrary parameters. It is given
by

t̃ = a4t + a1, x̃ = a5x + a2, ũ = a6u + a3, K̃(ũ) =
a2

5

a4
K(u), (5.8)

where a1, . . . , a6 are arbitrary constants with a4a5a6 6= 0. In particular, under an equivalence trans-
formation (5.8), a PDE system (5.6) with variables x, t, u and constitutive function K(u) is mapped

into a PDE system with variables x̃, t̃, ũ with the constitutive function K̃(ũ) =
a2

5

a4
K

(
ũ− a3

a6

)
.

5.2 Symmetry classification procedure and its symbolic implementation

For DE systems involving constitutive functions and/or parameters, symmetry determining equa-
tions are obtained as usual, using the algorithm described in Section 2.

After determining equations (2.13), (2.14) are obtained and split, the further reduction of the
overdetermined system essentially depends on the constitutive functions/parameters. Indeed, for
their particular relations, such reduction may go differently and thus yield additional symmetries.
Such relations or conditions for constitutive functions and/or parameters are called pivots, and
formulated as pi(K, x, u) = 0, i = 1, 2, ....

Complete analysis of pivots and isolation of all different cases arising from different values of
pivots (case splitting) is effectively implemented in Maple’s rif package [17–19] and is used during
for symmetry classification with GeM package.

The symmetry classification program that uses GeM package requires the execution of two program
sequences.
(i) Computation of equivalence transformations (Section 5.1).

(ii) Symmetry classification.

1. Declaration of variables and the given DE system. Constitutive functions/parameters are
declared using special options freefunc=[...] and freeconst=[...] (see example in Section
5.3 below).

2. Construction of a split system of symmetry determining equations.

3. Simplification and reduction of the overdetermined set of determining equations using rifsimp,
with casesplit option for case splitting with respect to constitutive functions/parameters.

4. For each of the cases obtained in step 3:

(a) Choice of the simplest form of constitutive functions/parameters, using equivalence
transformations obtained above (by hand).

(b) Solution of the simplified set of determining equations, for the specific (chosen) form of
constitutive functions/parameters.

(c) Output of symmetry generators in the given case.

In the above program sequence, as illustrated in the example in Section 5.3 below, step 4 has to be
programmed separately for each case arising in step 3 which yields a different symmetry structure.
The main reason for this intentional lack of automation is the utility of equivalence transformations
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for the most compact presentation of the symmetry classification table. Indeed, for each classifi-
cation case, solving pivot equations yields general forms of constitutive functions/parameters for
that case, which need to be put in the “simplest” form using equivalence transformations. Yet the
notion of “simplest” is hard to make algorithmic, hence case studies were left to the user.

Here it is worth remarking that though rifsimp-generated case trees are complete by construction,
they can be redundant, presenting non-distinct cases as distinct ones in a non-obvious way. An
excellent attempt to correct this minor deficiency using equivalence transformations was made
in [26].

5.3 An example of point symmetry classification

As an example, consider the classification of point symmetries of the nonlinear diffusion equation
(5.6) with respect to the constitutive function K(u) (K ′(u) 6= 0).

First, one defines variables using the commands

with(GeM):
gem_decl_vars(indeps=[x,t], deps=[U(x,t)], freefunc=[K(U(x,t))]);

where the optional parameter freefunc=[...] is used to define arbitrary function(s). [Arbitrary
constants can be specified using another optional parameter freeconst=[...].]

The given equation (5.6) is defined using

gem_decl_eqs([diff(U(x,t),t)=diff(K(U(x,t))*diff(U(x,t),x),x)],
solve_for=[diff(U(x,t),t)]);

The symmetry determining equations are generated using the command

det_eqs:=gem_symm_det_eqs([x,t, U(x,t)]);

which yields 10 determining equations.
Next, one performs the automatic reduction and case splitting of the overdetermined linear PDE

system stored in det_eqs.

sym_components:=gem_symm_components();
split_eqs:=DEtools[rifsimp](det_eqs, sym_components,

casesplit, mindim=1);

The Maple variable split_eqs now contains a table of different computed cases. The case tree can
be plotted using the command

caseplot(split_eqs,pivots);

[Note that depending on the version of Maple that is used, case splitting can occur differently, and
moreover, some cases can yield the same symmetries. However, the complete analysis of a tree
always yields complete results.] For the PDE (5.6), the case tree is shown in Figure 1. The pivot
expressions are given by

p1 = K(u), p2 = K(u), p2 = K ′(u), p3 = 4K(u)K ′′(u)− 7(K ′(u))2,
p4 = K(u)K ′(u)K ′′′(u)− 2K(u)(K ′′(u))2 + (K ′(u))2K ′′(u).

In particular, at each pivot, the left branch of the case tree in Figure 1 corresponds to the case
where the pivot expression vanishes, and the right branch – to the case when the pivot expression
is nonzero. Numbers below the branches denote case numbers.
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Figure 1: The tree of cases in the classification of point symmetries of the nonlinear diffusion equation (5.6).

For each case m in Figure 1 (1 ≤ q ≤ 5), the corresponding simplified set of determining equations
is accessed by calling split_eqs[q][Solved], and the number of independent solutions is given
by split_eqs[q][dimension].

Case 1. This is the most general case. Here one uses the commands

symm_sol:=pdsolve(split_eqs[1][Solved]);
gem_output_symm(symm_sol);

which yield the three symmetries

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+ 2t

∂

∂t
, (5.9)

holding for an arbitrary constitutive function K(u).

Case 2. In this case, the solution set has dimension four. This case is characterized by a restricted
ODE satisfied by K(u), contained in split_eqs[2] [Solved]:

K ′′′(u) =
2K(u)(K ′′(u))2 − (K ′(u))2K ′′(u)

K(u)K ′(u)
. (5.10)

One can show that modulo equivalence transformations (5.8), the equation (5.10) has two different
solutions: K(u) = uν (ν = const) and K(u) = eu.

Case 2a. For K(u) = uν , one obtains the corresponding point symmetries using commands

case2a_symm_sol:=pdsolve(subs(K(U)=U^nu, split_system[2][Solved]));
gem_output_symm(case2a_symm_sol);

This yields the three generic symmetries (5.9), and the additional symmetry

X4 = x
∂

∂x
+

2
ν

u
∂

∂u
. (5.11)
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Case 2b. For K(u) = eu, one uses commands

case2b_symm_sol:=pdsolve(subs(K(U)=exp(U), split_system[2][Solved]));
gem_output_symm(case2b_symm_sol);

This yields the three generic symmetries (5.9), and the additional symmetry

X5 = x
∂

∂x
+ 2

∂

∂u
. (5.12)

Case 3. In this case, the solution set has dimension five, and K(u) is restricted to satisfying the
ODE

K ′′(u) =
7
4

(K ′(u))2

K(u)
. (5.13)

The general second-order ODE (5.13) involves two integration constants, both of which can be
removed using equivalence transformations (5.8). Thus modulo equivalence transformations, the
only solution of the equation (5.13) is K(u) = u−4/3. The corresponding point symmetries are
computed using commands

case3_symm_sol:=pdsolve(subs(K(U)=U^(-4/3), split_system[3][Solved]));
gem_output_symm(case3_symm_sol);

This yields the three symmetries (5.9), the symmetry (5.11) (with ν = −4/3), and the additional
symmetry

X6 = x2 ∂

∂x
− 3xu

∂

∂u
. (5.14)

Cases 4 and 5. These cases correspond to linear diffusion equations (K(u) = const and K(u) = 0,
respectively), and hence the PDE (5.6) has an infinite number of point symmetries in these cases.
Indeed, split_eqs[q] [dimension] = ∞ for q = 4, 5. This completes the classification of point
symmetries of the nonlinear diffusion equation (5.6).

Finally, the point symmetry classification of the nonlinear diffusion equation (5.6) is given in
Table 1 [23].

Table 1: Point symmetry classification for the nonlinear diffusion equation (5.6).

K(u) # Point Symmetries

Arbitrary 3 X1 = ∂
∂x

, X2 = ∂
∂t

, X3 = x ∂
∂x

+ 2t ∂
∂t

.

uν 4 X1, X2, X3, X4 = x ∂
∂x

+ 2
ν
u ∂

∂u
.

eu 4 X1, X2, X3, X5 = x ∂
∂x

+ 2 ∂
∂u

.

u−4/3 5 X1, X2, X3, X4

(
ν = − 4

3

)
, X6 = x2 ∂

∂x
− 3xu ∂

∂u
.
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6 Example of point symmetry classification of linear systems of
differential equations using “GeM” package

Consider the linear PDE system [24]

vt = ux, ut = c2(x)vx. (6.15)

for with dependent variables u(x, t), v(x, t), which is a potential system of a linear wave equation

utt = c2(x)uxx (6.16)

with variable wave speed c(x). We now use GeM package to classify nontrivial point symmetries of the
system (6.15) with respect to the wave speed c(x), in the assumption c′(x) 6= 0. The classification
is done modulo the equivalence transformations of the system (6.15), which are computed in the
same way as shown in the example of Section 5.1, and are given by

t̃ = a1a
−1
5 t + a3v + a6, x̃ = a1a5x + +a3u + a7,

ũ = a2a
2
5u + a4x + a8, ṽ = a2v + a4t + a9, c̃(x̃) = a2

5c(x),
(6.17)

where a1, . . . , a9 are arbitrary constants with a1a2a5 6= 0.
The variables and the equations are defined using the command

with(GeM):
gem_decl_vars(indeps=[x,t], deps=[U(x,t),V(x,t)]);
gem_decl_eqs([diff(U(x,t),t)=C(x)^2*diff(V(x,t),x), ,

diff(V(x,t),t)=diff(U(x,t),x)],
solve_for=[diff(U(x,t),t), diff(V(x,t),t)]);

Then, the command

det_eqs:=gem_symm_det_eqs([ind, U(x,t), V(x,t)]);

is used to generate the ten determining equations (split with respect to derivatives vt, vx) and place
them into the variable det_eqs.

Next, similarly to the previous classification example, one performs the automatic reduction and
case splitting of the overdetermined linear PDE system stored in det_eqs.

sym_components:=gem_symm_components();
split_eqs:=DEtools[rifsimp](det_eqs, sym_components, casesplit, mindim=1);

The Maple variable split_eqs now contains a table of different computed cases. The case tree is
plotted using the command

caseplot(split_eqs,pivots);

This yields four cases (Figure 2), with the three pivot expressions given in terms of c = c(x) by

p1 = c, p2 = c′,

p3 = c2[4(c′′)3 + (c′)2c′′′′ − 5c′c′′c′′′] + (c′)2[3CC ′c′′′ − 4c(c′′)2 + (c′)2c′′].
(6.18)

Cases 3 and 4 in Figure 2 correspond to c′ = 0 and c = 0, and are not considered, since we are
only interested in variable-coefficient equations. We now study cases 1 and 2.
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Figure 2: The tree of cases in the classification of point symmetries of the linear variable-coefficient wave
equation potential system (6.15).

Before proceeding with the symmetry classification, we would like to verify whether the “linear
conjecture” (Conjecture 2.1) holds for the variable-coefficient cases in general. We use the command

gem_linear_pointsymm_check_conjecture({det_eqs[ ], diff(C(x),x)<>0});

which verifies the conjecture and establishes that it does hold for c′ 6= 0. As its argument, the
above command takes a set of PDEs (determining equations). The implementation of the routine
gem_linear_pointsymm_check_conjecture involves checking Conjecture 2.1 by contradiction. It
is sequentially assumed that one of the conditions (2.20) is false (using Maple non-equality <>). Such
condition is appended to the argument of the routine, and then rifsimp is applied to the resulting
PDE system. The Conjecture 2.1 holds if each such PDE system is found to be inconsistent.

Case 1. This is the most general case. Here one uses the command

syms_case1:=gem_linear_pointsymm_use_conjecture(rs1[1][Solved]);

which applies the simplified ansatz (2.23) to its argument, thus excluding the obvious symmetries
of the linear homogeneous system (6.15).

Finally, symmetries are output using the command

gem_output_symm(symm_sol);

which yield the two symmetries

X1 =
∂

∂t
, X2 = u

∂

∂u
+ v

∂

∂v
, (6.19)

holding for an arbitrary constitutive function c(x).

Case 2. In [24] (see also [1], Section 7.2), it was shown that the pivot p3 in (6.18) can be rewritten
as

cc′(c/c′)′′ = const = K. (6.20)

When K = 0, modulo the equivalence transformations (6.17), the ODE (6.20) has the following
independent solutions: c(x) = x, c(x) = xM (M = const), and c(x) = ex. When K 6= 0, the ODE
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(6.20) reduces to first-order ODEs; these cases are omitted here for brevity (for details, see [1],
Section 7.2).

Case 2a: c(x) = x. Here we again use the command that employs the simplified ansatz (2.23):

syms_case1:=gem_linear_pointsymm_use_conjecture(rs1[2][Solved],
free_func_form = [C(x)=x]);

gem_output_symm(symm_sol);

which yields the two symmetries (6.19), and two additional symmetries

X3 = x
∂

∂x
+ u

∂

∂u
,

X4 = 2 log(x)
∂

∂t
+ 2tx

∂

∂x
+ (tu− xv)

∂

∂u
−

(u

x
+ tv

) ∂

∂v
.

(6.21)

Case 2b: c(x) = xM , M 6= 0, 1. The simplified ansatz (2.23) here us used by the command

syms_case1:=gem_linear_pointsymm_use_conjecture(rs1[2][Solved],
free_func_form = [C(x)=x^M,M<>0]);

gem_output_symm(symm_sol);

which yields the two symmetries (6.19), and two additional symmetries

X5 = (1−M)t
∂

∂x
+ x

∂

∂x
+ Mu

∂

∂u
,

X6 =
(
(1−M)−1x2(1−M) + (1−M)t2

) ∂

∂t
+ 2tx

∂

∂x

−(tu(1− 2M) + xv)
∂

∂u
− (

x1−2Mu + tu
) ∂

∂v
.

(6.22)

Case 2c: c(x) = ex. Here one uses a similar command

syms_case1:=gem_linear_pointsymm_use_conjecture(rs1[2][Solved],
free_func_form = [C(x)=exp(x)]);

gem_output_symm(symm_sol);

which yields the two symmetries (6.19), and two additional symmetries

X7 = t
∂

∂x
− ∂

∂x
− u

∂

∂u
,

X8 =
(
t2 + e−2x

) ∂

∂t
− 2t

∂

∂x
+ (v − 2tu)

∂

∂u
+ e−2xu

∂

∂v
.

(6.23)

The symmetry classification results are summarized in Table 2.
Following [1] (Section 7.2), we note that symmetries X4, X6, X8 yield nonlocal symmetries of the

linear wave equation (6.16), since the u-component of each of these symmetries essentially depends
on the nonlocal variable v. For details on nonlocally related PDE systems, see [4], Chapter 3.
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Table 2: Partial point symmetry classification for the potential system (6.15) for the linear wave
equation (6.16).

c(x) # Point Symmetries

Arbitrary 2 X1 = ∂
∂t

, X2 = u ∂
∂u

+ v ∂
∂v

.

x 4 X1, X2, X3 = x ∂
∂x

+ u ∂
∂u

, X4 = 2 log(x) ∂
∂t

+ 2tx ∂
∂x

+ (tu− xv) ∂
∂u
− (

u
x

+ tv
)

∂
∂v

.

xM , 4 X1, X2, X5 = (1−M)t ∂
∂x

+ x ∂
∂x

+ Mu ∂
∂u

,

M 6= 0, 1 X6 =
(
(1−M)−1x2(1−M) + (1−M)t2

)
∂
∂t

+2tx ∂
∂x
− (tu(1− 2M) + xv) ∂

∂u
− (

x1−2Mu + tu
)

∂
∂v

.

ex 4 X1, X2, X7 = t ∂
∂x
− ∂

∂x
− u ∂

∂u
, X8 =

(
t2 + e−2x

)
∂
∂t
− 2t ∂

∂x
+ (v − 2tu) ∂

∂u
+ e−2xu ∂

∂v
.

7 Conclusions

Symbolic computations of symmetries of nonlinear and linear differential equations using the pack-
age GeM for Maple were presented. Using routines of the GeM package, one can produce, split,
simplify, and completely solve local symmetry determining equations for nonlinear and linear ODE
and PDE systems and scalar equations, and output the basis of symmetry generators in a separated
form.

If a system of interest is a linear DE system, to perform a successful symbolic computation of its
point symmetries, one often needs to exclude obvious point symmetries (2.17). [This is commonly
the case for linear PDE systems, which admit an infinite number of such trivial symmetries.] For
many linear DE systems, Conjecture 2.1 holds, which enables one to use the simplified symmetry
form (2.21) which leads to effective exclusion of obvious point symmetries. In particular, for linear
homogeneous DEs, ansatz (2.23) can be used. For linear DE systems, a GeM package routine can be
used that explicitly verifies Conjecture 2.1 using symbolic computations. If the conjecture holds,
another routine employing the ansatz (2.23) for linear homogeneous DEs is available, which returns
only nontrivial point symmetries. [Even for DE systems for which the conjecture does not hold, the
routine employing the simplified symmetry form still can be used, to provide a partial symmetry
classification.]

If the given DE system contains constitutive function(s) / parameter(s), a classification and case
splitting need to be performed. Symbolic implementations of symmetry classification and of the
related problem of computation of equivalence transformations are discussed and illustrated by an
example in Section 5.

It remains a practically important open question to formulate an explicit criterion to verify
whether or not the statement of Conjecture 2.1 holds for a given linear DE system.
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