Studies on A. Einstein, B. Podolsky and N. Rosen argument that “quantum mechanics is not a complete theory,” II: Apparent confirmation of the EPR argument
Abstract
In1935, A.Einsteinexpressedhishistoricalview, jointly with B.Podolsky and N. Rosen, that quantum mechanics could be “completed” into a form recovering classical determinism at least under limit conditions (EPR argument). In the preceding Paper I, we have outlined the basic methods underlying the “completion” of quantum mechanics into hadronic mechanics for the representation of extended particles within physical media. In this Paper II, we study the isosymmetries for interior dynamical systems; we confirm the 1998 apparent proof that interior dynamical systems admit a classical counterpart; we confirm the 2019 apparent proof that Einstein’s determinism is progressively approached for extended particles in the interior of hadrons, nuclei and stars, while being fully achieved in the interior of gravitational collapse; and we show for the first time that the recovering of Einstein’s determinism in interior systems implies the removal of quantum mechanical divergencies. In the subsequent Paper III, we present a number of illustrative examples and novel applications in mathematics, physics and chemistry.
Keywords
Full Text:
PDFReferences
A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. Vol. 47, p. 777 (1935), www.eprdebates.org/docs/epr-argument.pdf
N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. Vol. 48, p. 696 (1935), www.informationphilosopher.com/solutions/scientists/bohr/EPRBohr.pdf
J.S. Bell: “On the Einstein Podolsky Rosen paradox” Physics Vol. 1, 195 (1964), www.informationphilosopher.com/solutions/scientists/- bohr/EPRBohr.pdf
J. Bell: ”On the problem of hidden variables in quantum mechanics” Reviews of Modern Physics Vol. 38 No. 3, 447 (July 1966).
J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1951).
Stanford Encyclopedia of Philosophy, “bell’s Theorem” (first published 2005, revised 2019), plato.stanford.edu/entries/bell-theorem/
D. Bohm, Quantum Theory, Dover, New Haven, CT (1989).
D. Bohm, J. Bub: ”A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory” Reviews of Modern Physics 38 Vol. 3, 453 (1966).
R. M. Santilli, “Studies on the prediction by A. Einstein, B. Podolsky, and N. Rosen that quantum mechanics is not a complete theory, ” I: Basic mathematical, physical and chemical methods,” submitted for publication.
R. M. Santilli, “Isorepresentation of the Lie-isotopic SU(2) Algebra with Application to Nuclear Physics and Local Realism,” Acta Applicandae Mathematicae Vol. 50, 177 (1998), www.eprdebates.org/docs/epr-paper-i.pdf
R. M. Santilli, “Studies on the classical determinism predicted by A. Einstein, B. Podolsky and N. Rosen,” Ratio Mathematica Volume 37, pages 5-23 (2019), www.eprdebates.org/docs/epr-paper-ii.pdf
R. M. Santilli, “Embedding of Lie-algebras into Lie-admissible algebras,” Nuovo Cimento 51, 570 (1967), www.santilli-foundation.org/docs/Santilli-54.pdf
R. M. Santilli, “On a possible Lie-admissible covering of Galilei’s relativity in Newtonian mechanics for nonconservative and Galilei form- non-invariant systems,” Hadronic J. Vol. 1, pages 223-423 (1978), www.santilli-foundation.org/docs/Santilli-58.pdf
R. M. Santilli, “Lie-admissible invariant representation of irreversibility for matter and antimatter at the classical and operator levels,” Nuovo Cimento B bf 121, 443 (2006), www.santilli-foundation.org/docs/Lie-admiss-NCB-I.pdf
R. M. Santilli, “On a possible Lie-admissible covering of Galilei’s relativity in Newtonian mechanics for nonconservative and Galilei form- non-invariant systems,” Hadronic J. Vol. 1, 223-423 (1978), www.santilli-foundation.org/docs/Santilli-58.pdf
R. M. Santilli, “Need of subjecting to an experimental verification the validity within a hadron of Einstein special relativity and Pauli exclusion principle,” Hadronic J. Vol. 1, pages 574-901 (1978), www.santilli-foundation.org/docs/santilli-73.pdf
R. M. Santilli, ”An intriguing legacy of Einstein, Fermi, Jordan and others: The possible invalidation of quark conjectures,” Found. Phys. Vol. 11, 384-472 (1981), www.santilli-foundation.org/docs/Santilli-36.pdf
R. M. Santilli, “Initiation of the representation theory of Lie- admissible algebras of operators on bimodular Hilbert spaces,” Hadronic J. Vol. 3, p. 440-506 (1979).
H. C. Myung and R. M. Santilli, ”Modular-isotopic Hilbert space formulation of the exterior strong problem,” Hadronic Journal Vol. 5, 1277-1366 (1982), www.santilli-foundation.org/docs/Santilli-201.pdf
R. M. Santilli, “Isonumbers and Genonumbers of Dimensions 1, 2, 4, 8, their Isoduals and Pseudoduals, and ”Hidden Numbers,” of Dimension 3, 5, 6, 7,” Algebras, Groups and Geometries Vol. 10, p. 273-295 (1993), www.santilli-foundation.org/docs/Santilli-34.pdf
R. M. Santilli, “Nonlocal-Integral Isotopies of Differential Calculus, Mechanics and Geometries,” in Isotopies of Contemporary Mathematical Structures,” Rendiconti Circolo Matematico Palermo, Suppl. Vol. 42, p. 7-82 (1996), www.santilli-foundation.org/docs/Santilli-37.pdf
R. M. Santilli, “Relativistic hadronic mechanics: non-unitary axiom- preserving completion of quantum mechanics” Foundations of Physics Vol. 27, p.625-739 (1997), www.santilli-foundation.org/docs/Santilli-15.pdf
R. M. Santilli, “Lie-isotopic Lifting of the Minkowski space for Extended Deformable Particles,” Lettere Nuovo Cimento Vol. 37, p. 545- 551 (1983), www.santilli-foundation.org/docs/Santilli-50.pdf
R. M. Santilli, ”Isominkowskian Geometry for the Gravitational Treatment of Matter and its Isodual for Antimatter,” Intern. J. Modern Phys. D Vol. 7, 351 (1998), www.santilli-foundation.org/docs/Santilli-35.pdf
R. M. Santilli, Foundation of Theoretical Mechanics, Springer-Verlag, Heidelberg, Germany, Volume I (1978) The Inverse Problem in Newto- nian Mechanics, www.santilli-foundation.org/docs/Santilli-209.pdf
R. M. Santilli, Foundation of Theoretical Mechanics, Springer-Verlag, Heidelberg, Germany, Vol. II (1982) Birkhoffian Generalization of Hamiltonian Mechanics, www.santilli-foundation.org/docs/santilli-69.pdf
R. M. Santilli, Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vols. I Mathematical Foundations, www.santilli-foundation.org/docs/Santilli-01.pdf
R. M. Santilli, Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vol. II: Classical Formulations, www.santilli-foundation.org/docs/Santilli-61.pdf
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume I (1995), Mathematical Foundations, www.santilli-foundation.org/docs/Santilli-300.pdf
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume II (1994), Theoretical Foundations, www.santilli-foundation.org/docs/Santilli-301.pdf
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume III (2016), Experimental verifications, www.santilli-foundation.org/docs/elements-hadronic-mechanics- iii.compressed.pdf
R. M. Santilli, Isorelativities, International Academic Press, (1995).
R. M. Santilli, The Physics of New Clean Energies and Fuels According to Hadronic Mechanics, Special issue of the Journal of New Energy, 318 pages (1998), www.santilli-foundation.org/docs/Santilli-114.pdf
R. M. Santilli, Foundations of Hadronic Chemistry, with Applications to New Clean Energies and Fuels, Kluwer Academic Publishers (2001), www.santilli-foundation.org/docs/Santilli-113.pdf, Russian translation by A. K. Aringazin, http://i-b-r.org/docs/Santilli-Hadronic-Chemistry.pdf
R. M. Santilli, Isodual Theory of Antimatter with Applications to Antigravity, Grand Unifications and Cosmology, Springer (2006), www.santilli-foundation.org/docs/santilli-79.pdf
R. M. Santilli, Hadronic Mathematics, Mechanics and Chemistry, Volumes I to V, International Academic Press, (2008), www.i-b-r.org/Hadronic-Mechanics.htm
A. K. Aringazin, A. Jannussis, F. Lopez, M. Nishioka and B. Veljanosky, Santilli’s Lie-Isotopic Generalization of Galilei and Einstein Relativities, Kostakaris Publishers, Athens, Greece (1991), www.santilli-foundation.org/docs/Santilli-108.pdf
D. S. Sourlas and G. T. Tsagas, Mathematical Foundation of the Lie- Santilli Theory, Ukraine Academy of Sciences (1993),www.santilli-foundation.org/docs/santilli-70.pdf
J. Lohmus, E. Paal, and L. Sorgsepp, Non-associative Algebras in Physics, Hadronic Press, Palm Harbor, 1994),www.santilli- foundation.org/docs/Lohmus.pdf
J. V. Kadeisvili, Santilli Isotopies of Contemporary Algebras, Geometries and Relativities, Ukraine Academy of Sciences, Second edition (1997), www.santilli-foundation.org/docs/Santilli-60.pdf
Chun-Xuan Jiang, Foundations of Santilli Isonumber Theory, International Academic Press (2001),www.i-b-r.org/docs/jiang.pdf
Raul M. Falcon Ganfornina and Juan Nunez Valdes, Fundamentos de la Isdotopia de Santilli, International Academic Press (2001), www.i-b-r.org/docs/spanish.pdf. English translation: Algebras, Groups and Geometries Vol. 32, p. 135- 308 (2015), www.i-b-r.org/docs/Aversa-translation.pdf
Bijan Davvaz and Thomas Vougiouklis, A Walk Through Weak Hyper- structures, Hv-Structures, World Scientific (2018).
S. Georgiev, Foundation of the IsoDifferential Calculus, Volume I, to VI, r (2014 on). Nova Academic Publishers
I. Gandzha and J. Kadeisvili, New Sciences for a New Era: Mathematical, Physical and Chemical Discoveries of Ruggero Maria Santilli, Sankata Printing Press, Nepal (2011),www.santilli-foundation.org/docs/RMS.pdf
J. V. Kadeisvili, “An introduction to the Lie-Santilli isotopic theory,” Mathematical Methods in Applied Sciences Vol. 19, p. 1341372 (1996), www.santilli-foundation.org/docs/Santilli-30.pdf
Th. Vougiouklis “Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Admissibility,” American Journal of Modern Physics, Vol. 4, p. 38-46 (2018), also appeared in Foundations of Hadronic Mathematics Dedicated to the 80th Birthday of Prof. R. M. Santilli. www.santilli-foundation.org/docs/10.11648.j.ajmp.s.2015040501.15.pdf
A. S. Muktibodh and R. M. Santilli, “Studies of the Regular and Irregular Isorepresentations of the Lie-Santilli Isotheory,” Journal of Generalized Lie Theories Vol. 11, p. 1-7 (2017), www.santilli-foundation.org/docs/isorep-Lie-Santilli-2017.pdf
Schwartzchild K., ” Uber das Gravitationsfeld eines Massenpunktes- nack der Einsteinshen Theorie, ” Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech., 189-196 (1916).
Schwartzchild K., ”Uber das Gravitationsfeld einer Kugel aus inkom- pressibler Flussigkeit nach Einsteinshen Theorie, ” Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech., 424-434 (1915).
Misner C. W., Thorn K. S. and Wheeler J. A., Gravitation, W. H. Freeman and Co., San Francisco (1970).
R. M. Santilli, “Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter,” American Journal of Modern Physics Vol. 4, No. 5, 2015, pp. 59, www.santilli-foundation.org/docs/10.11648.j.ajmp.s.2015040501.18.pdf
R. M. Santilli, ”Lie-isotopic Lifting of Special Relativity for Extended Deformable Particles,” Lettere Nuovo Cimento Vol. 37, 545 (1983), www.santilli-foundation.org/docs/Santilli-50.pdf
R. M. Santilli, ”Lie-isotopic Lifting of Unitary Symmetries and of Wigner’s Theorem for Extended and Deformable Particles,” Lettere Nuovo Cimento Vol. 38, 509 (1983), www.santilli-foundation.org/docs/Santilli-51.pdf
R. M. Santilli, ”Isotopies of Lie Symmetries,” I: Cbasic theory,” , Hadronic J. Vol. 8, 36 and 85 1(985), www.santilli-foundation.org/docs/santilli-65.pdf
R. M. Santilli, ”Isotopies of Lie Symmetries,” II: Isotopies of the rotational symmetry,” Hadronic J. Vol. 8, 36 and 85 (1985), www.santilli-foundation.org/docs/santilli-65.pdf
R. M. Santilli, ”Rotational isotopic symmetries,” ICTP communication No. IC/91/261 (1991), www.santilli-foundation.org/docs/Santilli-148.pdf
R. M. Santilli, ”Isotopic Lifting of the SU(2) Symmetry with Applications to Nuclear Physics,” JINR rapid Comm. Vol. 6. 24-38 (1993), www.santilli-foundation.org/docs/Santilli-19.pdf
R. M. Santilli, ”Lie-isotopic generalization of the Poincare’ symmetry, classical formulation,” ICTP communication No. IC/91/45 (1991), www.santilli-foundation.org/docs/Santilli-140.pdf
R. M. Santilli, ”Nonlinear, Nonlocal and Noncanonical Isotopies of the Poincare’ Symmetry,” Moscow Phys. Soc. Vol. 3, 255 (1993), www.santilli-foundation.org/docs/Santilli-40.pdf
R. M. Santilli, ”Isotopies of the spinorial covering of the Poincare´ symmetry,” Communication of the Joint Institute for Nuclear Research, Dubna, Russia, No. E4-93-252 (1993).
R. M. Santilli, ”Recent theoretical and experimental evidence on the synthesis of the neutron,” Communication of the JINR, Dubna, Russia, No. E4-93-252 (1993), published in the Chinese J. System Eng. and Electr. Vol. 6, 177 (1995), www.santilli-foundation.org/docs/Santilli-18.pdf
R. M. Santilli, “An introduction to the new sciences for a new era,” Invited paper, SIPS 2016, Hainan Island, China, Clifford Analysis, Clif- ford Algebras and their Applications ol. 6, No. 1, pp. 1-119, (2017), www.santilli-foundation.org/docs/new-sciences-new-era.pdf
A. K. Aringazin and K. M. Aringazin, ”Universality of Santilli’s iso- Minkowskian geometry” in Frontiers of Fundamental Physics, M. Barone and F. Selleri, Editors, Plenum (1995), www.santilli-foundation.org/docs/Santilli-29.pdf
R. M. Santilli, ”Closed systems with non-Hamiltonian internal forces,”” ICTP release IC/91/259 (1991),www.santilli-foundation.org/docs/Santilli-143.pdf
R. M. Santilli, ”Inequivalence of exterior and interior dynamical problems” ICTP release IC/91/258 (1991),www.santilli-foundation.org/docs/Santilli-142.pdf
R. M. Santilli, ”Generalized two-body and three-body systems with non-Hamiltonian internal forces-” ICTP release IC/91/260 (1991), www.santilli-foundation.org/docs/Santilli-139.pdf
R. M. Santilli, ”Galileo-isotopic symmetries,” ICTP release IC/91/263 (1991),www.santilli-foundation.org/docs/Santilli-147.pdf
R. M. Santilli, ” Galileo-Isotopic relativities,” ICTP release (1991), www.santilli-foundation.org/docs/Santilli-146.pdf
R. M. Santilli, ”Theory of mutation of elementary particles and its application to Rauch’s experiment on the spinorial symmetry,” ICTP release IC/91/46 (1991), www.santilli-foundation.org/-docs/Santilli-141.pdf
R. M. Santilli, ” The notion of non-relativistic isoparticle,” ICTP re- lease IC/91/265 (1991),www.santilli-foundation.org/docs/Santilli-145.pdf
C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics,Addison-Wesley, MA (1981).
H. Rutherford, Proc. Roy. Soc. A, Vol. 97, 374 (1920).
J. Chadwick Proc. Roy. Soc. A Vol.136, 692 (1932).
E. Fermi Nuclear Physics, University of Chicago Press (1949).
R. M. Santilli, ”Apparent consistency of Rutherford’s hypothesis on the neutron as a compressed hydrogen atom, Hadronic J.Vol. 13, 513 (1990), www.santilli-foundation.org/docs/Santilli-21.pdf
C. S. Burande, “Santilli Synthesis of the Neutron According to Hadronic Mechanics,” American Journal of Modern Physics 5(2-1): 17- 36 (2016), www.santilli-foundation.org/docs/pdf3.pdf
R. M. Santilli, ”The etherino and/or the Neutrino Hypothesis?” Found. Phys. Vol. 37, p. 670 (2007),www.santilli-foundation.org/docs/EtherinoFoundPhys.pdf
Lo¨ ve, M. Probability Theory, in Graduate Texts in Mathematics, Vol- ume 45, 4th edition, Springer-Verlag
DOI: http://dx.doi.org/10.23755/rm.v38i0.517
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Ruggero Maria Santilli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.