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ABSTRACT 

Recently several groups have described novel algorithms for solving the gravitational A-body problem with 
computing time of order N log N or N instead of N2. These algorithms are known as “tree codes” because a 
tree-shaped data structure is used to organize the particles into a hierarchy of even larger groups. Like most 
numerical schemes, tree codes are approximate methods, delivering increasing accuracy as more computer time 
is invested. Since the approximations involved are novel and therefore unfamiliar, tree codes have only just 
begun to catch on in stellar dynamics. 

Here we present a detailed analytic and numerical investigation of the error properties and performance of 
one such tree code, which is based on a hierarchical partition of space into cubical cells. Our analysis explores 
three different levels. We first consider the effect of replacing a distant cell containing many particles with a 
single point mass and find that the scaling of errors with opening angle and particle number can be well 
understood theoretically. We next discuss the net effect of many such errors on the total force on a single 
particle within a large-A system; making analytic estimates is difficult because errors from different cells can add 
coherently, but numerical tests show that the total error is well-behaved and can be made quite small at a 
reasonable computational cost. Finally, we consider the cumulative effect of force-calculation errors on the 
trajectories of individual particles and the dynamical evolution of A-body systems, focusing on a set of tests 
designed to assess how rehable tree codes are for self-consistent collisionless problems. We conclude that as a 
general class tree codes appear to be the method of choice when modeling collisionless three-dimensional 
A-body systems with arbitrary geometry. C and Fortran 77 implementations of our algorithm are available on 
request. 

Subject headings: numerical methods 

I. introduction 

Broadly speaking, an A-body algorithm has two compo- 
nents: a method for evaluating the force on particles and a 
method for integrating the orbits of particles. Orbit integra- 
tors have approached a local optimum with Aarseth’s (1985) 
implementation of Ahmad and Cohen’s (1973) neighbor 
scheme within his individual-time-step algorithm. In addi- 
tion, Aarseth has developed codes that include the regulariza- 
tion of many-body encounters, which is vital for simulations 
of collisional systems such as globular clusters. In con- 
trast, force calculators have evolved in many directions, with 
simple direct-sum 0(N2) algorithms augmented by optical 
analog methods (Holmberg 1941), particle-mesh algorithms 
(Miller 1978; Hockney and Eastwood 1981), particle- 
particle particle-mesh methods (Hockney and Eastwood 1981; 
Efstathiou et al 1985), global multipole expansion techniques 
(van Albada 1982; Villumsen 1982), and recently various 
hierarchical algorithms (Appel 1981, 1985; Jemigan 1985; 
Porter 1985; Barnes and Hut 1986; Greengard and Rokhlin 
1987; Press 1986). Most of these methods offer fast approxi- 
mation of the gravitational field for large-A systems and so 
are well suited to collisionless problems, which typically place 
more priority on a large value of A than on very precise orbit 
integration. However, most fast force calculators also set 
rather frustrating constraints on the mass distributions al- 
lowed, discouraging many interesting projects. For example, 
three-dimensional particle-mesh codes can model only a mod- 
est range of length scales, while improved schemes that in- 

clude local particle-particle interactions slow down if large 
density contrasts develop. Global expansion techniques get 
around these problems, but can only handle rather smooth 
spheroidal distributions with one or two density centers. At 
present, only hierarchical methods seem promising for general 
three-dimensional collisionless calculations. 

Hierarchical methods are based on the observation that, 
when calculating the gravitational force acting on a given 
particle, it makes sense to ignore the detailed internal struc- 
ture of distant groups of many particles. By replacing many 
similar particle-particle interactions with a single particle- 
group interaction, which may include low-order corrections 
for the group’s internal structure, hierarchical algorithms 
achieve very significant computational savings. At first sight it 
appears more expensive to identify suitable groupings of 
distant particles than to simply calculate all interactions di- 
rectly. The trick is to organize the particles into a tree-shaped 
data structure, which partitions the mass distribution into a 
hierarchy of suitable groups, and is repeatedly updated as the 
system evolves. Recursive “descent” of the tree structure can 
yield a good approximation to the total force on a single 
particle in only 0(log A) steps.1 

Computer scientists draw their trees upside down, so descent means 
moving from the root toward the leaves. This should seem perfectly 
natural to astronomers, who assign large magnitudes to stars with small 
luminosities. 
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The algorithm developed by Barnes and Hut (1986), which 
is described in more detail in Appendix A, follows the general 
approach described above, but with one important twist. Tree 
codes developed by Appel (1981, 1985), Jemigan (1985) and 
Porter (1985), and Press (1986) used tree structures that try to 
conform to the (presumably) hierarchical mass distribution of 
the system. Such trees may be more trouble than they are 
worth, because the faithfulness of the tree becomes a critical 
issue in the analysis of the code. In contrast, we based our 
tree on the idea of recursively refining regions of space. The 
interior nodes of the tree correspond to cubical cells, while 
particles themselves correspond to the leaves at the ends of 
the branches. Starting with the “root” cell, which encloses the 
entire system, we repeatedly subdivide any cell containing 
more than one particle into eight smaller subcells, continuing 
until all particles are isolated in individual cells. Tree con- 
struction is concluded by propagating mass and center-of-mass 
information back from the leaves toward the root cell. The 
entire construction process requires 0(N log N) steps and 
typically takes only -2% of the CPU time of an equal-time- 
step algorithm running on a workstation or mainframe; on a 
vectorizing supercomputer a comparable level of performance 
can be obtained with careful coding (Makino 1989; Hemquist 
1989). 

Given this tree structure, the recursive descent procedure 
computes the force on a particle by constructing a description 
of the surrounding mass distribution which is fine grained 
locally but increasingly coarse grained at longer ranges. We 
start at the root cell of the tree and descend toward the leaves 
according to the following rules. If we encounter a particle or 
a cell which subtends less than a critical linear angle 0 as seen 
from the particle on which we are currently evaluating the 
force we compute the particle-particle or particle-cell interac- 
tion and add the result to the running sum for the current 
particle. Otherwise, we have presumably encountered a cell 
which is too close to the current particle to be treated as a 
unit, so instead of calculating a particle-cell interaction di- 
rectly, we recursively examine the subcells of this cell. Essen- 
tially, this procedure guarantees (1) that all cells interacting 
with the current particle subtend linear angles of less than 0 
and (2) that each particle in the system is counted once, either 
directly in a particle-particle interaction or indirectly via a 
particle-cell interaction involving one and only one enclosing 
cell. A simple argument given by Barnes and Hut (1986) 
shows that this tree-search procedure is 0(log N)\ hence the 
force on all AT particles can be computed m 0(N log N) 
steps. 

a) Error Analysis: Motivation and an Example 

A head-on collision between two identical spherical systems 
illustrates the kind of systematic errors which can crop up 
with a tree algorithm. In the experiment presented here, two 
Af-body realizations of standard King (1966) models, with 
unit mass Af = 1, binding energy E = —1/2, and dimension- 
less central potential Wc = 5, are generated using N = 2048 
bodies each. The two “galaxies” are launched at each other 
from a distance of two length units, with the velocity they 
would acquire falling from rest at infinity. The equations of 
motion are integrated by a simple time-centered leapfrog with 

time step A* = 0.025, using the tree force-calculation algo- 
rithm with opening angle 0=1 and force softening e = 0.025. 

Figures \a-\c present three “snapshots” of the system, 
showing the initial conditions (/ = 0), the configuration near 
maximum overlap (/ = 1), and the configuration shortly before 
the final merger (/ = 3). The overall behavior of this simula- 
tion is very similar to that found in previous studies of 
head-on collisions using other techniques (e.g., van Albada 
and van Gorkom 1977). As the two galaxies overlap, the total 
mass within a given radius r doubles, so each particle is in 
effect perturbed by a strong radial impulse, lasting a fraction 
of the local dynamical time. When the galaxies separate, they 
“rebound,” launching a significant part of their mass on 
loosely bound or even unbound orbits; the energy required to 
do this comes from their relative motion, which therefore 
decays. 

Figure 2 shows the fractional variation in the com- 
puted binding energy of the system as a function of time, 
[E{t)~ E0]/E0, where ^ = -1.0 is the value of the binding 
energy at ¿ = 0. Dots indicate measurements made using the 
tree algorithm to compute potentials, while circles indicate 
occasional (and expensive) checks made using a direct-sum 
calculation. Two systematic effects are apparent in this figure: 

1. The tree algorithm underestimates the depth of the 
potential well by 0.3%-0.8%, as shown by the net offset of the 
circles. 

2. Conservation of energy is violated at the -2% level. At 
maximum overlap the binding energy of the system, E, is 
slightly too negative, and when the system reexpands the 
opposite effect is seen. 

The second effect could conceivably be due to either the 
force or integration algorithms, so two additional calculations, 
one with Ar = 0.0125 and one with 0 = 0.7, were run. Reduc- 
ing the time step by a factor of 2 had almost no effect on 
energy conservation. Refining the force calculation so as to 
double the average number of interactions calculated per 
particle, however, reduced the violation of energy conserva- 
tion to slightly less than 1%, proving that the force calculation 
is the culprit. 

b) Long-Range Goals and Short-Range Plans 

How can we establish the correctness of an Af-body calcu- 
lation? Traditionally, most practitioners have used conserva- 
tion of total binding energy and, to a lesser extent, total linear 
and angular momentum as the primary measures of accuracy. 
This practice is perhaps based on the general expectation that 
only a very small subspace of possible numerical errors could 
seriously compromise the results of an Ar-body calculation 
without affecting E and /. But, in fact, any dynamical system 
based on a spherically symmetric two-particle interaction 
potential will conserve total momentum and energy, no mat- 
ter how much the potential differs from the Keplerian 1/r 
form. Global conservation may be less reliable than one 
would like. If more stringent tests of Af-body models are 
available, they should be applied as well. 

At this point we must distinguish between the mathemati- 
cal and numerical descriptions of the Ar-body problem. From 
a mathematical point of view, the iV-body equations of mo- 
tion define a mapping from the initial to the final states of the 
system which is continuous everywhere, except for a singular 
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Fig. 1.—Head-on collision of two identical King models with central 
potentials = 5, run with the BH tree algorithm, (a) Initial conditions, 
/ = 0; (b) first encounter, t=l; (c) between first and second encounters, 
/ = 3. 

set of measure zero. However, from a numerical point of view 
we may not be able to demonstrate the continuity of this 
mapping. Some systems depend sensitively on bits which were 
too insignificant to be specified in initial conditions of reason- 
able word length (Miller 1964; Dejonghe and Hut 1986; 
Heggie, Goodman, and Hut 1989). These missing bits are 
effectively supplied by the iV-body integrator, which acts as a 
source of microscopic noise; of course, different machines and 
integration algorithms inject entirely different noise patterns. 
Unless the A^-body code introduces a bias into the evolution 
of the system, for example by avoiding multibody encounters, 
these low-level noise sources should not seriously compromise 

the results. But as Lecar (1968) concluded, the rapid diver- 
gence of nearby trajectories means that we cannot establish 
the correctness of typical collisional simulations by comparing 
the motions of corresponding particles in different calcula- 
tions starting from the same initial conditions. Collisional 
simulations can only be tested by observing the convergence 
of statistical measures derived from coordinates of many 
particles and by noting good conservation of E and J to- 
gether with an accurate 1/r2 force field. 

In other cases, when the Lyapunov coefficients of the 
system are not too large and the calculation runs for only a 
few dynamical times, we may be able to demonstrate the 
continuity of the N-body mapping numerically by showing 
that a small perturbation in the initial conditions leads to a 
small perturbation in the final state. The solution supplied by 
an iV-body code can then be viewed as an approximation to 
the canonical trajectory of the system. There are many ways 
to assess the accuracy of this approximation. Starting from a 
given set of initial conditions, we can run a sequence of 
calculations, successively refining nonphysical parameters such 
as the time step Af, force-softening parameter e, or critical 
opening angle 6. If the trajectories of corresponding particles 
in different runs along this sequence converge to a definite 
limit, before diverging due to round-off errors,2 we can con- 
clude that the iV-body integration provides a reliable mapping 
from initial to final state. On the other hand, we can also run 
a sequence of calculations with different total N, but with 
some common subset of particles starting from the same place 
in phase space in each case. If these common particles follow 
similar trajectories, regardless of N, we can conclude that 
relaxation is not a problem. Together, convergence and relax- 
ation tests can provide strong support for the correctness of a 
collisionless calculation. Moreover, by identifying the domi- 
nant source of error in a calculation, they can guide us in 
selecting the most efficient choice of parameters A/, e, 0, and 
N for a given physical problem, minimizing the computing 
time while maintaining physical accuracy. 

Before embarking on such a program of “throughput” 
tests, however, we would like to first examine the detailed 
performance of our tree force calculator in terms of comput- 
ing time required and statistical distribution of errors made in 
force approximation, as a function of opening angle 0, soften- 
ing e, particle number N, and distribution of particles. A 
completely analytic treatment of this problem is too hard; for 
starters, we would need a statistical description of the mass 
distribution on both microscopic and macroscopic scales and 
a theory of how to sum the partially correlated errors due to 
many particle-cell interactions. On the other hand, a numeri- 
cal treatment is completely straightforward: create an AT-body 
system, feed it to the tree-code force algorithm, and compare 
the results with an N1 calculation. This kind of empirical 
approach has already been used by Hemquist (1987) to study 
the Bames-Hut (BH) algorithm; the results which we will 
present in § III A complement and extend his work. 

In this paper we discuss force-calculation errors on three 
levels. First, in § II we consider the local static error made 
when some complicated but distant set of particles is repre- 

2 In principle, one could use a computer with adjustable word length, 
such as the Connection Machine 1 described by Hihis (1985), to directly 
check round-ofF errors. 
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Fig. 2.—Total binding energy of the system shown in Fig. 1, plotted as a function of time. Dots: potential energy computed using tree algorithm; 
circles: potential energy computed using an 0(N2) algorithm. The peaks near t = 1 and t = 4 correspond to the first and second colhsions between the two 
galaxies. 

sented by a single point mass. This is a problem which can be 
addressed analytically, as is illustrated in great detail in 
Appendices B and C. We then compare such calculations with 
numerical experiments, confirming the analytic theory but 
also illustrating the complicated interplay of efifects due to 
finite particle number. Next, in § III we consider the error 
made by the BH tree code in evaluating the total force on a 
single particle in a larger mass distribution. Here it is possible 
to predict the general behavior of the force errors, but de- 
tailed results require a numerical treatment; we give sample 
results, but defer a detailed description of methods and re- 
sults to Appendix D. Finally, in § IV we study the dynamical 
errors made when running an V-body code, focusing on the 
problem of realistically simulating the collisionless flow of 
particles in phase space. We contrast the effect of force-calcu- 
lation errors with other errors due to integration, softening, 
and the discrete sampling of a smooth mass distribution. We 
conclude in § V that presently implemented tree codes can 
indeed provide reliable numerical simulations of collisionless 
systems, since there is now a well-understood procedure to 
obtain arbitrary accuracy in an efficient and controlled way. 

II. ERROR FOR A SINGLE BODY-CELL INTERACTION 

The potential at the position of a given particle, due to the 
gravitational field of all other particles, can be determined 
approximately by our tree algorithm. This approximation 
process introduces an error, which consists of the sum of 
neglected higher order multipole moment contributions of all 
cells containing more than one particle and contributing to 
the force calculation for the given particle. In the simplest 
case, the force contribution from a cell is determined by 
putting all its mass in the center of mass of the original mass 
distribution. This procedure guarantees that the monopole 
moment of the cell is represented correctly and that the dipole 
moment vanishes. The resulting error per cell is given by the 
sum of quadrupole and higher multipole moments of the 
particle distribution in that cell. 

a) Analytic Theory for V —► oo 

A major advantage of our tree method of force approxima- 
tions is that we have a direct and precise handle on the range 
of errors introduced by our approximations. In the simplest 
monopole-only version of our tree method, we face a straight- 
forward, albeit somewhat tedious, exercise in classical poten- 
tial theory: given the mass distribution in a cubical cell, 
compute the successive multipole contributions to the force at 
a given point outside the cell. 

Let us start with the simplest case, in which the cell 
contains a homogeneous mass distribution. In this case the 
quadrupole and octopole moments vanish identically, as can 
be argued from the lack of flattening and “ pear-shapedness” 
of a cube and as is demonstrated by direct inspection in 
Appendix B. The leading term is formed by the next multi- 
pole moment, the hexadecapole moment. As derived in Ap- 
pendix B, we find for the gravitational potential of a homoge- 
neous cube, up to hexadecapole moment 

GM 7 GMa4 

960 r9 [3r4—5(x4 + / + z4)], (1) 

where the potential O(r) is defined with the opposite sign of 
the usual definition, G is the gravitational constant, r = 
(x, y, z) is the position vector of the observer, as seen from 
the center of the cell, r = |r|, and a is the length of the side 
of the cube, centered on the origin of a Cartesian coordinate 
system. M is the total amount of mass in the cell. 

The gravitational force measured by an observer at r fol- 
lows directly from the potential (eq. [1]). For example, the 
x-component of the force, up to hexadecapole expansion, is 
given by 

Fx(r) ^t5*2''2-6*4-3^^^4)]. (2) 

More accurate approximations can be obtained in a similar 
way. In Appendix B we present expressions for the next term 
in the multipole expansion, the 64-pole (hexacontatetrapole?) 
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Fig. 3.—Fractional errors in the gravitational potential, measured outside a cell which contains N particles (N = 2, 8, 32, 128, 512, 2048, 8192, and 
32,768), drawn randomly from a homogeneous distribution. For each N value, three values are chosen for the distance of the observer, to reproduce 
opening angles 6=1 {upper two symbols', three-pointed stars), 0 = 2/3 {middle two symbols', four-pointed stars), and 0=1/2 {lower two symbols', 
five-pointed stars). For each {N,0} combination, an open star indicates the average and a skeletal star indicates the median of a large number of different 
experiments with different random particle distributions and different random orientations of the cell with respect to the observer. The diagonal line has 
been added to indicate a slope proportional to JÑ, at an arbitrary offset. 

contribution, both for the potential (eq. [B28]) and the force 
(eq. [B29]). 

The next exercise, after having gained a detailed under- 
standing of the expansion of the potential of a homogeneous 
cube, is the introduction of a linear density gradient. The 
computations, while still elementary, now become exceedingly 
tedious. The leading error term is derived in Appendix C. In 
terms of the potential, we find 

Here w is a unit vector pointing along the density gradient. 
Specifically, the density is defined as 

p^r) = p(x,y,z) 

Po+(1A)(»-*«)p1) \x\<\a,\y\<\a, 

and|z|<^a, (4) 
0, elsewhere, 

Hr)- 
GM 

1 + - 
288 • (3) 

where p0 and pl are constants, setting the scale for the 
underlying homogeneous density and the linear gradient, re- 
spectively. 

Fig. 4.—Like Fig. 3, but for a distribution of particles which is centrally concentrated according to a singular isothermal distribution poc r The 
density center r = 0 coincides with the center of the cell. 
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number of particles 

Fig. 5 — Continued 

In Appendix C, we present the contributions of the next 
two terms in the expansion, the octopole and the hexadeca- 
pole moments. The reason for extending the expansion that 
far is to make contact between the leading error in the 
homogeneous case and the extra errors introduced by an 
additional linear density gradient. The results for the poten- 
tial are given in equations (Cl9) and (C22). Unfortunately, 
the expressions turn out to be unwieldy, and they are there- 
fore mainly of interest for applications through numerical 
evaluations. This brings us to our next exercise, namely a 
direct numerical determination, in the form of Monte 
Carlo-type experiments, of the error contributions from a 
single box, up to all orders in the expansion. 

b) Numerical Experiments for Finite N 

The first set of numerical tests was performed for the case 
of a homogeneous distribution of particles. The recipe for the 
tests is as follows. Consider a three-dimensional box with 
sides of unit length. Sprinkle N particles in the box at random 
positions. Measure the gravitational potential and the gravita- 
tional force at a distance rG from the center of the box (ra 

stands for the position of the observer). The only extra 
parameter that needs to be specified is the angle between the 
observer and the orientation of one of the sides of the box. To 
simplify the presentation of the results, we have performed 
many different experiments for different random values of 
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Fig. 6.—Like Fig. 5, but with a density center offset r —1 
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1 10 100 1000 10000 
number of particles 

Fig. 6e 

this angle. In Figure 3 we plot the main results of each such 
series of experiments by two different symbols, open stars for 
the average values and skeletal stars for the median values of 
the distribution of measurements for a single setting of the N 
and r0 dials. As can be seen in Figure 3, the averages always 
tend to be somewhat larger than the medians because the 
contribution of occasional larger errors to the average is 
proportional to their magnitude, while their contribution to 
the median is independent of their magnitude. 

Results in Figure 3 are given for Y = 2, 8, 32, 128, 512, 
2048, 8192, and 32,768. The subdivision parameter 0, intro- 
duced in § I, determines the size of the largest cell which is 
not subdivided further, in units of the cell distance (Barnes 
and Hut 1986). In these experiments 0 = l/r0, since the box 
size is unity. For each N value, the three pairs of symbols in 

Figure 4 indicate the results of measurements for different 6 
values. The uppermost symbols, which indicate the largest 
errors, give the results for r0=l or equivalently 6=1. The 
middle symbols apply to r0 = 1.5 or 6 = 2/3. The lower sym- 
bols indicate the results for r0 = 2 or equivalently 0 = 0.5. To 
further highlight the difference in 6 values, we use three- 
pointed stars to indicate 6=1, four-pointed stars to indicate 
6 = 2/3, and five-pointed stars to indicate 6 =1/2. 

The results for the homogeneous case can be understood in 
detail from the analytical derivations given in Appendix B. In 
the range from N= & to N = 128 the errors scale proportional 
to with a constant of proportionality 62. The scaling 
with N follows from the fact that the leading error contribu- 
tion stems from the quadrupole contribution. In the limit 
TV oo the quadrupole moment of a homogeneous solid cube 
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Fig. 7.—Like Fig. 5, but with a density center offset r = 4 
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number of particles 

Fig. le 

vanishes. For finite N, therefore, the quadrupole moment is 
entirely due to random fluctuations in particle positions within 
the box, which average out to a net quadrupole moment 
proportional to \/ÄL To highlight this dependency, we have 
added a line with slope proportional to /Y, at an offset which 
is arbitrary, but which has been kept constant throughout the 
whole set of figures in this section. The scaling proportional to 
02 follows from the fact that the quadrupole moment, corre- 
sponding to an / = 2 spherical harmonic, has to be multiplied 
by a factor 02 in order to determine the contribution to the 
potential at a fixed distance. For larger N values, N > 10,000, 
the dominant contribution to the error in the potential arises 
from the hexadecapole moment, which is the lowest nonvan- 
ishing multipole moment of a solid cube. Indeed, this contri- 
bution which corresponds to a spherical harmonic with / = 4, 

scales proportional to 04, as can be clearly seen for N = 32,768, 
where the N dependence has leveled off and nearly reached 
the asymptotic iV oo limit. 

As a more realistic particle distribution we now switch 
from a homogeneous system to a self-gravitating, centrally 
concentrated system. For this purpose we introduce an extra 
parameter, a, which characterizes the radial distribution of 
particles, chosen as a power-law density distribution propor- 
tional to r a. Figure 4 shows the result of measuring the 
potential from a box centered on the density center of the 
particle distribution. Two differences are immediately evident 
upon comparing Figures 3 and 4: the errors in Figure 4 are 
systematically lower, and the hexadecapole saturation sets in 
for higher particle numbers. The first effect follows from the 
central concentration of particles inside the box, resulting in 
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smaller multipole moments of the density distribution. The 
second effect is related to the lower density near the edges of 
the box, since the hexadecapole moment is a measure of the 
“comeredness” of a distribution of particles. Apart from 
these two major differences, the overall trend remains the 
same, including the scaling proportional to 02 and JÑ in the 
fluctuation regime toward the left and proportional to 04 and 
N° in the saturation regime. 

The next step up in complexity and realism lifts the degen- 
eracy of letting the center of the box coincide with the density 
center of the particle distribution. Allowing the two to differ 
introduces two more parameters. First, we have the distance r 
from the center of the box to the center of a star cluster. In 
addition, we have the angle ß between the observer and the 
center of the cluster as seen from the center of the box. For 
symmetry, 0° < ß < 180°. To recapitulate, we now have five 
dials which we can twist to chose new experiments to per- 
form, one for each of the five parameters, r, r0, ß, N, and a. 
Figure 5 shows the results for the choice r = 0.25, a = 2. 
Figures 5a-5e summarize the results for the choices ß = 0°, 
45°, 90°, 135°, and 180°, respectively. The effects of changes 
in N and r0 (or, equivalently, 6) are portrayed within individ- 
ual frames, as before. Figures 6 and 7 are similar, except for 
the fact that they show the results for the choices r = 1 and 
r = 4, respectively. 

Figures 5-7 are less straightforward to interpret. Their 
behavior cannot be simply explained as being due to 
quadrupole and hexadecapole contributions. A complex inter- 
play of these two, and octopole contributions as well, occurs 
which is hard to estimate analytically. In principle, the results 
of Appendix C enable one to disentangle these effects through 
analytical approximations, since the expansions in that ap- 
pendix are carried out to hexadecapole order, at which point 
the competition between the homogeneous contribution to the 
hexadecapole moment and the inhomogeneous contributions 
to the quadrupole and octopole moments has been unraveled. 
However, even a cursory inspection of equation (C22) gives us 
sufficient motivation to leave the clarification between the 
correspondence of equation (C22) and Figures 5-7 as “an 
exercise for the reader.” 

III. TOTAL ERROR FOR A SINGLE FORCE CALCULATION 

Having studied the error incurred when an arbitrary mass 
distribution in a distant, cubical cell is replaced by a single 
point with the same mass and center-of-mass position, we 
next ask how these errors add up when we compute the total 
force on a single particle. This would be straightforward if we 
could assume that the errors due to different cells are statisti- 
cally independent, but this is not justified. We can only sketch 
a qualitative theory for the actual error pattern. However, 
these qualitative arguments can be complemented and illus- 
trated by numerical experiments, which permit a quantitative 
study of the error properties of a specific algorithm under 
specific conditions. 

a) Qualitative Theory of Total Errors 

To comprehend the difficulty of building a theory from first 
principles for the total force-calculation error, imagine replac- 

ing the mass points in an A-body system with equivalent 
luminosities (see Holmberg 1941). Each point is bathed in a 
field of radiation, falling off as 1/r2, from all others in the 
system; when a tree-approximation is used to estimate this 
field, distant groups of lights are replaced by single points of 
the same total luminosity. Nearby, relatively faint fights sur- 
round the observer in an arbitrary pattern, while at greater 
distances, larger sources are set in nested cubical arrays, ever 
more perfectly sampled, and from afar a few tremendous 
“stars” represent huge distant masses. As we move from place 
to place within the system, these fights hang fixed in space, 
then suddenly divide into equivalent clusters or merge to- 
gether into larger units, with nearby ones changing most 
rapidly, and the most distant ones only as we cross the 
system. If instead we stand still and watch as particles move 
around the system, we see nearby particles and small cells 
jittering and flashing around; more distant sources maintain 
their identity, but vary in luminosity while shifting around in 
their cells. 

To be more concrete, consider the total error, AO(x), for a 
homogeneous spherical system, evaluated at points along the 
jc-axis, as shown in Figure 8. This function is piecewise 
continuous with a finite number of jumps, each one represent- 
ing a change in the interaction fist assigned to a test particle 
at that point. The extent of a continuous segment is never 
much longer than the smallest cell on its interaction fist, 
roughly of the order of the interparticle spacing. Within a 
continuous segment xa<x<xb, the total error is 

AO(*)= f AO^x), (5) 
7=1 

where A^x) is the error due to cell j and the sum runs over 
the cells on the interaction fist. The error due to an individual 
cell is generally dominated by the lowest order moment 
excluded from the interaction calculation (see § II). If this is 
the quadrupole moment, then AOy(x) has a term of 0(x2), 
while if quadrupole moments are included, the lowest non- 
constant term is of 0(x3). Within xa < x < xb, the total error 
in the acceleration, Aa(x), is simply the gradient of the 
potential error: 

Aa(x) =vA$ = i;vAO/. 
j 

This relation does not hold at points where the interaction fist 
changes and AO jumps; at such points, Aa also exhibits a 
finite discontinuity. 

If the errors from different cells were uncorrelated, we 
might hope to find some reasonable Ansatz for the distribu- 
tion of AOy and use the theory of random walks (see Chan- 
drasekhar 1943) to evaluate equation (5) as an incoherent 
sum. But from the above picture it is clear that we may expect 
the error from one cell to correlate with the error from its 
next-door neighbor if both sample part of the same global 
density field. The quasi-regular lattice of cells seen at interme- 
diate distances can generate significant correlated errors if the 
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AO 

x 

Fig. 8.—Schematic picture of force calculation in a spherical system, sampled at points along the x-axis (dotted). The total error is shown as a 
piecewise continuous function. Three cells on the interaction list of the continuous segment shown as a solid line along the x-axis are indicated, together 
with their individual contributions to the total error. 

cells cover a region with a coherent large-scale density field, 
because similar patterns of mass distribution may occur in 
one cell after another. Furthermore, the error observed at one 
point is correlated with that found at a nearby point, because 
some fraction of the total error is due to distant cells common 
to both observations. In general, we expect some positive 
correlation in the error field on all length scales up to the 
scale of the largest cells contributing to the force calculation. 

On these last points our analysis diverges sharply from 
earlier work by Porter (1985), who explicitly assumed that the 
errors contributed by different nodes are statistically indepen- 
dent. “Lagrangian” tree codes (Appel 1981, 1985; Jemigan 
1985; Porter 1985; Press 1986), which organize groups of 
particles into irregular tree structures, may not generate the 
same level of correlation between such errors as our nested, 
regular array of cubical cells does. What is certain is that a 
rigorous analysis of a Lagrangian tree code is much harder, 
precisely because the tree is harder to characterize. We sus- 
pect that both Eulerian and Lagrangian tree codes produce 
statistically correlated error patterns. 

b) Quantitative Tests of Force Calculation 

The qualitative picture presented above is supported by 
numerical experiments. For example, we generated a uniform- 
density sphere oî N = 4096 particles with unit radius and 
measured the errors in the potential AO = — <]>, and accel- 
eration äa = \at- a\ at 4096 points uniformly spaced on the 
x-axis between x = 0 and x = 2. Results computed for 0 = 1 
and e = 0 are plotted in Figure 9. The “fractal sawtooth” 
pattern of error as a function of x reflects the changing set of 
interactions used by the hierarchical algorithm to approxi- 
mate the gravitational potential and force; it is a one-dimen- 
sional shadow of the tree itself. Major discontinuities repre- 
sent wholesale revisions due to changes with respect to distant 
massive cells, while smaller jumps reflect local shifts. Note the 
bunching up of similar discontinuities, for example at r = 1.25, 
directly illustrating the correlated errors produced by adjacent 
cells. 

The distribution of AO values also provides evidence for 
correlated errors. Figure 10 presents histograms of AO for 
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Fig. 9. 

Fig. 9.—(a) Error in potential A<1> and (b) error in acceleration A a plotted vs. position r for a system of N = 4096 particles in a homogeneous sphere 
of radius 1, sampled at « = 4096 points along the ^c-axis. The force calculation tolerance was 0=1, quadrupole moments were not included, and e= 0. 

Fig. 10.—Distribution of AO values for four different configurations, sampled at « = 512 interior points. Force calculation parameters follow Fig. 9. 
(a) “Ball” (so/id line) and “King” (dotted line), (b) “Disk” (solid line) and “hierarchy” (dotted line). 

four different mass distributions. Each configuration is repre- 
sented by Af = 4096 massive bodies and tested at « = 512 
field points drawn from the same distribution; further details 
of these tests are given in Appendix D. These histograms 
are not Gaussian, nor are they centered on AO = 0, as we 
would expect if the errors due to individual cells add 
incoherently and the total error is not dominated by any 
particular cell. 

Figure 11 shows the rms relative local error in the potential, 
((A0/0)2)1/2, as a function of opening angle 0, for our four 
different mass configurations. When quadrupole moments are 
included, the errors are relatively insensitive to the form of 
the mass distribution, ranging from ~10-3 for 0 = 1 to ~10-5 

for 0 = 0.3. Quadrupole corrections are particularly useful 
when calculating the forces due to the highly flattened “disk” 
distribution, which is not surprising since in this case many 
cells must have large quarupole moments. The “King” distri- 
bution appears to generate the smallest quadrupole correc- 
tions. The rms error converges rapidly as 0 —► 0, scaling 
roughly as 02 when forces are calculated without quadrupole 
corrections and as 04 when these are included. 

In practice, we need to know not the error in the potential, 
but the error in the acceleration. Root-mean-square relative 
errors in the computed acceleration, (|Aa|2/|a|2)1/2, are 
shown in Figure 12. For a given configuration and 0, the rms 
error in a is roughly an order of magnitude larger than the 
rms error in 0. These errors are also somewhat more sensitive 
to the configuration used. The slopes of these curves and the 
overall pattern of errors are very similar to Figure 11. 

As noted in § la, the tree algorithm yields a slightly biased 
result for the net potential energy t/ of a configuration. Figure 
13 shows I (AO)/(<!>) I, the fractional error in U, for the same 
set of configurations and 0 values used above. Note that the 
average offset, (AO), may have either sign, although this 
information has been suppressed. While the measured bias is 
quite sensitive to the details of the configuration tested, the 
parameters used for the force calculation, and even the place- 
ment of the system with respect to the root cell of the tree, the 
magnitude of this bias is relatively small and can be reduced 
much further by using quadrupole corrections. 

The tree algorithm introduces additional errors when a 
nonzero softening parameter e is used, as Hemquist (1987) 
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Fig. 11.—Root-mean-square relative errors in the potential, ((A0/0)2)1/2, averaged over n = 512 test positions, {a) Without quadrupole correction; 
(b) with quadrupole correction. Plotting symbols indicate the configuration tested: “ball” {filled circles), “King” {open circles), “disk” {squares), and 
“hierarchy” {diamonds). 

log 0 log 0 

Fig. 12.—Root-mean-square relative errors in acceleration, (|Aö|2/|a|2)1/2. {a) Without quadrupole correction; {b) with quadrupole correction. 
Plotting symbols follow Fig. 11. 

observed. In the iV oo limit,3 these additional errors come 
from cells within a distance of a few e, and the contribution 
of such cells to the total error can hardly be greater than their 
contribution to the total force. Hence the tree-code errors due 
to e > 0 will not dominate the errors already committed 
for zero softening unless e is so large as to strongly perturb 
the global force field of the system. For finite N the effect of 
softening on the tree errors is even smaller, because some of 

3 Note that in this limit, Hemquist’s parameterization of e in terms of 
the mean interparticle separation cannot be defined. 

the interactions calculated now involve particles, which are 
softened exactly. These considerations are supported by nu- 
merical results, presented in Figure 14, which shows the rms 
error in O as a function of e for 0=1. Note that softening has 
no significant effect on the errors until e is of the order of the 
characteristic scales of the system. 

What is the cost of a force calculation? Figure 15 shows, for 
the same set of configurations and 0 values as above, the 
mean number of total interactions, 7zpn, and the mean number 
of particle-cell interactions, «pc. These results, obtained with 
4096 particles, scale roughly as log N for larger N. There is a 
significant dependence on the shape of the mass distribution, 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

S.
 . 

.7
0.

 .
38

9B
 

BARNES AND HUT Vol. 70 404 

Fig. 13.—Relative offset of the potential, | (A0)/(0) |. (a) Without quadrupole correction; (b) with quadrupole correction. Plotting symbols follow 
Fig. 11. 

Fig. 14.—Root-mean-square relative errors in the potential, ((A4>/<E>)2)1/2 as a function of e, evaluated with opening angle 0=1. (a) Without 
quadrupole correction; (b) with quadrupole correction. Plotting symbols follow Fig. 11. 

with “King” models requiring up to an order of magnitude 
more interactions per force calculation than hierarchical 
“cluster” configurations do. This is due to the extremely 
sparse structure of the tree derived from such a hierarchically 
clustered distribution. Flattened configurations are also rela- 
tively cheap, since again many of the cells examined are 
completely empty. 

The total computational cost depends on the computer 
used, but scales roughly like ñpn + Qñpc, where Q is the 
relative cost of a quadrupole correction, ranging from Q -1 
on a SUN 3/50 with f68881 chip to ß-0.3 on a typical 
supercomputer; ß = 0 if quadrupole corrections are not used. 
In general, it proves to be efficient to use quadrupole moment 
even when only moderately accurate forces are required. For 

example, for an rms error of less than ~3xl0-4 in AO/O, 
we can set 0 = 0.7 and use quadrupole corrections, or set 
0 = 0.3 and do without. In terms of total cost for comparable 
accuracy, the quadrupole option is anything from 1.2 to 4.0 
times faster, depending on the machine and mass distribution 
involved. 

When compared with direct-sum methods, the efficiency of 
a tree code depends on the total N, the force calculation 
accuracy required, the shape of the mass distribution, and the 
kind of hardware used. A direct-sum code must evaluate 
(1/2)(N-1) interactions per particle per force calculation, in 
comparison with the effective ñpn + Qñpc evaluated by our 
tree code. Much in the spirit of computer hardware vendors, 
we cite the ratio (l/2)(N-l)/(ñpn +Qñpc) as the smallest 
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Fig. 15.—Average number of interactions calculated per particle per force calculation, (a) Mean number of total interactions, npn; (b) mean number 
of particle-cell interactions, wpc. Plotting symbols follow Fig. 11. 

speedup, relative to a direct-sum algorithm, that the tree code 
is “guaranteed not to exceed” (Dongarra 1988). This compari- 
son, however, ignores the extra overhead of the recursive 
descent process, which can be very significant if the hardware 
is not hospitable. Perhaps a more useful figure is the N at 
which the tree code breaks even with a direct-sum method. 
For a low-accuracy calculation running on a workstation or 
mainframe, this point is reached by Y~1025, while for pro- 
duction-quality runs on a vector supercomputer, break-even 
can require N ~ 103-103 5, because of the difficulty of mating 
the algorithm to the hardware. 

IV. ERROR GROWTH IN DYNAMICAL AT-BODY CALCULATIONS 

How does the “noise” injected by hierarchical force calcu- 
lations effect the evolution of an N-body system? A relative 
error e in the force should lead to a relative error 8 of order e 
in the phase-space coordinates of each particle after one 
dynamical time. However, force calculation errors should be 
compared with other errors in A-body simulations: trunca- 
tion in integrating the equations of motion, roundoff due to 
finite wordlength, force softening used to render the equations 
nonsingular, finite-AT sampling of collisionless systems, and 
regularization transformations and perturbation approxima- 
tions introduced for collisional systems. Given the scope for 
complicated interactions between various sources of error, a 
theoretical approach again seems rather daunting, but as in 
the last section, numerical experiments can be used to draw 
some definite conclusions, at least for collisionless systems. It 
is much harder to rigorously verify the results of collisional 
calculations, a point we will come back to. 

To study error effects in an Af-body calculation, we have 
run a sequence of models starting from the same initial 
conditions each time but changing parameters such as the 
time step A/, softening length e, total particle number N, and 

of course the opening angle 6. For these test calculations we 
chose the same collision of King models used in § la, since 
problems of this general type highlight the versatility of tree 
codes. We evaluated the level of agreement between two 
calculations by comparing the coordinates of corresponding 
particles. Good consistency at this detailed level seems essen- 
tial if projects such as the classification of orbits in merger 
remnants are attempted. 

For the first set of experiments, we fixed the particle 
number at Y = 4096 and the softening parameter at £ = 1/40. 
We varied the time step A/ from 1/40 to 1/160 and force 
calculation accuracy from 6=1 without quadrupole moments 
to 0 = 0.5 with them. Let ^(t; a) be the position vector of 
particle z at time t in simulation a. At t = 4, when the merger 
is almost over, we compared simulations in pairs a, b by 
computing distances A/* = |#;.(4; a)— /-(4; b)\ for particles z = 
1,...,4096. Figure 16 shows the grid of models; the numbers 
are median values of A/; evaluated between each adjacent 
pair of simulations. As the time step and force calculation are 
refined, median discrepancies between simulations tend to- 
ward zero; this is precisely the behavior we want the code to 
exhibit. It is also interesting that the errors due to the force 
calculation and integration algorithms are weakly coupled: 
the convergence on refining A/ by a factor of 2 is more rapid 
for smaller 0 values, suggesting that force calculation errors 
are giving the leapfrog integrator a little indigestion. In the 
lower-right comer of Figure 16, the agreement between simu- 
lations is good enough that similar “constellations” of parti- 
cles are apparent in the envelopes of the merger remnants, 
although such one-to-one correspondence cannot be found 
looking toward the centers of these systems. 

For the next set of tests, we took the same initial condi- 
tions, used 0 = 0.7 with quadrupole moments, and varied the 
time step A/ from 1/80 to 1/320 and softening parameter e 
from 1/40 to 1/160. The models and resulting median 
phase-space distances are shown in Figure 17. The discrepan- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

S.
 . 

.7
0.

 .
38

9B
 

BARNES AND HUT Vol. 70 406 

Fig. 16.—Grid of models in time step vs. force calculation accuracy plane, all starting from the same initial conditions; each dot represents a 
calculation. The numbers plotted between models are median distances for corresponding particles. The left-most column was made without quadrupole 
corrections; all others included them. The run marked with an open circle is common to the next two figures as well. 

Fig. 17.—Grid of models in time step vs. softening length plane, all 
starting from the same initial conditions; each dot represents a calcula- 
tion. The numbers plotted between models are median distances between 
corresponding particles. 

des between these simulations do not decrease as A/ and £ 
are jointly refined. For a given e the models converge as A/ is 
reduced, but the converse is false. Furthermore, these two 
parameters are strongly coupled; a smaller e demands a 
smaller A/ to reach a given accuracy. 

The large effect seen here on changing e requires an expla- 
nation; since the softening lengths used are an order of 
magnitude or more smaller than the core radii of the model 
galaxies, it seems unlikely that global differences in the poten- 
tial are wholely responsible. The ever more lumpy potential 
revealed as e is reduced increases the rate of two-body relax- 
ation, deflecting particle trajectories. Note that e is some two 
orders of magnitude greater than the 90° deflection distance; 
this means that softening directly sets the lower cutoff of the 
Coulomb integral. For the parameters used here, each particle 
has a few encounters within radius e per crossing time. The 
resulting deflections are small, -10“2 rad, but after several 
crossing times even small deflections can become significant. 
Furthermore, the l/(r2 + e2)1/2 softened potential used here 
departs significantly from 1 /r out to several e, so even wider 

encounters and the detailed response to small-scale structural 
features such as the cores of the two galaxies may be sensitive 
to changes in £. This interpretation is in accord with the 
conventional wisdom that the most accurate solution to the 
original collisionless problem is obtained not with the “un- 
physical” parameter e set to zero, but instead with some 
compromise value providing as much smoothing as possible 
without misrepresenting the continuum potential. 

In order to test this interpretation directly, we ran a set of 
calculations fixing Ar=l/80 and 0 = 0.7 with quadrupole 
moments, while varying the particle number N from 2048 to 
16,384, and softening parameter £ from 1/20 to 1/80. To 
compare these simulations on a particle-by-particle basis we 
must precisely define the corresponding particles. Given a 
system of N particles, we can sample one out of every two to 
get a similar system with only N/2 particles. If the discrete- 
ness of an A-body system had no effect on the initial specifi- 
cation or subsequent evolution, this sampling would commute 
with time integration; that is, it would not matter if we 
sampled first and integrated after, or the other way around. 
We have therefore iterated the sampling operation to obtain 
the set of initial conditions used for Figure 18 and have 
derived the median particle displacements at / = 4 by compar- 
ing the coordinates of those particles retained by sampling. As 
N increases, the discrepancy between these models tends to 
vanish, roughly consistent with the relaxation rate scaling like 
N~1/2 as expected. The relaxation rate increases with decreas- 
ing £, and the median discrepancy between £ = 1/40 and 
£ = 1 /80 decreases with increasing A, as also expected. How- 
ever, the models with £ = 1 /20 are severely affected by exces- 
sive softening, which perturbs the net binding energies by 
-5% and leads to the large differences, independent of A, 
with the £ = 1 /40 models. 

A comparison of Figures 16 and 18 shows that, for the 
most part, numerical errors due to finite 0 and A/ are smaller 
than the effects due to finite A. It is clear that the bulk of this 
relaxation is “physical,” given the actual A of the model. For 
example, consider the common run marked with an open 
circle, which appears to be an order of magnitude closer to 
the 0 0, A/ -> 0 limit than to the A oo limit, as inferred 
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Fig. 18.—Grid of models in softening length vs. particle number 
plane, all starting from similar initial conditions; each dot represents a 
calculation. As described in the text, a sampling procedure is used to 
obtain a subset of particles common to all four models. The numbers 
plotted between models are median phase space distances for these 
particles. Note that IK = 1024. 

from the median A/; values. We conclude that tree methods 
do not suffer from unfavorable levels of two-body relaxation; 
this result is consistent with test-particle experiments de- 
scribed by Hemquist (1987). Further improvement in tree 
methods for a fixed N is much less desirable than simply 
increasing N for the tree codes which are currently available. 

In hindsight it is not too surprising that relaxation rates in 
tree codes should be quite comparable to those of direct-sum- 
mation codes using the same value of e. One might worry that 
since each particle in a tree code effectively “feels” only 
/ipn N other objects, the relaxation rate should be compara- 
ble to that found in an Y-body system of ~«pn particles, 
regardless of the actual value of N. The answer to this worry 
is that the distant, massive cells are distributed in a rather 
regular manner, with masses smoothly varying in time, and 
are certainly not subject to the level of Poisson fluctuation 
expected for npQ independent points. 

Note that it is not clear from the above calculations to what 
extent tree methods reproduce the evolution of collisional 
systems correctly; the evolution of a globular cluster depends 
on a very fine balance of competing effects, which have not 
been explored in the above tests. All we can say from our 
results is that, in principle, tree methods can be used for 
globular cluster simulations, since the errors rigorously 
approach zero for 0 0, Ai 0. Whether such calculations 
would be cost effective is a different question, discussed by 
Hut, Makino, and McMillan (1988). 

V. CONCLUSIONS 

We have investigated the error characteristics of a hierar- 
chical A-body algorithm for computing the dynamics of a 
self-gravitating particle system. Our algorithm is based on 
recursively refining regions of space to identify groups of 
particles whose gravitational field can be approximated by a 
low-order multipole expansion (Barnes and Hut 1986). In our 
method the tree is of Eulerian type, and the connections with 
the particles are found through the recursive refinement. 

Another Eulerian approach, with a different method of force 
expansions, was developed by Greengard and Rokhlin (1987). 

Earlier tree algorithms tried to identify natural clumping 
structures within the particle distribution in an effort to find 
an optimal association between tree nodes and particle clumps 
(Appel 1981, 1985; Jemigan 1985; Porter 1985). Thus, these 
codes have a Lagrangian character. These algorithms also 
used the tree structure to expedite the integration of the 
equations of motion, as well as the process of force calcula- 
tion, a bold stroke which may not have paid off in practice. 
The most recent Lagrangian tree method, mentioned by Press 
(1986) and further described by Benz et al. (1989), conforms 
to our approach in using the tree for force calculation only. 

The use of tree methods in stellar dynamics is still suffi- 
ciently novel that it is too early to say which methods are 
most efficient for which type of applications. Since we have 
more experience with Eulerian codes, let us mention here 
some of the aspects of Eulerian trees in which we consider 
them to be superior to Lagrangian trees. One immediate 
advantage of an Eulerian tree is the simplicity of the tree 
construction. As a corollary, another advantage is the possibil- 
ity of a rigorous error analysis, since upper bounds can be 
given for the higher order multipole moments because of the 
spatially regular cubical structure of the branches of the tree. 
Indeed, most of the present paper presents a systematic 
exploration of the behavior of the errors in our code in a 
variety of circumstances. 

We began our investigation in § II by considering the local 
static error made when some complicated but distant set of 
particles is represented by a single point mass. We found 
analytical expressions for these errors in a variety of cases, as 
derived in Appendices B and C. For a homogeneous particle 
distribution in a box, the leading non-Keplerian term in a 
potential expansion is its hexadecapole moment (/ = 4) in the 
limit of a smooth particle distribution, i.e., for an infinitely 
large number of particles. For a distribution with a linear 
density gradient, extra contributions arise starting at the 
quadrupole moment (1 = 2). The analytic expressions were 
compared with the results of numerical experiments, confirm- 
ing the analytic theory but also illustrating the complicated 
interplay of effects due to finite particle number. In particular, 
when a single cell contained less than 103-104 particles, 
random noise from the discreteness of the particle distribu- 
tion would generate quadrupole and octopole ( / = 3) moments 
at least as large as hexadecapole moments, even though the 
particles were drawn from an underlying homogeneous distri- 
bution with vanishing / = 2 and 1 = 3 multipole moments. 

With a good understanding of the error due to a single cell, 
the next logical step was to consider the error in the total 
force and potential at a given place. While the total error is 
just the sum of the errors due to the individual cells in the 
interaction list, evaluation of this sum requires consideration 
of the geometry of the mass on large scales and the level of 
discreteness on small scales. Straightforward numerical exper- 
imentation is probably the only practical way to do the job in 
realistic cases. Results presented in § III show that the accu- 
racy and computational cost of our tree algorithm depend on 
details of the mass distribution, with hierarchical structures, 
of course, eliciting the best overall performance. In all cases, 
the level of error can be controlled at a reasonable cost by 
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careful choice of the opening angle 0. Much of the depen- 
dence on configuration appears to be due to correlations 
present in the errors from different cells; shapes with large- 
scale features extending over many cells, such as the “ball” 
and “disk,” provide the most impressive evidence for corre- 
lated error patterns. The hierarchical force-calculation algo- 
rithm becomes competitive with direct-sum methods for N - 
102 5 to N~ 103 5, depending on the hardware, mass configu- 
ration, and required precision. 

Once the accuracy of force calculations has become, via 6, 
an adjustable parameter in an N-body calculation, one must 
know how to pick an optimum value. We define this optimum 
in terms of a measure of the distance between two A-body 
systems derived from the displacements of individual parti- 
cles. In § IV we present a series of realistic, full-scale numeri- 
cal experiments using a head-on merger of two spherical 
galaxies to contrast the effects of finite force-calculation errors 
with other well-nigh universal sins of V-body simulations: 
integration errors, force softening, and Monte-Carlo sampling 
of continuous systems. Figures 16-18 show how these error 
sources compete with each other; over most of the parameter 
space considered here, the dominant source of error, often by 
an order of magnitude, is the discrete representation of the 
ideal continuum problem originally posed. Note that this 
result could not have been obtained by examining globally 
conserved quantities such as E and /, since these are con- 
served even in collisional systems, while the detailed phase- 
space structure is not. Right off the bat, we can conclude that 
tree methods do not amplify the intrinsic discreteness of 
V-body systems, for if they did, the effect of using 0 > 0 
would dominate the effect of using V< oo. Note however 
that, while tree codes do not exhibit a higher level of relax- 
ation than direct-sum methods do, we have not yet investi- 
gated whether tree methods will get the details of collisional 
systems right. 

A separate question, discussed by Hemquist and Barnes 
(1989) is whether, for a given level of spatial resolution, direct- 
sum and tree methods suffer more from relaxation effects than 
so-called collisionless methods based on Fourier or spherical 
harmonic expansions. From theoretical considerations, to- 
gether with a small number of V-body, experiments, Hem- 
quist and Bames conclude that the relaxation rate depends on 
the resolution of the force calculation, but not on the details 
of the algorithm used. Thus we are free to pick the most 
efficient code capable of delivering the resolution required for 

the problem at hand. A more detailed comparison of tree 
codes with other methods, especially potential-expansion 
codes, would be very welcome, now that the theoretical and 
experimental understanding of V-body methods is developing 
some maturity. It would be especially instructive to define a 
suite of standard V-body initial conditions which could be 
fed to different codes in order to make a detailed comparison 
in terms of cost and efficiency. 

Finally, we contrast our algorithm with the O(N) method 
of Greengard and Rokhlin (1987). There are considerable 
similarities in the two methods; as Katzenelson (1989) has 
shown, both can be viewed as solving a certain recurrence 
relation. The main difference lies in the representation used: 
the O(N) method constructs an approximation to the field 
itself, Oc(r), within each cell C, while our 0(N log N) 
method is formulated in terms of interactions between parti- 
cles. Indeed, it is the funneling of information from the 
6>(log N) levels of the tree into Oc, an object with fixed 
complexity, which gives the Greengard and Rokhlin method 
its theoretical 0(log N) advantage. Such empirical compar- 
isons as are available, however, suggest that the 0( V) method 
does not have a great advantage for the modest levels of 
accuracy required in present astrophysical applications. The 
O(N) method is also more difficult to program, especially in 
the form required for highly inhomogeneous systems (Carrier, 
Grreengard, and Rokhlin 1988). Short-term practical consider- 
ations aside, the Greengard and Rokhlin method does appear 
to represent a breakthrough in principle. 

We conclude that presently implemented tree-codes can 
indeed provide reliable numerical simulations of collisionless 
systems, since there is now a well-understood procedure to 
obtain arbitrary accuracy in an efficient and controlled way. 
Having sharpened our arboreal tools, we are now in a posi- 
tion to apply them with confidence to a large variety of 
problems, which have in common merely a complexity in 
geometry and large deviations from homogeneity. 

We thank Lars Hemquist, Gerald Sussman, and Martin 
Weinberg for interesting discussions and Mathew Halfant for 
writing the special-purpose symbolic manipulation routines 
used to compute the formulae in Appendices B and C. Nu- 
merical calculations were run at the John von Neumann 
Center under LAC-17016. J. B. was supported by New Jersey 
High Technology Grant No. 88-240090-2. 

APPENDIX A 

THE BARNES-HUT TREE ALGORITHM 

The algorithm used for the tests reported here was informally described by Bames and Hut (1986). Here we give a more 
detailed description, based on a revised implementation. Copies of our revised code in C and Fortran 77 are available on request. 

The tree structure used by our code is represented by a collection of cells, which correspond to internal nodes of the tree, and 
particles, which correspond to the leaves at the edge of the tree. Each cell holds the addresses of up to 23 = 8 descendents, which 
may be either cells or particles. The data structures are tied together using pointers to form a directed graph, which may be 
followed from the root cell out toward the leaves. Particles and cells have several components in common, including a mass and a 
position vector. Cells may also have a quadrupole moment for the mass enclosed, if this feature is enabled. 

At each time-step during an N-body calculation, before forces can be calculated, the tree must be constructed anew from the 
coordinates of the particles. This is done by first creating an empty tree, and then inserting the particles into it one at a time. To 
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insert a particle, compute its coordinates (x, y,z) scaled to the range [0,1) within the root cell. Consider a binary expansion of 
these scaled coordinates: 

x = 0.xlx2x3...9 (Al) 

where each x¿ is either 0 or 1, and likewise for y and z. The top bits of these three coordinates, jc1? yx, and zl5 indicate which of 
the eight descendents of the root this particle should go in.4 If the descendent slot is occupied by another cell, the algorithm 
moves down a level and looks at the next three bits, x2, y2, and z2. If the slot is occupied by a particle, a new cell is inserted in 
the slot, and both the old and new particles are then inserted in the new cell. If there is nothing in the descendent slot, we simply 
insert the particle. Thus, starting from the root node, the insertion algorithm scans down the tree looking for a place to insert the 
current particle and extending the tree as necessary whenever two particles try to occupy the same slot. Tree construction is 
concluded by computing the aggregated parameters, namely the mass, center-of-mass position vector, and optional quadrupole 
moment, of each cell. This computation is performed by making a single recursive traverse of the entire tree structure, visiting all 
the nodes below any particular cell before computing parameters for the cell itself. 

A few comments about the implementation of the construction algorithm: (1) In our current version, the root cell is 
dynamically expanded during tree construction if a particle which does not fit inside is found; the new root cell is chosen to 
contain the old root as a subcell, permitting us to “repot” the partly constructed tree. It would have been simpler to make a 
preliminary pass through the particle coordinates and fit the root cell around them beforehand! (2) Scanning down the tree when 
inserting a particle can be easily accomplished by a simple iterative procedure; the recursive tree construction routine found in 
early versions of our tree code has now been replaced. (3) In the F77 version, aggregated parameters are computed by fisting the 
cells in order of increasing size and processing iteratively in this order; this ensures that aggregated parameters from level k are 
available to k-\. (4) In one parallel implementation (Barnes 1986), the tree is constructed by first sorting the particles by the 
value obtained by shuffling the bits of (x, y, z) together as 

(Q.xlx2x^...,Q.y1y1yi...,0.z1z2zi 0.x1y1z1x2y2z2x3y3z3(A2) 

and then grouping particles into cells from the bottom up. This bit-shuffling operation is a nice application of Cantor’s one-to-one 
map between the unit segment [0,1) and the unit square [0,1)2. 

To approximate the force on a particle p, the algorithm makes a recursive traverse of the tree structure, starting at the root cell 
and exploring different parts of the tree at different levels of resolution. Suppose the algorithm is currently working on node q of 
the tree; there are three possibilities. (1) If g is a particle, calculate the interaction between p and q. (2) If g is a cell for which 
can_accept(q, p; 6) is true, calculate the interaction between p and q, optionally including a quadrupole correction for q. (3) If q 
is a cell for which can_ accept is false, do not calculate the interaction between p and q directly, but examine the subcells of q 
according to the above rules instead. The predicate can_accept(p, q; 6) quickly guesses if q is sufficiently well separated from p 
to be handled with a single interaction. Currently, we use a simple and purely geometrical condition; let dpq be the distance from 
p to the center of mass of q, and lq be the length of one side of q; then 

can-accept(q,p;0)=lg< 6dpq. (A3) 

Some comments about the tree-walk algorithm: (1) The recursive procedure outlined above may be recast in an iterative form 
by keeping a stack of nodes to examine: push the root node onto the stack, then loop until the stack is empty, popping the top 
node q off and either calculating its interaction with p or pushing its descendents on the stack instead. (2) For 0 — \ the predicate 
can_ accept may occasionally fail to detect that p is actually inside the cell q, introducing a potentially serious error in the 
computed force. In practice this happens so rarely that it is sufficient to flag such errors when they occur. A more rigorous solution 
would be for can_accept to explicitly check if p lies within q, but the improvement is not worth the additional computation. (3) 
The problem of vectorizing a tree-walk algorithm is not trivial, because a recursive flow of control is at odds with the linear 
organization of vector processors. For various approaches to vectorization, see Makino (1989), Hemquist (1989), and Barnes 
(1989). 

In the standard version of the tree code we use a leapfrog integrator to advance the coordinates of the particles. As a simple 
low-order scheme which does not require significant storage, a leapfrog seems well adapted to the kinds of calculations so far run 
with our code. One drawback of the leapfrog is that positions and velocities are a half-step out of phase with each other. In order 
to start the calculation or extract a synchronized phase-space snapshot, we need an auxiliary formula. Since leapfrog integrators 
make global errors of 0(A/2), the starting/stopping formulae need not be more accurate than 0(ht2) locally. We therefore use 

4 Note that any one-to-one mapping between the three bits xi, y[, z, and the descendent index will serve, but to simplify debugging a map such as 
xn y, zz -> Ax, -fly 4- zz is preferred. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

S.
 . 

.7
0.

 .
38

9B
 

BARNES AND HUT Vol. 70 410 

the following scheme: 

Vl/2 = Vo+(1/2) Aitf(x0), 

x1 = x0 + Atvl/2, 

V3/2 ~ Vl/2 + 

(A4) 

Vn-l/2 = Vn-3/2+hta(xn_l), 

Xn=Xn_l + AtV„^1/2, 

v„ = v„-l/2 + (l/2) Ata(xn). 

This formulation is manifestly time-reversible. An improved scheme which corrects the start-up error is described by Hemquist 
and Katz (1989). 

APPENDIX B 

THE LARGE-TV LIMIT 

Here we derive an expression for the gravitational potential energy O(r) outside a cubic cell with constant density p0, accurate 
to seventh order in a/r with a the length of the side of the cube, centered on the origin of a Cartesian coordinate system, and 
r=\r\ the distance from the center of the box to the point of measurement of the potential. Since it is hard to find recipes for this 
type of calculation in modem textbooks (in contrast to older works such as Kellogg [1929], chap. V), we felt that it would be 
useful to present a self-contained derivation below, even though this implies a duplication of those aspects of the calculation 
which are easy to find in textbooks. 

The cubic mass distribution, 

implies a total mass 

p(x,y^) Po > 
0, 

\x\<2a’ Lvl < \z\<2a’ 
otherwise, 

M = p0a
3. 

(Bl) 

(B2) 

We will use units in which the gravitational constant G =1. In our notation r = (x, y, z) indicates the position of a mass element 
p0 dxdydz inside the cube and r = (x, y, z) indicates any point outside a sphere enclosing the cube, i.e., x2 + y2 + z2 > (3/4)a2. 

The potential 

Hr)=pofa dxja dy / J-a/2 ^ — a/2 
r«/2 1 

dz  
'-*/2 \r~r\ 

(B3) 

can be approximated by the usual expansion of the inverse distance between r and r in terms of the Legendre polynomials P¡(u), 
(see Jackson 1975), where 

r*r xx + yy + zz 
u = cos y = —— =    

rr rr 

and y is the angle between the vectors r and r. We will carry the expansion 

1 

k-í| 
io(«) + -'Pl(M)+(':A) ■p2(«) + 

(B4) 

(B5) 
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to order 1 = 6. For completeness we list the P, needed: 

^o(«)=lJ 

Pl{u)=u, 

Pli") =f(«2-3)> 

P4(«)=f(tt
4-fU

2+è), 

^(«)=^(«6-^«4+Á«2-áí), 

which leads to the expansion of the inverse distance in Cartesian coordinates as 

1 1 r-r 1 
 = - + —r + ^- \r — r\ r r r 

^ ( ~\2 ^ 2-2 
2(r#r) ~2r r + 7 

5 ,3 
— (r*r)3 (r*r)r2r2 

2v J 2v J 

+ ”9 r 

35 15 3 
— (rT) (r*r) rzr -h —r*r 

8 K y 4 v y 8 

+ - .h 
63 , 35 , 15 
— (r*r)5 — (r*r)3r2?2 + — (r*r)r4r4 

8 4 8 

231 a 315 . „105 9 , 5 
——(r*f)6 —(r*r)4r2r2 -h (r*r)2r4r4 r6r6 

16 16 16 16 

We can now evaluate equation (B3) term by term in expansion (B7) by writing 

/ = 0 

with O,(r) corresponding to the terms containing P¿(u) in equation (B5): 

®-(r) fa/2 d*fa/2 ^¡a/2 dzQi(r’f)’ r J-a/2 J-a/2 J - a/2 

where (¿¡(x, y, z, x, y, z) is a polynomial in which each term is of the form 

xafFxKyxzii, 

with the constraint that the six nonnegative integers satisfy the relations 

a + ß + Y = /c + \ + /i = /. 

Starting with the monopole term 

Ôo=l 

we recover the Keplerian potential which is the dominant part of the potential when r^> a: 

a3 M 
$o = Po—= —• 

(B6) 

(B7) 

(B8) 

(B9) 

(BlOa) 

(BlOb) 

(BU) 

(B12) 
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The dipole term 

Ql = r •? = xx + yÿ + zz, (B13) 

when inserted as the integrand in equation (B9) gives 

$! = 0 (B14) 

by symmetry, since the integration intervals are even in ic (as well as in y and z), while Qx is odd in x (as well as in y and z). 
Tliis cancellation argument extends to any Ql with i odd, as follows directly from equation (BIO) for which the reflection r-* —r 
gives 

For our present seventh-order expansion this implies: 

03 = 05 = 07 = 0. 

The quadrupole term 

written out in the form of equation (BIO) reads 

Q2 = x2( Jt2 — \y2 ~2z2) + y2(y2 ~~ 2zl ~2xl) + ^2(^2 ~2x2 ~2y2) +2xyxy +2xzxz + 2ÿzyz. 

Integration of Q2 in equation (B9) gives 

(B15) 

(B16) 

(B17) 

(B18) 

02 = 0 (B19) 

even though each of the first three terms in equation (B18) does give a nonzero contribution. This cancellation is exceptional for 
Qi of even i, and in fact all other Q¿ =£ 0 with / ¥= 2 even. 

The physical reason for the cancellation is that Q2 is a measure for the flattening of a (nonnegative) mass-density distribution, 
which is nonzero for a rectangular cell in general, but vanishes for a cubic cell. Mathematically, Q2 vanishes by virtue of the 
Cartesian quadrupole moment being a traceless tensor, which is related to the redundancy in the degrees of freedom of a 
Cartesian multipole tensor as compared with an expansion in spherical harmonics (see Jackson [1975], p. 139). 

The Qi, i >4 and i even, takes the general form 

Ô,(x, j,z) =Ô,+ +Ôr, (B20) 

with 

Q+ =5t2ap2ß-2yx2Ky2Xz2^ (ß21a) 

with a, ß, y, k, À, fi nonnegative integers satisfying 

i 
a + ß + y = K + \ + fi = — , (B21b) 

while ß,“ contains all other terms with odd powers in x, y, and z (and in x, y, and z as well). 
In the following analysis we are not interested in the Q~, since they all integrate to zero in equation (B9), as did, for example, 

the last three terms in equation (B18). 
We are now finally in a position to obtain the first nonvanishing correction term to the Keplerian approximation of the 

potential of a homogeneous cube, due to its nonvanishing hexadecapole moment (physically, a measure for symmetric 
“comeredness” of a distribution, nonzero for any rectangular mass, even a nonflattened cube). 

With 

Qt=f(r-r)*-!i(r-r)2(r-r)(r-r) + l(r-r)2(r-r)2, (B22) 
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writing out the dependence on Cartesian components and retaining even terms only gives 

Ô4+ = x4(fxA - ^x2r2 + f r4) + f(f / - ^y2r2 + f r4) + z4(f z4 - f z2r2 + f r4) 

+ xYi'-fxY -f(x2 + y2)r2+ Jr4) 

+ ic2z2(1Jix2z2 —1^(x2 + z2)r2 + Jr4) + y2z2(1Jiy2z2 — ^(y2 + z2)r2 + Jr4), 

with r2 = X2 + y2 + z2. Substituting all this in equation (9) and rearranging terms finally gives 

7 Ma4 , 

413 

(B23) 

4 960 r9 [3r4-5(x4 + / + z4)]. (B24) 

A direct check can be applied to this expression by computing the spherical average (keeping r fixed, but orienting r in 
arbitrary directions), which should vanish. This requirement holds true for any multipole moment beyond the monopole moment: 
adding the contribution felt by many observers at different orientation angles is equivalent to superposing the contributions of 
many cubes with different orientations at a fixed observer position. But in the limit of very many cubes, the superposed cubes 
form a spherical distribution with vanishing higher order moments beyond the monopole. Indeed, 

Í f2”[cos4 6 +sin4 0(sin4 <i> +cos4 <i>)] smOd<j>dO = 
•'o *'o 

1277 

T"’ 

from which it follows that f J$4 sin 0 d<j> dO = 0. 
The recipe developed above can be extended arbitrarily. Here we terminate our expansion at the first nonleading term in the 

expansion of the non-Keplerian part of the potential of a cube, due to its 64-pole (hexacontatetrapole). For completeness we fist 
below, but in a form which is more economical than equation (B23). Let us denote by Qf the expression which yields Qf by 

cychcly permuting and adding terms: 

Q?(x, y, z, x, ÿ, z) = Q4(x, y, z, x, ÿ, z) + ß,+(y, z, x, ÿ, z, £) + Q^(z, x, y, z, x, y). (B25) 

For example, equation (B23) reduces to 

Qt =^4(^^4 - t*2/*2 + f7*4) + ic2);2[15ijc2y2 - ^(x2 + y2)/*2 + f r4]. (B26) 

Note that this reduction is far from unique; for example, we could equally well have taken from equation (B23) the 1st and 5th 
line instead. 

In our new notation, the hexacontatetrapole contribution to the potential is generated by 

^jc6(231x6 -315.xV + 105*2r4 -5r6) + x4j;2(231x4y2 -21x4r2 - 126x2y2r2 + 14xV + ly2r4 - r6) 

+ ^x4z2{mx4z2 - 2lx4r2 - U6x2z2r2 + 14x2r4 + lz2r4 - r6) + fx2y2z2(23lx2y2z2 - 63x2y2r2 + 2r6). (B27) 

This leads to the first nonleading contribution to the non-Keplerian part of the potential of a solid cube: 

1 Ma6 

1344 r 13 [30r6 - 105r2( jc4 + / + z4) + 77(>6 + / + z6)]. (B28) 

As before, we can check the expression by computing the spherical average, and indeed //i>6 sin 0 d<j> dO = 0. 
The x-component of the force derived from the potential as given above follows from Fx = (ô/ôx)0 as 

M 1 Ma4 1 Ma6 

Fx(r) = 3* “ 3 3r2i:[5*2'-2 -6x4-3(y4 + z4)] - — -23x2r2 +25x4 +8(/ + z4)]. 96 r 
(B29) 

The y- and z-components of the force follow by cyclic permutation of {x,y,z}. 
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APPENDIX C 

A LINEAR DENSITY GRADIENT 

Consider a box with sides of length a and with density 

p'(V) =p'(x',y',z') = Po+ Pi> \x'\<2a’ \y'\ < 2a’ and |z'| <§a, 

10, elsewhere, 

where pó and p[ are constants with physical dimension of density and 

n = (nx,nv,nz) = (sin x cos <p,sin x sin 9,cos x) 

is a unit vector pointing along the density gradient. The center of mass of the box is at position R' = (X', Y', Z'), where 

and the total mass in the box 

M = j J J dr'p'(r') = a3p'0. 

Transforming to a coordinate system (x, y, z) centered on the center of mass and having coordinate axes parallel to the (x; 

axes gives the density in the new coordinate system as 

o(x V z) = fPo+(1/a)(r-n)pi, ?eV, 
\ 0, elsewhere, 

where the homogeneous part of the density p0 is given by 

1 
Po = P0 + _(Ä'*»)pi = PÓ a 

i+íí*'2' 
12\pS 

the coefficient px for the linearly changing part by 

Pi = PÍ> 

and the volume V of the box is described in the new coordinates by 

ic_<ic<x+, ÿ_<ÿ<ÿ+9 andz_<z<z4 

with 

x± = ±\a-(a/12)(p'l/p'0) sin x cosip, 

ÿ± = ±2a-(a/12)(Pi/Po) sin X sin q>, 

z± = +§«-(a/12)-(pi/PÓ) cos x- 

We now develop the potential in a series as given by equation (B8): 

$(r) = £ $,(r), 
1 = 0 

with 

^(r) = 37TT j*' d* t TV f*+ dz x_ vy_ z_ 
Po + -(r*»)|5i 

a Qi{r,r) 

Vol. 70 

(Cl) 

(C2) 

(C3) 

(C4) 

y’’z') 

(C5) 

(C6) 

(C7) 

(C8) 

(C9) 

(CIO) 

(Cll) 
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The monopole contribution gives 

1 

r 

ERROR ANALYSIS OF A TREE CODE 415 

$o(r) =-;| Po^3 + ^[sinx cos<]p(x2 -xi)+sin x sin <p(>l - )+cos x(2+- )] «2 

1 , M 
= -p‘0a

i = — 
r r 

(C12) 

as expected, since the monopole contribution is independent of the coordinate system used (see Jackson 1975). The dipole 
contribution can be similarly computed and results in 

i 
Po + -(r*n)pi 

a 
(r-r) =0, (C13) 

again as expected, since the gravitational dipole moment vanishes for a density distribution if the expansion is performed around 
the center of mass of the system (see Goldstein 1980). 

Evaluating integrals such as those in equation (Cl3) becomes progressively more tedious. A useful result from equation (C9) is 

~2 ~2 û ft ■ x+ — x_ = sm x cos (p, 
6 PÓ 

a Pi . ~2 ~2 1 

r+-r- =  — — sin x sm <p, 
6 PÓ 

(C14) 

-2 -2 a pl z%-zt = - — — cos X- 
6 Po 

Similarly 

xi - x! = - 1 + - 
1 lp\ 

(C15) 

with nx = sin x cos <p, and the y and z generalizations following with n = sin x sin cp and nz = cos x* A few higher powers give 

~4 ~4 
û Pi X+~X- = -~^—nx 12 pi, 

(C16) 

and 

xi - x5_ = - 
16 

5 ÍPÍ\2 , 5 

1 + — - ^ + - 
18 \ Po / " 1296 \ po 

Pi 
— n (C17) 

1 r 
= 7fdF p0 + -(r-n)p1 

~\2 ^ 2-2 — (/••r) r r 
2V J 2 

Ma2/4)V-3(-)2] ISSr* \ p'0 
(C18) 

Again, we have an explicit check on this equation from the fact that the spherical average vanishes: //02 sin 0 d<p d9 = 0. 
The octopole contribution to the potential is found to be 

Ma3 

8640/*7 36[3r2(Ä1-Ar1)-5(fi3-Ar1)](4 
Po 

+ 5[ -Sr2^.^) + UiR.-NM-N,) - lO^-A^)] ( ^ ] [, (C19) 
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where we have introduced the concise notation 

Rk = (xk,yk,zk) (C20) 

and 

Nk = (nk,nk,nk). (C21) 

In particular, Rk = r and Nk = n, with (R^R^) = r2 and (N^NJ =1. 
Finally, the hexadecapole contribution to the potential is given by 

$4 = 
Ma* 

276480r9 2016[3r4 -5(ä2vR2)] +9ó[ -12r4 +15(ä2-ä2) + 5(Ä1-Af1)(Ä3*7V1) + 15(ä2-/>
2)] ( ^ 

\ Po 

+ 5[9r4+12r4(N2-N2)-48r2(R2'N2) + 30r2(R1-N1)
2 + 48r2(R2-N4)-60(R1-N1)

4 + 150(R2-N2)(R1'N1)
2 

-51(R2
,N2)

2 + 12(R2'R2)(N2’N2)-200(R3-N3)(R1'N1) 

+ 48r2(R2-N4)+48(R4-N2) + 86(R4-N4)] (4) ) > 

where 

P = Rx N 

and P2 is defined in analogy with R2 and N2, i.e., 

p2 = [(ynz - zny)
2,(znx - xnz)

2,(xny - ynx)
2\. 

(C22) 

(C23) 

(C24) 

APPENDIX D 
MEASUREMENT OF FORCE-CALCULATION ERRORS 

I. METHODS 

We test our force-calculation algorithm by comparing it with a simple direct-sum algorithm. As input for a force calculation 
test, we need: 

1. Coordinates R¿ for a set of N massive particles, which generate the field. 
2. Coordinates rç for a set of n sample positions, at which the field is evaluated. 
3. A softening parameter e to be used by both force calculation algorithms. 
4. A tolerance parameter 0 for the tree algorithm. 
At each sample position /• = /;., we obtain approximate values 0,(r), at{r) from the tree algorithm, and exact values O(r), a(r) 

by direct sum. From these we can then evaluate such quantities as the error in the potential, 

A$e=0,-$, (Dl) 

and the error in the acceleration, 

À<2 = J Aû|, Aa = a, — a. (D2) 

II. TESTS 

Four different mass distributions were studied in detail: 
1. A uniform-density “ball” of mass M = 1 and radius R=l. 
2. A King model (King 1966) with mass M = 1, core radius Rc — 0.103, tidal radius Rt — 3.47, and dimensionless central 

potential Wc = 1. 
3. A disk with exponential surface density profile, mass M = 1, inverse scale a = 4.0, and vertical thickness (z2)1/2 = 0.025. 
4. A Soneira and Peebles (1977) clustering hierarchy, with radius R =1 overall, L = 8 levels, r/ = 4 branches per level, and a 

power-law correlation function slope of y =1.8, natch. 
In the first three cases, coordinates for N = 4096 massive points and n = 512 test positions were chosen by picking points at 

random from the spatial density p(r), interpreted as a one-point probability distribution function. Since different particles are 
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chosen independentiy, this procedure builds Poissonian fluctuations into the mass distribution. In the fourth case, the complete 
hierarchy of 7jL~1 =16,384 points was sampled to obtain disjoint subsets oî N = 4096 massive points and n = 512 test positions. 

For each mass distribution, four tolerance parameters were tested: 6 =1,0.7,0.5,0.3. Each test was run both with and without 
the quadrupole correction. Most tests were run with softening parameter e = 0, but other values were also tried. 
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