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De Sitter showed that if the velocity of light is constant with respect to the source, distant binaries will

exhibit certain peculiarities that have not been observed. This is usually regarded as proof of the validity
of Einstein's second postulate of special relativity. But there are several ways of invalidating the proof.
One of the most promising ways-that of employing Riemannian space for light-is considered in this paper.

Data on visual binaries, spectroscopic binaries, and cepheids are calculated for Euclidean space and for
Riemannian space of constant positive curvature (R=5 light years). The acceptance of Riemannian space
allows us to reject Einstein's relativity and to keep all the ordinary ideas of time and all the ideas of
Euclidean space out to a distance of a few light years. Astronomical space remains Euclidean for material
bodies, but light is considered to travel in Riemannian space. In this way the time required for light to
reach us from the most distant stars is only 15 years.

1. INTRODUCTION

THE principal hypothesis' of special relativity is
T that in free space, the velocity of light is constant
with respect to the observer, independent of motion ol
source or observer. This assumption is contrary to al]
human experience, and it can be included in the theory
only by abolishing ordinary ideas of space and time.

The alternative assumption is that the velocity oi
light is constant with respect to the source, as advocated
in the "emission theory" of Ritz.2 Apparently the only
evidence in favor of the Einstein hypothesis is given by
the behavior of binary stars.3 If the velocity of light i
independent of the velocity of the stellar source, ther
the observed motion of the star in its orbit will be the
true motion, except for the constant time interva
required for light to travel from star to earth. On the
other hand, if the velocity of the star and the velocity
of light are additive, the apparent orbit will be dis-
torted and the apparent stellar magnitude will vary.

Lively discussion on this subject took place in 191

* Presented at the meeting of the Optical Society of America
New York, March 21, 1953.

1 A. Einstein, Ann. Physik 17, 891 (1905).
2 W. Ritz, Ann. chim. et phys. 13, 145 (1908).
3 W. de Sitter, Physik. Z. 14, 429, 1267 (1913).

among de Sitter, 3 Freundlich, 4 Gutnick, 5 and Zurhellen. 6

Again in 1924, arguments were advanced by de Sitter, 7

La Rosa,8 Bernheimer,9 and Thirring.'0 The present
paper reopens the subject to investigate possibilities
that were ignored in the earlier discussions.

2. CRITERIA

Consider a binary star (Fig. 1), and an observer who
is in the plane of the orbit and at distance r (r>>a) from
the center of the orbit. The outer star is luminous and
has a uniform velocity v. Its companion is assumed to
radiate negligible light. The center of mass of the binary
moves at velocity w with respect to the observer.

Assume two clocks, one at the star and one at the
observer. The reading of the former will be called t8 and
that of the latter will be called I. Einstein's relativity is
not used, so the clocks can be synchronized.

Assuming composition of velocities, we find that the

4E. Freundlich, Physik. Z. 14, 835 (1913).
P. Gutnick, Astron. Nachr. 195, 265 (1913).
W. Zurhellen, Astron. Nachr. 198, 1 (1914).

7 W. de Sitter, Bull. Astron. Inst. Netherlands 2, 121 (1924);
ibid., p. 163.

8 M. La Rosa, Z. Physik 21, 333 (1924); Z. Physik 34, 698
(1925).

9 W. E. Bernheimer, Z. Physik 36, 302 (1926).
10 H. Thirring, Z. Physik 31, 133 (1925).
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FIG. 1. Circular orbit for a binary star.

little from sinusoidal. As P increases, however, the
curve is tilted and the function may become multi-
valued. For example, if = 2, one star is seen as 0
varies between 0.69 and 2.45 radians; but at 0=2.45,
the observer suddenly begins to see three stars at
different points on the same orbit. This continues until
0=3.83, when the star seems to revert to its single

Oltrver state. This phenomenon would be shown also by the
spectrograph. Each spectral line would be single for
0.69<0<2.45 but would appear as three lines for the
remainder of the cycle.

Now consider the critical condition. As r increases,
we arrive at the case of dO/d(y/a) = 0, beyond which the

TABLE I. Visual binaries.

velocity of light toward the observer is (c+w) - v sincot,.
The time required for this light to reach the observer is

r-a coscot5

(c+w) - v sinwt,

The reading of the observer's clock, when he sees the
star in the position of Fig. 1, is

r-a coswt,
t=t,4

(c+w) {- [v/(c+w)] sinwt5)
(1)

Since v and w are very small compared with c (less
than 0.1 percent), Eq. (1) may be written

r-a coscot/ V
t-ts,+ I+ 1- sincot, ).

c c /
Also, a<<r so

r rv
tCtS+-+-sinwt .
c c

(la)

It is convenient to express this equation in terms of the
displacement of the star from its central position:

Distance
Parallax (light Period

Name P (") years) (yr) (v/c) rE
a Equ 0.0604.006 54.3 5.70 7.82X 10-1 4.68X 10-'
ic Peg 0.02641.005 125 11.3 9.77X10 5 6.78X10-'
e Hya 0.0204.005 163 15.3 7.47X10- 5.00X 10-3
42 Com 0.0634.008 51.7 25.9 4.02X10- 5 5.05X10- 4

85 Peg 0.0924.006 35.4 26.3 3.36X10- 5 2.84X 10-4
2; 3121 0.0564.008 58.2 34.3 3.47X10-5 3.70X 10-4
r Her 0.1114.005 29.4 34.5 3.51X10- 5 1.88X10- 4

a CMi 0.312d.006 10.4 39.0 3.30X10-5 5.55X10-5
(3416 0.1694.016 19.3 42.2 2.55X10- 7.32X 10-5
u HerBC 0.111.006 29.4 43.2 2.70X10-5 1.15X10- 4

Krilger 60 0.2574.004 12.7 44.3 2.15X10- 5 3.87X10'-
( Sco 0.040-.005 81.5 44.7 4.OOX10-s 4.58X 10-4
2 2173 0.0524.006 62.7 46.0 4.41X10-' 3.78X10- 4

T Cyg 0.0504.006 65.2 47.0 3.85X10- 3.36X10- 4

a CMa 0.371d.004 8.78 50.0 4.07X10- 5 4.49X10- 5

(3 648 0.0644.005 50.9 56.6 3.44X 105 1.94X 10-4
( UMa 0.1464.006 22.3 59.8 2.85X 10-5 6.67X10-5
99 Her 0.0424.006 77.6 63.0 3.76X 10- 2.91X 10-4
a Cen 0.7584.010 4.29 78.8 2.94X10- 5 1.01X10-'
70 Oph 0.1924.005 17.0 87.7 2.66X10- 5 3.24X10-5
-y CrB 0.0224.006 148 87.8 3.76X10- 5 3.98X10-4
0 2 79 0.0274.004 121 88.9 2.35X10-5 2.01X10-4

Boo 0.1684.007 19.4 153 1.87X10- 5 1.49X10-5
2 2052 0.0554.006 59.2 132 1.91X 10-5 4.64X 10-5

02 EriBC 0.203d.008 16.0 248 1.36X10- 5 5.52X10- 6

a Gem 0.0764.004 42.8 306 3.58X10- 5 3.14X10-5
Cas 0.1824.005 17.9 346 1.59X 10-5 5.17X10f-

y/a= sinco4.

1 r vr
t=- sin (y/a)+-+-(y/a)

cW c c-

0= sin- (y/a)+r (y/a),

curve becomes multivalued. From Eq. (2),

dO

(2)

where 0 specifies the angular position of the star in its
orbit, corrected for the mean velocity of light:

= wt 5-r/c. (3)

A characteristic constant is

2Fr v rr=-c c . (4)

Figure 2 shows the apparent motion of the star, as
seen by the distant observer. If r = 0, the motion is a
true sinusoid, and for r<0.1, the motion departs very

or

1

d (y/a) [1 -(yla)2]1

r=
[ - (y/a) 2]I

Figure 2 indicates that this zero slope will occur at
y/a= 0, so Eq. (5) gives for the first critical point,

rj= 1.00. (6)

For values of r less than unity, no multiple images can
occur.

The time effect is also interesting. For w<<c, Eq. (1)
becomes

r- a coswt5
c t=ts+

, ~~~~~~~c-V slncot,

Then

or
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Differentiation gives

dt coy scolS coa sinuit,
- 1+ Er-a coscot S++
dt, [c-v sinC,18]2 c-v sinCot,

If a<Kr and v<<c,

dt v 27r/r\ /v\
sinwt+- - I- coswto,

dt, c r\C1 \C
or

dt
-i1+r coswt,.
dts

(7)

Suppose that a star emits toward the observer Q8
joule steradian-' during the time interval At,. The
radiation reaches the observer, not in the interval At,
but in the interval At:

AI= Atrl[ Ir cosit]. (8)

If the star were not moving, the average radiant
pharosagell measured by the observer would be

Do= = (watt m-2 ).r2it r2\thp
But with the star in motion, the observed pharosage is

r2At r2At,[l+p coscots]

The ratio is
D 1
-= * (9)
D o 1+17 coscot,

If IF= 1, the observer will measure a periodic variation
in pharosage ranging from Do to infinity.

Y7. r-o lo5 1.0 2.0 4.5

o 10 20 40 S

FIG. 2. Apparent behavior of a binary as seen by a distant
observer. The distortion of the sinusoidal curve is caused by the
difference in the velocity of light from various parts of the orbit
(assuming composition of velocities). The effect becomes more
pronounced as r increases: r= (27r/r) (v/c) (rc). The critical con-
dition occurs at r = 1, beyond which there are multiple images.

11 Moon and Spencer, J. Opt. Soc. Am. 36, 666 (1946); Lighting
Design (Addison-Wesley Press, Cambridge, Massachusetts, 1948).

10 

FIG. 3. rE as a function of Euclidean distance for spectroscopic
binaries. The black points are listed in Table II. The curves are
for rR= 1.00 and space constants of 5, 10, 15, 20, and 100 light
years.

The dearth of points below 70 light years is caused partly by the
limited number of stars near the earth. The small number of
points beyond 103 light years is an artifact, produced by lack of
parallax data for distant stars. Between 70 and 1000 light years,
however, the points, are fairly well distributed; which makes their
sharp boundary at the curve R= 15 rather startling.

Among the hundreds of variable stars that have been
measured, nothing like such a variation has ever been
observed. One must conclude, therefore, either that the
theory is wrong or that P is always much less than
unity. Perhaps r could be as large as 0.1 without making
the star noteworthy either by distortion of apparent
orbit or by variation in apparent magnitude.

Assuming classical wave theory, one would expect
that the apparent frequency of the radiation would vary
inversely as the time interval, Eq. (7), or

f d, 1

fs dt 1+r coscot,
(10)

This would result in a huge Doppler effect, as pointed
out by Zurhellen. On the quantum basis, however,
these violent changes would not be expected. La Rosa8

and de Sitter7 are in apparent agreement that Eq. (10)
may be disregarded.

The foregoing analysis indicates the peculiar phe-
nomena that must occur with binaries of sufficiently
short period observed at sufficiently large distance,
assuming composition of velocities. The analysis can be
extended to the general case of tilted elliptical orbits
with both stars radiating, but the general conclusions
remain the same.
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3. VISUAL BINARIES

First consider the visual binaries. Of these, Berg-
mann says :12

"If the speed of light depended on its source, the double stars
should give rise to peculiar phenomena. . . . In some cases, we
should observe the same component of the double star system
simultaneously at different places, and these 'ghost stars' would
disappear and reappear in the course of their periodic motions."

To check such statements, we computed values of r
for visual binaries. The values of r were in all cases
much below the critical value of unity (Sec. 2), being

TABLE II. Some spectroscopic binaries

usually of the order of 10-, as shown in Table I. We
conclude, therefore, that the data on visual binaries prove
absolutely nothing about the constancy of the velocity of
light. Contrary to the statements of Bergmann and
others, the Ritz hypothesis leads to no multiple images
of visual binaries, nor does it predict multiple spectral
lines for these stars.

4. SPECTROSCOPIC BINARIES

A similar analysis can be made of spectroscopic
binaries. Data for 282 stars were taken from the Fifth

(rR computed for R= 5 light years).

Lick r T V
No. Name P (") (light years) (days) (km sec) rB

5 2 12 A 0.017 (dyn) 192 0.842 87.96 153

6 AO Cas

11 13 Cet A

14 or Cas

23 r Phe

34 X Tri

52 CC Cas

21 , Aur

149 RC Ma

152 B 1945

156 a' Gem

169 V Pup

174 B 2227

195 o Leo

229 B 3182

246 PUMaA

304 B 4247

345 d Ser

368 +160 3758

432 B 5579

452 B 5764

- TX Cnc

0.002 (spec.)

0.05240.008

0.018 (spec.)

0.013 (dyn)

0.004 (spec.)

0.017 (spec.)

0.0374.0004

0.039L:.0008

0.029 (spec.)

0.07340.003

0.003 (spec.)

0.038-40.010

0.02840.007

0.02640.005

0.04040.005

0.030 (spec.)

0.014=0.006

0.04140.010

0.007 (spec.)

0.03440.012

0.00)7

1628

62.6

181

3.523

2.082

1.964

250 1.670

815 0.972

192 3.369

88.0

83.4

112

44.6

1085

85.7

116

125

81.3

109

3.960

1.136

1.933

2.928

1.455

1.563

1.686

1.271

1.81

2.308

232 1.850

79.3 4.812

463

9S.S

1.729

2.616

463 0.386

92.57

218.5
234.5

37

117.3
119.0

125
180

110

141.6
291.8

108.9
111.0

24.0

94.6
116.8

31.88

199
342

30.28

60

63.2

42.0

97.4
108.7

90
100

86.03
86.04

109.7

74.8
96.0

112
217

161

' 772
827

8.48

82.5
83.7

143
206

705

61.3
126.2

18.4
18.8

13.5

41.8
51.6

3.72

1132
1942

12.7

31.6

47.5

14.4

35.0
39.1

86.1
95.6

10.8
10.8

224

20.9
26.8

1038
2010

12 P. G. Bergmann, Introduction to the Theory of Relativity (Prentice-Hall, Inc., New York, 1942), p. 19.

rR

0.0328
0.0345

2.81 X 10-4
3.01 X 10-4

0.0478

0.0210
0.0213

0.0140
0.0201

2.02 X 10-3

0.0132
0.0272

0.0390
0.0398

0.0333

0.0435
0.0536

0.0539

1.38X 10-3
2.37 X 10-3

0.0288

0.0296

0.0358

0.0383

0.0400
0.0446

0.0105
0.0117

0.0309
0.0309

3.50X 10-3

0.0349
0.0447

0.0163
0.0314

.
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Catalog" by Moore and Neubauer. Distances were
calculated from Schlesinger's values'4 of trigonometric
parallax. When trigonometric values were not available,
spectroscopic or dynamic parallaxes were employed.
Most of the computed values of r were above the
critical value of unity, in some cases reaching values of
over a thousand.

The data (except for 60 stars with r<0.1) are plotted
in Fig. 3, and a list of selected stars is given in Table II.
According to theory (Sec. 2), the high values of P must
result in peculiar behavior which has not been observed.
The conclusion is that either the Ritz hypothesis must
be abandoned, as the relativists insist, or a radical
modification must be made in the values of distance or
velocity. These possibilities will be considered in Sec. 6.

5. CEPHEIDS

With a pulsating star, a maximum velocity v of the
stellar surface is measured spectrographically. Evidently
the same r criterion applies as with binary stars. If
r> 1, the observer receives light simultaneously from
several phases of the pulsation, which should result in
multiple spectral lines. No such phenomena are ob-
served.

Table III indicates the results for typical cepheids.
The velocity data for 144 cepheids were obtained from
Joy.15 Distances were computed by Shapley's formula,'
on the assumption of no absorption of light in inter-
stellar space. The distances are generally much larger
than those of the previous tables; which tends to give
large values of r. Unless some other explanation can be
found, the cepheids provide a proof even more decisive
than that given by the spectroscopic binaries, a proof
that the velocity of light does not partake of the velocity
of the source.

The long-period variables, such as o Ceti, were also
investigated. The results showed that, like the visual
binaries, these stars provide no information for discrimi-
nating between the Ritz and the Einstein hypotheses.

6. POSSIBLE EXPLANATIONS

The fact that r exceeds the critical value for many
cepheids and spectroscopic binaries does not neces-
sarily prove that the velocity of light is independent of
the velocity of the source. Possibilities are as follows:

(1) Velocity of light is constant with respect to the
observer (Einstein).

(2) Velocity of light is constant with respect to the
source (Ritz). The derivation, Sec. 2, is considered

13 J. H. Moore and F. J. Neubauer, "Fifth catalog of the orbital
elements of spectroscopic binary stars," Lick Observatory Bull. 20,
No. 521.

14 F. Schlesinger, General Catalog of Stellar Parallaxes (Yale
University Observatory, 1935); H. N. Russell and C. E. Moore,
The Masses of the Stars (University of Chicago Press, Chicago,
1940), Table 53.

15 A. H. Joy, Astrophys. J. 86, 363 (1937).
16 H. Shapley, Galaxies (The Blakiston Company, Philadelphia,

1943), p. 62.

valid but (a) distances are reduced, (b) velocity of light
increases at great distances, or (c) Doppler shift does
not give true velocity.

(3) The concept of velocity does not apply to light,
so c cannot be added to the velocity of a material body
(Paldgyi).'7

If the Ritz hypothesis is accepted, the value of r must
be kept well below unity. But depends on v, r, and c,
according to Eq. (4); so a change in any one of the three
may satisfy the criterion r < 1.

The most promising of these possibilities is Eq. (2a).
Assume that light travels in a Riemannian space. The
usual distance r employed by astronomers is- un-
changed as regards material bodies; but for light, it is
replaced by the corresponding Riemannian distance 8 s:

s= 2R tan-l (r/2R), (11)
where R is the space constant 9 (radius of curvature) of
the space. The velocity of light, c= ds/dt, is constant

TABLE III. Cepheids (rR computed for R= 5 light years).

(light r VL.
Name years) (day) (km sect) rE rR

SU Cas 1015 1.95 11.0 43.7 6.4X 10-5
DT Cyg 790 2.50 8.5 20.5 6.3X 10-5
AD Gem 5700 3.79 36.0 413 3.5X 10-6
Y Aur 5200 3.86 19.5 200 2.2 X 10-6
CG Cas 20 500 4.36 21.0 753 1.4X10-7
FF Aql 980 4.47 7.1 11.8 2.OX 10-5
a Cep 460 5.37 19.7 12.9 2.OX 10-4
,q Aql 730 7.18 20.8 16.1 6.3X 10-5
PZ Aql 31 000 8.76 19.5 528 2.8X 10-8
r Gem 650 10.15 14.2 6.96 3.9X 10-5
AP Her 20 000 10.42 20.0 292 5.7X 10-8
RW Cam 7400 16.41 31.0 107 4.1X10-7
MZ Cyg 98 000 21.17 29.5 1044 1.7X109
RX Lib 38 000 24.95 14.5 169 4.9X 10-9

with respect to the source. In essence, therefore, the
method of this paper leaves astronomical space un-
changed but reduces the time required for light to
travel from a star to the earth. We postulate also that
Doppler shift gives the Euclidean velocity of the source
with respect to the observer, dr/dt. The velocity of light
received from a moving source is, according to the Ritz
principle, c plus the ds/dt of the source corresponding
to the Doppler dr/dt.

On the Euclidean basis,
2ir drrE = r-.
rc2 di

The corresponding P for Riemannian space is

2r ds
FR = -s-.

Tc 2 dt

(12)

(13)

17 M. Paldgyi, Ausgewdhlte Werke (J. A. Barth, Leipzig, 1925),
Vol. III.

18 P. Moon and D. E. Spencer, "Riemannian space for as-
tronomy" (to be published).

19 E. W. Hobson, The Domain of Natural Science (Cambridge
University Press, Cambridge, 1923), p. 144.
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But the Riemannian metric" is given by

ds= dr/[1+ (r/2R)2],
so

rE (r/2R)[1+ (r/2R)2]

PR tan-l (r/2R)

and if rR has the critical value of unity,

(r1/2R)[1+ (r/2R)2 ]
PrE=

tan-' (r/2R)

TABLE IV. Some peculiar spectroscopic binaries
(]PR computed for R=5 light years).

r v
Lick (light r (km
No. Name p(") years) (day) sec-i) rE rR

436 5 Cap 0.0654.007 50.2 1.023 65.7 24.6 0.257

196 WU Ma 0.0194.007 171.2 0.334 134 524 0.157
188 964 0.289

273 & Boo B 0.0794.005 41.2 0.268 115 136 2.44
231 272 4.88

- VW Cep 0.053 61.4 0.278 75 126 0.747
230 386 2.29

Curves of critical rE vs r are plotted in Fig. 3 for several
values of R.

7. RIEMANNIAN SPACE

Assuming that light behaves as if astronomical space
were Riemannian, we next decide on the space con-
stant R. This constant must be large enough so that
the metric remains essentially Euclidean for the entire
solar system; yet R must be small enough so that r <1
for all stars.

TABLE V. Distance and velocity (for R=5 light years).

WUMa-stars are so diffuse"8 that these stars may be
ignored until further information is available.

There remains the question of pharosagell variation,
Eq. (9), which requires that rR be considerably less
than unity. If =0.1 is used as criterion, Eq. (14)
indicates that the curves of Fig. 3 must be translated
downward by one logarithmic block. Under these cir-
cumstances, it is the R= . curve that satisfies the
extreme points rather than the R=15 curve. On the
basis of present data, therefore, we tentatively fix R at

R=5 light years= 4.73X 1016 m.

This value of R is sufficiently large so that no de-
parture from Euclidean space can be detected in the
solar system. The mean distance of Pluto from the sun
is 5.91 X 1012 m or 6.26X 10-4 light years. Thus

r/2R= 6.26X 10-5
and

dr/ds= 1+ (6.26X 10-5)2,

TABLE VI. Apparent variation in luminous output.

Lick (light Eccen- Max
No. Name years) tricity Mn rR DIDo An

Variables
52 CC Cas 192

121 6 Aur 88.0
149 RC Ma 83.4

Constant stars
5 M 12 A 192
11 13 Cet A 62.6
14 r Cas 181
23 r Phe 250

152 B 1945 112
156 a

1
Gem 44.6

174 B 2227 85.7
195 o Leo 116
229 B 3182 125
246 U Ma A 81.3
304 B 4247 109
368 +160 3758 79.3
452 B 5764 ' 95.5

0.102 7.3 -7.4 0.0132
0.00 2.07-2.16 0.0390
0.013 5.38-5.98 0.0333

0.027
0.1
0.010
0.14
0.002
0.002
0.05 1

<0.02
0.00
0.541
0.00
0.073
0.00

6.1 0.0328
5.6 0.0478
5.02 0.02 10
4.13 0.0140
5.27 0.0435
2.85 0.0539
5.67 0.0288
3.76 0.0296
5.12 0.0358
2.40 0.0383
5.91 0.0400
6.46 0.0309
4.66 0.0349

1.013 0.014
1.039 0.042
1.033 0.036

1.033
1.048
1.021
1.014
1.044
1.054
1.029
1.030
1.036
1.038
1.040
1.03 1
1.035

0.036
0.052
0.023
0.015
0.047
0.059
0.03 1
0.032
0.039
0.042
0.043
0.033
0.038

Euclidean
distance

Riemannian
distance

r ;,/2R R/VE

1 light year 0.10 0.997 light year 0.990
4 0.40 3.81 0.860

10 1.0 7.85 0.500
30 3.0 12.5 0.100

100 10.0 14.7 0.99X 10-2
103 100 15.6 1.OX 10-4
104 1000 15.7 .0X 10-6
so o 15.71 0

Figure 3 shows that the points seem to have a rather
sharply defined limit at R= 15 light years. Data for
some of the spectroscopic binaries whose rR approaches
unity for R= 15 are given in Table II. This radius also
satisfies the criterion for visual binaries, cepheids,
and long-period variables.

The only exceptions were a few stars (Table IV)
with very short periods. One star, 6 Cap, appears to have
very reliable data, but its point would be near the curve
R= 5 of Fig. 3 rather than R= 15. No other example of
this kind could be found. The spectral lines of the

giving a departure from the Euclidean metric of the
order of 10-v percent. Even for the nearest stars,
the effect of the Riemannian metric is small. With
ax Centauri, for instance, r=4.3 light years and the
metric changes by only about 18 percent.

A comparison of Euclidean and Riemannian results is
presented in Table V. That a space constant of 5 gives
values of R that are well below the critical values is
shown by the final columns of Tables II and III. This
conclusion is indicated also by Table VI, which presents
additional data on some of the critical spectroscopic
binaries of Table II. The maximum value of r is
approximately 0.05, which should give no appreciable
distortion of the orbit and very small variation in
apparent magnitude.

The seventh column of Table VI lists values of
maximum pharosage ratio caused by the variation in
At. From Eq. (9), the maximum ratio is obtained when

20 0. Struve, Stellar Evolution (Princeton University Press,
Princeton, 1950), p. 175.
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cot, = r and is
(D/Do)ma= 1/(1-FR). (9a)

The eighth column indicates the corresponding varia-
tions to be expected in stellar magnitude:

iŽAm= 2.500 log(D/Do)max. (15)

For the variable stars, this deviation of one-twentieth
magnitude or less would certainly not be detected. But
if experimental data should prove that the other stars
of Table VI are truly constant in magnitude to better
than 0.05m, then the theory will have to be modified or
the space constant reduced below R= 5.
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Since there is no reason for assuming that the velocity
of light behaves like an ordinary velocity, the foregoing
explanation seems to offer a simple and reasonable world
picture that allows all of our ordinary ideas of local
space and time to remain unchanged. Einstein's rela-
tivity is abandoned.t Velocity of light in free space is
always c-with respect to the source, and has a value for
the observer which depends on the relative velocity of
source and observer. True Galilean relativity is pre-
served, as in Newtonian gravitation.

t The use of the Galilean transformation instead of the Lorentz
transformation necessitates a change in Maxwell's equations.
This question will be considered in another paper.
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Diffraction of Spherical Vector Waves by an Infinite Half-Plane
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The following work is an extension of an earlier publication on scalar diffraction of light. [K. L. McDonald
and F. S. Harris, J. Opt. Soc. Am. 42, 321 (1952) ]. The present treatment pertains to the vector light field.

A new expression is given for the case of electromagnetic waves emitted by a simple harmonic Hertzian
oscillator and diffracted by a thin black infinite half-plane immersed in a homogeneous and isotropic medium.

By use of Maggi's transformation the problem is reduced to the evaluation of two integrals. Both integrals
are approximated by the same method used in the scalar treatment. Two particular orientations of the
oscillator are considered, and the six field components are written out for each case in terms of Fresnel inte-
grals. Energy flow, relative intensity distribution, and polarization are discussed. The relative intensity is
shown to agree with scalar predictions in the region of the shadow-boundary-plane, and therefore with
experiment. The oscillator is infinitely removed from the diffracting edge, thereby allowing a comparison of
the black screen with Sommerfeld's perfectly reflecting screen.

I. INTRODUCTION

IN a previous publication' there was discussed the
problem of diffraction of monochromatic spherical

scalar waves incident upon a thin black infinite half-
plane. It was shown that the theoretical and experi-
mental intensity distributions agree only when the
radius of the point source aperture becomes indefinitely
small. There was also shown to exist a slight difference
in the diffraction patterns produced by highly reflecting
and nonreflecting screens. The question of polarization,
however, was fittingly ignored, because we concerned
ourselves with a theory which imparted no directional
properties to the disturbance.

To obviate this shortcoming, we now assume that
light is electromagnetic in character and thus is fully
described by Maxwell's electromagnetic equations.

The formulation of our problem, which is truly a
classical problem in diffraction, nay be accredited for
the most part to F. Kottler.' This development is some-
what unorthodox, since it assumes the existence of

I K. L. McDonald and F. S. Harris, J. Opt. Soc. Am. 42, 321
(1952).

' F. Kottler, Ann. Physik 71, 458 (1923).

discrete magnetic charges and currents. The final con-
clusions, however, do satisfy Maxwell's equations in a
region free from electric charges and currents, and its
predictions are in excellent agreement with experiment.

The first theoretical work on this problem was con-
cerned with the task of expressing the vectors E, H at
any interior point in terms of the values of E, H over an
enclosing surface S, analogous to Kirchhoff's method for
the scalar disturbance.* By extending Maxwell's equa-
tions to admit of the existence of discrete magnetic
charges and currents, any prescribed ordinary dis-
continuity in E and H over the enclosing "transition"
surface may be expressed in terms of the charge and
current densities on the surface. By use of electric and
magnetic vector and scalar potentials and Kirchhoff's
solution of the inhomogeneous wave equation, the
values of E and H at any interior point are thus ex-
pressed in terms of the retarded values of E and H
over S.

* The six field components are scalar functions which satisfy the
wave equation and therefore Kirchhoff's formula. But the com-
ponents at any interior point must not only satisfy the wave
equation but also Maxwell's equations. The problem is therefore
not the integration of a wave equation, scalar or vector, but of the
simultaneous system of vector equations relating E and H.
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