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We show that a theoretical and experimental analysis of the twin paradox and the Hafele-Keating experiment recently pre- 
sented in this journal is non sequitur from the epistemological point of view and wrong according to the mathematical structure 
of relativity theory. 

From time to time, like a phoenix the twin para- 
dox revives in some physical journal  with someone 
trying to show that relativity theory does not imply 
an unequal age for two twins after one of  them takes 
a trip starting and ending at the location of  his 
brother, or that the canonical calculated ages are 
wrong. It always happens that a paper o f  this kind 
generates a controversy with many fellows present- 
ing their arguments for the unequal age solution 
whereas others insist on the equal age solution and /  
or non-"canonical"  calculations. Here history re- 
peats itself since we are going to show that the the- 
oretical and experimental analysis of  the twin par- 
adox recently put forth by Cornille [ 1 ] is non 
sequitur from the epistemological point of  view, being 
moreover  wrong within the mathematical  structure 
of  relativity theory. 

To begin, let us remember that the most  important  
feature of  relativity theory is the hypothesis that the 
collection of  all possible happenings, i.e., all possible 
events constituting space-t ime, i.ee., ST = (M, g, D ) 
is a connected four-dimensional oriented and time 
oriented Lorentzian manifold (M, g)  together with 
the Levi-Civita connection D of  g on M. The events 
in U = M in a particular chart of  a given atlas have 
coordinates (x °, x l, x 2, x3), x ° is called the time-like 
coordinate and the x i, i =  1, 2, 3 are called the space- 
like coordinates. These labels according to Einstein 
[2] do not necessary have a metrical meaning, i.e., 
are not measured by the standard clocks and the 

standard rulers o f  the theory. The metrical of  the 
manifold (in a coordinate basis) is 

g=guv dxU®dxV , ( 1 ) 

with gu~=g(O/OxU, O/Ox ~) being calculated, o f  
course, for each x~M in TxM, the tangent space to 
M at x. (The properties of  the vector space 
T x M = R  1,3 (Minkowski vector space), and in par- 
ticular the so-called anti-Minkowski inequality for 
time-like vectors in the same class are fundamental  
for the understanding of  the clock problem of  rela- 
tivity theory. We discussed these properties at length 
in ref. [3] and the reader is adressed to this refer- 
ence for details of  notation and the proofs of  the re- 
suits we are going to use.) Here we quote the 

Anti-Minkowski inequality (proposition 9 in ref. 
[ 3 ] ) :  Let v, wEz + c R  1'3 (where x + is the class of  
future pointing time-like vectors).  Then it holds that 

[g(u-['W, U'~W) ] 1/2~ [g(u, /3)]1/2-[ - [g(w, w)] l/z . 

(2) 

Now, tangent space magnitudes defined by the met- 
ric are related to magnitudes on the manifold in the 
following way: 

Let I = R be an open interval on the real line and 
F: I - . M  a map. We suppose that F i s  a C °, piecewise 
C 1 curve in M. We denote the inclusion function I ~ R  
by u, and the distinguished vector field on I by d /  
du. For each ueI,  F . u  denotes the tangent vector at 
FueM;  thus 
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F,u= [F,(d/du) ] (u) ~Mru • 

Finally, the path-length between points xl =F(a), 
x2=F(b), a, beI, xl, x2EM along the curve ~1 F: I ~ M  
such that g(F,u, F,u) has the same sign in all points 
along Fu, is the quantity 

b 

f du Ig(F,u,F,u)I lIE . (3) 
a 

Observe now that taking the point F(a) as a ref- 
erence we can use eq. (3) to define the function s: 
F ( I ) - ~ R  by 

s(u) = i du' Ig(F,u', F,u' )11/2 (4) 
a 

With eq. (3) we can calculate the derivative ds/  
du. We have 

dudS _ Ig(F,u, F,u)I1/2= gu~ dXUdu dx~du 1/2. (5) 

From eq. (4) old textbooks on differential ge- 
ometry and general relativity infer the equation 

( d s ) 2 = g u p  d x  u (Ix ~ (6) 

supposed to represent the square of the length of the 
"infinitesimal" arc determined by the coordinate 
displacement 

dx u xU(a)-,xU(a) + ~-~u (a)e, 

where e is an "infinitesimal" and aeI .  
The abusive and non-careful use of  eq. (6) has 

produced many incorrect interpretations in relativ- 
ity theory as illustrated, e.g., in the odd paper [4] 
quoted by Cornille in support of  his wrong view. For 
a critical reply to ref. [4]  and also ref. [5] (also ex- 
amples of  the phoenix-like nature of  the twin para- 
dox) see ref. [ 3 ]. 

Now, given a time-like curve p: R___I--,M, any 
event ce p( I )  separates all other events in two dis- 
joint classes, the past and the future [ 31- The theory 
models an observer as 

#1 Curves are classified as time-like, light-like and space-like when 
(for all ueI) g(F,u, F,u) > O, g(F,u, F,u) =0, g(F,u, F,u) < 0 
respectively. 

Definition I. An observer in ST is a future-point 
time curve [3] F: R___I--,M, by Igu-- ,F(I )  c M, and 
such that g(F,u, F,u) = 1. 

We now introduce 

Definition 2 (Standard clock postulate). Let F be 
an observer. Then there exist standard clocks that 
"can be carried by F "  and such that they register (in 
F)  proper time, i.e., the inclusion parameter u of the 
definition of observer. Standard clocks "tic-tac" with 
a constant period, which means that in F there is a 
sequence of events separated by equal intervals of 
proper time. 

The question regarding the physical objects that 
realize the standard clocks of relativity theory is of 
course central to the present issue and will be dis- 
cussed below. We shall need 

Definition 3. A reference frame in U ~_ M is a time- 
like vector field Q e T U  such that each one of its in- 
tegral lines is an observer. 

Definition 4. A chart in U ~_ M of the maximal ori- 
ented atlas of M is said to be a naturally adapted co- 
ordinate system to a reference frame Q (nacs /Q)  if 
in the natural coordinate basis of  TU associated with 
the chart the space-like components of Q are null. 

Old treatments of the clock problem involve at least 
two reference frames Q~TU and Q' ~TV, each one 
containing a standard clock at (coordinate) rest at 
the origins of ( x  u) and ( x ' U ) ,  respectively the 
(nacs/Q) and (nacs /Q' ) .  For Uc~V~_M where both 
Q and Q'  are defined we have the coordinate trans- 
formations (x  u) -~ (x'  u). In particular we have 
x ' ° = f ( x  °, x 1, x 2, x a) relating the time-like coor: 
dinate of  an event e~U c~ V in Q'  with the time-like 
and the space-like coordinates of  the same event in 
Q. In what follows we are not using the coordinate 
transformation laws to solve the clock problem. 

With the above definitions and given the Einstein 
synchronization procedure we can discover when a 
given reference frame is synchronizable, i.e., when 
the time-like coordinate function x ° of  the (nacs /Q)  
has the meaning of proper time registered by the 
standard clocks at (coordinate) rest in Q. All these 
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points are discussed at length in ref. [ 3 ] and here we 
quote that the condition for Q to be proper time syn- 
chronizable is the existence of the mapping x°: M-~ R 
such that a = d x  ° where 

ot=g(Q, ) (7) 

is the one-form field physically equivalent to Q. 
We are now theoretically prepared to analyse the 

clock (or twin) problem (no paradox, of  course), 
the Hafele-Keating experiment and some other 
claims done b y  Cornille. 

Let / '1 ,  / '2,/ '2 be three future pointing time-like 
and straight lines in J / ( t h e  affine Minkowski space). 
/'1 and 1"2 have xi as common point,/ '1 and/22 have 
xf as common point and/~2 and/~2 have Xm as com- 
mon point./"1 represents the path of a standard clock 
called 1 and /"2=F2 +/"2 represents the path of  a 
standard clock called 2. Now, according to definition 
2 and eq. (4) the proper time registered by clock 1 
between the events xi and xr is given by 
T1 = [g(xf-xi ,  x f - x O ]  1/2, i.e., the norm of the vec- 
tor x r - x i e R  1"3. The proper time registered by clock 
2 is given by 

T2 = [g(Xm -x i ,  x m - x i )  ]1/2 

+ [g(xf__Xm ' Xf__Xm) ] 1/2. 

According to the anti-Minkowski inequality we have 

g ( x f - - X i ,  Xf--Xi) ]1/2>/ [g(Xm --Xi, Xm --Xi) ]1/2 

+ [g(xf__Xm ' Xf__Xm) ]1/2 (8) 

and thus T1 >/T2. 
This result is an intrinsic consequence of the 

mathematical model of  relativity theory. All observ- 
ers in all reference frames in ~g must agree with the 
validity of  the result T1 >t T2. 

We observe that the path F1 is a geodesic path be- 
tween xf and xi as can be trivially proved, and then 
it follows that 7"1 > T2. We can also prove the follow- 
ing theorem [ 3 ] which is valid in a general ST (i.e., 
D does not need to be flat): 

Theorem. Among all future pointing time-like 
curves in ST= (M, g, D)  passing through the points 
xi=F(a)  and xf=F(b)  the integral in eq. (4) is a 
maximum when F is a time-like geodesic. 

To find the explicit relation between T1 and T2 we 
must introduce one reference frame in ~g and then 
give the parametric equations of  FI, /~2,/~2 in this 
frame. In Jg there exist infinite inertial reference 
frames {i}, i.e., frames such that D a i = 0 ,  ai=g(i,  ). 
These frames are proper time synchronizable. Let i 
be an inertial frame and ( x  u) the (nacs/ i) ,  with x °, 
having the meaning of the proper time registered by 
standard clocks that are at rest in i, and synchro- 
nized ~ la Einstein. 

Let 

0 
FI ,---- ~ X  o °F1, O~<x°~ < T1 , 

/ ~ 2 , : ( 1 _ v 2 ) _ 1 / 2  0 -~ 
Ox o o1"2 

+V(1--V2) -1/2 0~-°/~2 
Ox 1 

O<~x° <~ Ti/2 , 

/~2, = (1 - v 2) -1/2 ~ o1~2 
Ox ° 

__v( l __v2 )_ l / 2  a__o_ ~- 
OX I °[ '2'  

TI/2 <~X° <~ T1 . (9) 

In eq. (9) 0~<v< l is a positive real constant. I f  
clocks 1 and 2 are put at the same phase at x ° = 0 ,  
we get the canonical result 

T 2 = ( I - v  2)1/2T 1. (10) 

We now must investigate if  TI > 7"2 when clock 1 
is left at rest in the inertial frame i and clock 2 is at 
rest in an accelerated frame. We will distinguish two 
cases: 

(i) Clock 2 is at rest in the accelerated frame Q 
and the tangent vector to its world line/rE is given 
by 

0 
F:,, = [ l - - v ( x ° )  21 - 1 / 2 ~ X  o oF2 

+V(X °)[ l - v ( x  °)2]- ' /2  O ,  o I ~ 2  , 
OX* 

0~<X°~<'C, 
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0 
= (1--V2)-]/2"~xO OF 2 

+V( I--v2) -1/2 0--~or 2 
OX 1 

=[l__u,(xO)2]_I/2 0 ~xO O r2 

"~U' (X 0) [1 - -V'  (X O) 2] --1/2 

r~<x°~<21., 

0 
Ox I oF2 ; 

21. <-.x° <.. 31., 
(11) 

where v(x  °) and v' (x °) are the standard velocity 
functions [ 6 ] of  clock 2 with constant accelerations 
(in the O/Oxl-direction) a and - a  respectively. I f  
clocks 1 and 2 are put at the same phase at x ° = 0 ,  
we get from eq. ( 11 ) using definition 2 and eq. (4) 
again 

T 2 =I ' (  1 __/)2)1/2+ 2 In ( a z + ~ l )  
a 

<Tl  = 3 r .  (12) 

(ii) Clock 2 is at rest in the frame Q but is rotating 
with constant angular velocity co relative to the in- 
ertial frame i = O/Ox ° = O/Ot. For this problem we use 
polar coordinates and write the flat metric of  ~ as 

g = d t  ® d t - d r® d r -  r 2 dO® d~ - dz® dz 

and 

Q =  ( 1 - to2r2 ) - 1/20/0l+ to (  l - -  t o2 r2 )  - 1/20/00, 
(14) 

defined in M _ ~ U = { - o o < t < o o ;  0 < r < l / t o ;  0~<0 
~<27t; - ~ < z < ~ } .  Then 

ot=g(Q, ) = ( 1 - to2r2) - l/2dt 

- - t o r E (  1 --  to2r2 ) - l / 2 d ~  . (15) 

A (nacs /Q)  is ( t , r , ~ , z ) ,  with ~=q~+tot. In the 
canonical non-coordinate basis ( O / Ot, O/Or, (1/r)O/  
00, O/Oz) associated with this coordinate system we 
get for the rotation vector [3,7] g2 associated to or, 

g2= ½~[ • ( d a  ^ or), ] = to (  1 - -  t o E r 2 )  - 1 0 / 0 Z  , 

which shows that Q is indeed rotating with constant 
angular velocity to relative to the z-axis o f  i. (In eq. 
(16) ~ is the metric of  the cotangent bundle.)  

Now, the tangent vector field to the world l ine/ '2  
of  clock 2 is 

0 F2,=(1-to2R2)- l /2~t  o F  2 

1 - t o 2 R 2 )  --1/2 ~ 0/"2 . (17) +co( 

If  clocks 1 and 2 are put at the same phase at x ° = 0, 
we get from eq. ( 17 ) using definition 2 and eq. (4) 
that 

T2 = (1 - to2R2) I /2T  1 . (18) 

We now come to comments  concerning Cornille's 
paper: 

(A) Cornille quotes correctly that several exper- 
iments [8 -12]  done (using the M6ssbauer effect) 
with atomic systems that follow world lines as in eq. 
(17) are compatible with eq. (18).  From this he 
concludes that eq. (12) is false since it is eq. (18) 
that is observed experimentally. Well, since both 
equations are derived for the operationally distinct 
motions from the same assumptions (definition 2 
plus eq. (4 ) )  it is epistemological non sequitur to 
claim that only one of  the equations is valid within 
relativity theory. Obviously, both equations are the- 
oretically true statements. Whether these statements 
are realized in the physical world is a question of  
which pure mathematics cannot say anything. Only 
experiments can solve the issue. 

(B) Cornille says that the experiment [ 13 ] shows 
that eq. (12) is false and is in accord with his own 
eq. (13).  Well, first o f  all his eq. ( 13 ) is non sequitur 
as a theoretical statement within relativity theory. 
This point is clear from the theoretical analysis we 
did above. Also in the experiment [ 13 ] the rest mean 
life-time of  muons is determined in a statistical way 
from muons that are "quickly" stopped after they 
are produced and the mean life-time of  moving 
muons are compared with the life-time of  the muons 
put to rest in the laboratory. In particular it must be 
said that each muon produced in an elementary par- 
ticle collision is born with a fixed velocity v. It is not 
accelerated from zero velocity to the velocity v con- 
trary to Cornille supposition. Of  course, the muon 
suffers accelerations due to its electric charge after 
they have been produced. The effect of  a constant 
angular acceleration (equivalent to 102o times the 
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gravity acceleration) on muons  has been measured 
in experiment [ 14 ]. The agreement between exper- 
iment and eq. (18) is not so good. Indeed, Apsel [ 15 ] 
found that there is a better agreement if  the "proper  
t ime" o f  the moving muons  are associated with a 
Finslerian metric in R 4 involving the electromag- 
netic potentials. This may imply that muons  are not 
standard clocks or that relativity is after all wrong. 
More experimentation is needed, o f  course, to have 
any answer concerning this point. 

(C) Cornille said: "Moreover,  if there was a time 
difference after a round trip in the case o f  a rectilin- 
ear mot ion and if this effect was attributed to a pure 
velocity effect as most authors think, then we will 
have an experiment which allows to discriminate a 
state of  rest from a state o f  rectilinear uniform mo- 
tion which is contradictory to the Michelson and 
Morley experiment which fails to measure the rec- 
tilinear uniform motion of  the earth through space". 
Well, besides the fact that Cornille did not say which 
is the experiment he is talking about the fact is that 
just the opposite is true. More precisely we showed 
in a rigorous mathematical  way [ 16 ] that in ~//rel- 
ativity theory forbids the existence of  a Lorentz in- 
variant clock, i.e., a clock that when set in mot ion 
relative to an inertial reference frame i does not lag 
behind relative to a series o f  clocks synchronized 
la Einstein in i. Indeed in ref. [ 16 ] we showed that 
the existence o f  one such clock implies the break- 
down of  Lorentz invariance. 

(D)  Eq. (16) is presented only to show that Cor- 
nille's comments  concerning Davies and Jennison's  
paper [17] are completely wrong. Eq. (16)  has 
nothing to do with the Thomas  precession and even 
more, the local angular velocity deduced in ref. [ 17 ] 
for the rotation disk is wrong. The mistake is due to 
the method used in ref. [ 17 ] to measure distances 
which is not the one that follows from the formalism 
of  relativity theory. 

Concerning the Hafele-Keat ing [ 18,19 ] experi- 
ment it is clear that Cornille's analysis and formulas 
cannot be applied since they are wrong within rel- 
ativity theory. Here, we must say that the original 
Hafele-Keating theoretical analysis is also a little bit 
misleading. Indeed, to predict correctly the proper 
times registered by the three sets of  clocks in their 
experiment it is necessary to use the Kerr metric in- 
stead o f  the Schwarzschild metric, write the para- 

metric equations of  the world lines o f  the clocks and 
finally use definition 2 and eq. (4).  However the fi- 
nal equation presented in ref. [19] is a good ap- 
proximation if we are to believe the precision o f  the 
measurements presented by Hafele and Keating. In 
this respect we unfortunately have to quote that Es- 
sen [ 20 ], the "builder" o f  the atomic clocks used in 
ref. [ 19 ], says that the clocks do not have the pre- 
cision in order to provide a test o f  relativity theory! 
For the same reason, o f  course, the Hafele-Keating 
data cannot be used to test Cornille's odd formulas. 
An anonymous referee asked to us if  it is possible 
using clocks to "see" the dragging of  inertial frames. 
According to Cohen, Rosenblum and Clifton [21 ] 
this is possible and we agree with them. 

We end this paper with the following comment:  
The question o f  which real clocks are the standard 

clocks of  relativity theory is not experimentally solved 
yet in view of  the above discussion. (Dirac [22 ], for 
example, is of  the opinion that atomic clocks do not 
realize the Lorentzian metric o f  relativity theory, i.e., 
they do not satisfy definition 2 and eq. (2) . )  What 
is out o f  the question is the theoretical result (pre- 
sented above)  for the behavior o f  standard clocks in 
relativity theory. We hope that the present paper put 
an end in the "phoenix-like" career of  the "twin par- 
adox" at least within the pages of  this journal. 

This paper has been completed while one o f  the 
authors (W.A.R.) was a Visiting Professor at the Di- 
part imento di Matematica, Universittt degli Studi di 
Trento. The authors are grateful to Professors G. 
Vigna Suria and M. Toller and to Q.A.G. Souza for 
the useful discussions and to CNPq, FAPESP and 
CNR for financial support. 
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