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Abstract: In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in Statistical 
Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical 
mechanics of dynamic systems in their "space of evolution" associated to a homogeneous symplectic 
manifold by a Lagrange 2-form, and defines in case of non null cohomology (non equivariance of 
the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density 
(of maximum entropy) that is covariant under the action of dynamic groups of physics (eg, Galileo's 
group in classical physics). Souriau Lie Group Thermodynamics was also addressed 30 years after 
Souriau by R. F. Streater in the framework of Quantum Physics by Information Geometry for some 
Lie algebras, but only in the case of null cohomology. Souriau method could then be applied on Lie 
Groups to define a covariant maximum entropy density by Kirillov representation theory. We will 
illustrate this method for homogeneous Siegel domains and more especially for Poincaré unit disk 
by considering SU(1,1) group coadjoint orbit and by using its Souriau’s moment map. For this case, 
the coadjoint action on moment map is equivariant. For non-null cohomology, we give the case of 
Lie group SE(2). Finally, we will propose a new geometric definition of Entropy that could be built 
as a generalized Casimir invariant function in coadjoint representation, and Massieu characteristic 
function, dual of Entropy by Legendre transform, as a generalized Casimir invariant function in 
adjoint representation, where Souriau cocycle is a measure of the lack of equivariance of the moment 
mapping. 

Keywords: Lie Groups Thermodynamics, Lie Group Machine Learning, Kirillov Representation 
Theory, Coadjoint Orbits, Moment Map, Covariant Gibbs Density, Maximum Entropy Density, 
Souriau-Fisher Metric, Generalized Casimir Invariant Function. 

 

   La thèse de Kirillov, parue en 1962, a suscité immédiatement beaucoup d’intérêt…En outre, quantité 
de notions naturelles concernant les représentations s’interprètent géométriquement en terme d’orbites 
coadjointes : restriction à un sous-groupe, induction unitaire, produit tensoriel, mesure de Plancherel, 
la topologie de l’ensemble représentations unitaires irréductibles... Kirillov s’est vite convaincu, et il a 
convaincu la communauté mathématique que cette « méthode des orbites » devait être applicable à des 
groupes bien plus généraux que les groupes nilpotents. Il n’a pas hésité à aborder le cas des groupes 
de Lie connexes quelconques. Evidemment, des difficultés considérables ont surgi immédiatement. 
Néanmoins, Kirillov a indiqué une voie d’accès, qui ensuite a été largement utilisée.                    
Jacques Dixmier, Brèves remarques sur l’œuvre de A.A. Kirillov 
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   On comprend ainsi comment Lagrange a pu développer les lois de la Mécanique des systèmes formés 
de solides sans s’occuper des variations de la température de ces corps et Fourier traiter des variations 
de la température de ces mêmes corps solides sans s’occuper de leur mouvement ; comment on peut 
étudier le mouvement de la Terre, assimilée à un solide rigide, sans se préoccuper de la température de 
cet astre et étudier le refroidissement du globe terrestre sans se préoccuper de son mouvement. Une 
telle indépendance entre les problèmes qui ressortissent à la Mécanique et les problèmes qui 
ressortissent à la Théorie de la chaleur n’existe plus lorsque les systèmes auxquels on a affaire ne sont 
plus des systèmes classiques ; si, par exemple, au lieu de regarder la Terre comme un solide rigide, 
d’état invariable, on tient compte des changements de volume, de forme, d’état physique et chimique 
qui accompagnent son refroidissement, on ne peut plus séparer le problème du mouvement de la Terre 
et le problème du refroidissement terrestre. … On sait que cette forme de relations supplémentaires 
avait été introduite par Newton et les géomètres du XVIIIème siècle dans la théorie du son. Ces 
considérations montrent que les questions qui ressortissent à la Thermodynamique ont dû solliciter 
l’attention des physiciens dès qu’on a voulu aborder l’étude des systèmes autres que des systèmes 
classiques ; et, en fait, c’est la théorie de la propagation du son dans l’air qui a provoqué Laplace à 
créer la Thermodynamique - P. Duhem, L'intégrale des forces vives en thermodynamique, 
JMPA 4:5-19, 1898 [1-4] 

 
   Sous cette aspiration, la physique qui était d’abord une science des “agents” doit devenir une 
science des “milieux”. C’est en s’adressant à des milieux nouveaux que l’on peut espérer pousser la 
diversification et l’analyse des phénomènes jusqu’à en provoquer la géométrisation fine et complexe, 
vraiment intrinsèque…Sans doute, la réalité ne nous a pas encore livré tous ses modèles, mais nous 
savons déjà qu’elle ne peut en posséder un plus grand nombre que celui qui lui est assigné par la théorie 
mathématique des groupes. 
Gaston Bachelard, Etude sur l’Evolution d’un problème de Physique –La propagation 

thermique dans les solides, 1928   
 

  The classical simple gradient descent used in Deep Learning has two drawbacks: the use of the same 
non-adaptive learning rate for all parameter components, and a non-invariance with respect to parameter re-
encoding inducing different learning rates.  As the parameter space of multilayer networks forms a Riemannian 
space equipped with Fisher information metric, instead of the usual gradient descent method, the natural 
gradient or Riemannian gradient method, which takes account of the geometric structure of the Riemannian 
space, is more effective for learning. The natural gradient preserves this invariance to be insensitive to the 
characteristic scale of each parameter direction. The Fisher metric defines a Riemannian metric as the Hessian 
of two dual potential functions (the Entropy and the Massieu Characteristic Function).  

   In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization in information 
geometry has been replaced by invariance with respect to the action of the group. In Souriau model, under the 
action of the group, the entropy and the Fisher metric are invariant. Souriau defined a Gibbs density that is 
covariant under the action of the group. The study of exponential densities invariant by a group goes back to 
the work of Muriel Casalis in her 1990 thesis.  The general problem was solved for Lie groups by Jean-Marie 
Souriau in Geometric Mechanics in 1969, by defining a "Lie groups Thermodynamics" in Statistical Mechanics. 
These new tools are bedrocks for Lie Group Statistics and Lie Group Machine Learning. Souriau introduced a 
Riemannian metric, linked to a generalization of the Fisher metric for homogeneous Symplectic manifolds. This 
model considers the KKS 2-form (Kostant-Kirillov-Souriau) defined on the coadjoint orbits of the Lie group in 
the case of non-null cohomology, with the introduction of a Symplectic cocycle, called "Souriau's cocycle", 
characterizing the non-equivariance of the coadjoint action (action of the Lie group on the moment map). 

   We can observe that Souriau Entropy ( )S Q  defined on coadjoint orbit of the group is invariant 

( ) ( )# ( )gS Ad Q S Q=  with Souriau affine definition of coadjoint action ( )# *( ) ( )g gAd Q Ad Q gθ= +  where ( )gθ  

is called Souriau cocyle. Based on Souriau Lie groups Thermodynamics, we will propose a new geometric 
definition of Entropy that could be built as a generalized Casimir invariant function in coadjoint 
representation, and Massieu characteristic function, dual of Entropy by Legendre transform, as a 
generalized Casimir function in adjoint representation. This geometric structure of Entropy is a foundation 
for a new geometric theory of information, where the Entropy is no longer defined axiomatically as Shannon 
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or von Neumann Entropies, but built as Casimir Invariant function in coadjoint representation and solution 

to the Casimir equation extended  * * 0i
k

S ij k jS
Q jj Q

Sad Q C ad Q
Q∂  ∂

 ∂ ∂ 

   ∂
+ Θ = + Θ =     ∂  

, with Souriau cocycle 

( )gθ where ( ) ( ) [ ] { },( ) ( )  with , ( ), , ( ),   ,  ,e X YX YX T X e X Y X Y J J J d X Y X Yθ θΘ = Θ = Θ = − = − ∈ g  in 

case of non null cohomology. 
The dual Lie algebra foliates into coadjoint orbits that are also the level sets on the entropy. The KKS (Kostant-
Kirillov Souriau) 2-form, and the Souriau-Koszul-Fisher metric make each orbit into homogeneous Symplectic 
manifold. The information manifold foliates into level sets of the entropy that could be interpreted in 
Thermodynamics: motion remaining on this complex surfaces is non-dissipative, whereas motion transversal to 

these surfaces is dissipative, where the dynamic is given by: { } *, H
Q

dQ HQ H ad Q
dt Q∂Θ

∂

 ∂
= = + Θ ∂ 


 with stable 

equilibrium given when { } *, 0S
Q

dQ SH S Q S ad Q
dt Q∂Θ

∂

 ∂
= ⇒ = = + Θ = ∂ 


. 

    We will introduce the link between Koszul geometry of homogeneous bounded domains, Souriau "Lie 
Groups Thermodynamics", Information Geometry and Kirillov representation theory [12] to define probability 
densities as Souriau covariant Gibbs densities (density of Maximum of Entropy). We will illustrate this case for 
the matrix Lie group SU(1,1) (case with null cohomology) through the computation of Souriau’s moment map, 
and Kirillov's orbit method. We will also indicate application for SE(2) Lie group (case with non-null 
cohomology) where a Souriau cocycle should be take into account for the default of equivariance of the 
coadjoint action on moment map. 

0. Historical Preamble 

   Lie groups Thermodynamics is a “knot of high denisity” between different disciplines and make links 
between different branches of statistical sciences from statistical physics, to Information Geometry and theory 
of inference. We give in the following the main contributions and tools that are covered by this topic: 
o Statistical Physics, Massieu & Poincaré Characteristic Functions 

• 1724, Alexis Claude Clairaut introduced Clairaut Equation. In 1787, Adrien-Marie 
Legendre introduced Legendre transform to solve a minimal surface problem given by 
Gaspard Monge 

• In 1869, François Massieu introduced in Thermodynamics dual (Massieu) Characteristic 
Functions, related by Legendre transform. 

• In 1912, Henri Poincaré, inspired by Massieu, introduced a Characteristic Function in 
Probability by Laplace Transform (logarithm of Poincaré characteristic function if Massieu 
characteristic function). 

o Fisher Metric and Information Geometry 
• In 1939, Maurice Fréchet gave a Lecture at IHP introducing (Cramer-Rao) Bound and 

Clairaut-Legendre equation of Information Geometry (for « densités distinguées », 
distributions where the variance of estimators reached the Cramer-Rao-Fréchet-Darmois 
bound). Fréchet also observed that we have to consider hessian of a real function that was 
link to characteristic function. 

• In 1945, C. R. Rao has rediscovered Cramer-Rao Bound and used Fisher Information Matrix 
to define a metric in space of densities of probabilities. 

• In 1982, N. Chentsov has axiomatized Information Geometry and characterized the Fisher 
information metric as the only Riemannian metric that is invariant under sufficient statistics, 
based on category theory. 

o Learning « Natural Gradient » of Information Geometry 
• In 1998, Sun-Ishi Amari in the framework of Information geometry, introduced Natural 

Gradient in percepton parameter space, proved to be Fisher efficient. The parameter space of 
multilayer networks forms a Riemannian space equipped with Fisher information metric. 
Instead of the usual gradient descent method, the natural gradient or Riemannian gradient 
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method, which takes account of the geometric structure of the Riemmanian space, is more 
effective for learning. 

• In 2015, Yann Ollivier and in 2016 with Gaëtan Marceau-Caron, mitigating difficulty of 
Fisher information matrix inversion, introduced a Practical Natural Gradient for Deep 
Learning on very deep neural networks with many layers and parameters.   

o Thermodynamics & statistical Physics 
• With J.C. Maxwell and Ludwig Boltzmann, J.W. Gibbs founded statistical mechanics. 
• Influenced by J. W. Gibbs, in 1891, Pierre Duhem extended Thermodynamics Potentials 

and Heat Capacities, and introduced Clausius-Duhem Inequality. 
• In 1909, C. Carathéodory formulated the Laws of Thermodynamics axiomatically. 
• Influenced by V. Bargmann [5], in 1969, Jean-Marie Souriau introduced Symplectic 

Geometry in (Statistical) Mechanics, and extension of Fisher Metric in Lie Groups 
Thermodynamics by studying non-equivariance of coadjoint operator on moment map (KKS 
2 form in non-null cohomology and Souriau Symplectic Cocycle). Souriau gave a new 
definition of Entropy with a new geometric thermodynamics that is fully covariant under the 
action of the group acting on the system. 

o   Geometry of Homogeneous Convex Cones 
• Jean-Louis Koszul, introduced the Koszul-Vinberg Characteristic Function, and a Koszul 2 

form on sharp convex cones, that constitutes the algebraic foundation of Fisher Metric.  
• Based on J. Diximier work, in 1972, Alexandre A. Kirrilov introduced Representation 

Theory and Coadjoint Orbit Method for Harmonic Analysis on Lie Groups 

 
Figure 1. Joint Structures and Common Foundation of Statistical Physics, Information Geometry and 
Inference for Learning. 

The study of exponential densities invariant by a group goes back to the work of Muriel Casalis in her 
1990 thesis supervised by Gérard Letac, and more recently by Ishi and Tojo [30-32].  This problem was 
previously studied in a geometric framework by Jean-Louis Koszul in the 1960s, in parallel with the work of 
Ernest Vinberg in Russia, to define Riemannian metric on sharp convex cones, invariant by the automorphisms 
of these cones.  
  The general problem was solved for Lie groups by Jean-Marie Souriau in Geometric Mechanics in 1969, by 
defining a "Lie groups Thermodynamics" in Statistical Mechanics (http://souriau2019.fr/) [6-11, 13, 42-45].  
This Souriau’s model considers the statistical mechanics of dynamic systems in their "space of evolution" 
associated with a symplectic manifold, and defines in case of non null cohomology (non equivariance of the 
coadjoint operator on the moment map with appearance of a cocyle) a density (of Gibbs) that is covariant under 
the action of dynamic groups of physics (eg, Galileo's group in classical physics) [14].  The family of 
exponential densities invariant by a group is a special case associated with the affine group. Koszul and 
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Souriau's approach uses the affine representation of Lie groups and Lie algebra 
(https://fgsi2019.sciencesconf.org/). V. Arnorld [47-48] studied Geometric approach of Thermodynamics with 
Contact and Symplectic geometries in Fluid Mechanics and R. Balian [49-58] in Quantum Physics. 

Jean-Louis Koszul returns to this model of Jean-Marie Souriau in 1987 in Book “Introduction to 
Symplectic Geometry” (work that has just been translated into English). It is the tool by excellence for dealing 
with symmetries in Symplectic Geometry. These geometric structures associated with the exponential families 
make it possible to define generalizations of the Fisher metric in Information geometry (Koszul-Fisher metric 
related to the Koszul’s 2-form on the sharp convex cones and Souriau-Fisher metric tied to coadjoint orbits and 
the moment map). Maurice Fréchet concomitantly with his discovery of the Fréchet-Darmois bound (called 
Cramer-Rao Bound) discovered the equation of Clairaut-Legendre at the foundation of these geometric 
structures in 1943.  These new tools are bedrocks for Lie Group Machine Learning, due to Souriau Theorem 
relating to each Coadjoint Orbits of Lie Group an homogeneous Symplectic Manifold structure. 

In the domain of Calculus of Variations, Jean-Marie Souriau studied the manifold of system movment in 
his book “Structure des systèmes dynamiques” published in 1969. When the system is Hamiltonian, the 
manifold of movements has a natural symplectic structure discovered in 1809 by Lagrange by introducing the 
Lagrange brackets. Jean-Marie Souriau gave a global geometric formulation of this Lagrange model. When a 
Lie group G acts by symplectomorphisms on a symplectic manifold under certain cohomological conditions, 
there is a natural map defined on the manifold and with values in the dual of the Lie algebra of G. Souriau called 
this map the “moment map”. If we chose a base of the Lie algebra, the components of this map in the dual base 
are functions having for associated Hamiltonian vectors field the infinitesimal generators of the action of the 
group. The moment map is a geometrization of Emmy Noether’s first theorem. This theorem asserts that every 
differentiable symmetries of the action of a physical system has a corresponding conservation law. If we 
consider the associated Hamiltonian system, the notion of moment map gives to this theorem a more geometric 
form: if the Hamiltonian of the system has a Lie algebra of infinitesimal symmetries, the corresponding moment 
map is constant on each integral curve of the system. The usual form of the theorem is obtained by considering 
each component of the moment application separately. In chapter IV of his book, Jean-Marie Souriau has 
applied this model for statistical mechanic and build a geometric model of thermodynamics that he called “Lie 
Groups Thermodynamics. This is the main achievement of Souriau in the domain of Calculus of Variations for 
a geometrization of statistical physics. 

 
Figure 2. Jean-Marie Souriau contribution in the domain of Calculus of Variations. 

    We will develop Souriau Lie Groups Thermodynamics model and expression of covariant Gibbs 
density and Souriau-Koszul-Fisher Metric. After mathematical details about Souriau Moment map, we will 
illustrate the model for Poincaré Unit Disk considered as a symplectic manifold where the Lie Group 
SU(1,1)/K acts transitively (case of null cohomology). We will give expression of SU(1,1)/K Moment map 
to compute by mean of Kirillov representation theory and kirillov character, Souriau covariant Gibbs 
density. By this way, we can define this Gibbs density as a generalization of “Gauss density” in Poincaré 
Unit disk through representation theory. This “Gaussian density” and its statistical moments will be 
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invariant under the action of the group. We will indicate also method to extend this approach to non-null 
cohomology case for particular use-case of SE(2) Lie Group. 

1. Lie Groups Thermodynamics and Covariant Gibbs Density 

   We identify the Riemanian metric introduced by Souriau based on cohomology, in the framework of “Lie 
groups thermodynamics” as an extension of classical Fisher metric introduced in information geometry. We 
have observed that Souriau metric preserves Fisher metric structure as the Hessian of the minus logarithm of a 
partition function, where the partition function is defined as a generalized Laplace transform on a sharp convex 
cone. Souriau’s definition of Fisher metric extends the classical one in case of Lie groups or homogeneous 
manifolds. Souriau has developed this “Lie groups thermodynamics” theory in the framework of homogeneous 
symplectic manifolds in geometric statistical mechanics for dynamical systems, but as observed by Souriau, 
these model equations are no longer linked to the symplectic manifold but equations only depend on the Lie 
group and the associated cocycle [77-78]. This analogy with Fisher metric opens potential applications in 
machine learning, where the Fisher metric is used in the framework of information geometry, to define the 
“natural gradient” tool for improving ordinary stochastic gradient descent sensitivity to rescaling or changes of 
variable in parameter space. In machine learning revised by natural gradient of information geometry, the 
ordinary gradient is designed to integrate the Fisher matrix. Amari has theoretically proved the asymptotic 
optimality of the natural gradient compared to classical gradient. With the Souriau approach, the Fisher metric 
could be extended, by Souriau-Fisher metric, to design natural gradients for data on homogeneous manifolds. 
Information geometry has been derived from invariant geometrical structure involved in statistical inference. 
The Fisher metric defines a Riemannian metric as the Hessian of two dual potential functions, linked to dually 
coupled affine connections in a manifold of probability distributions. With the Souriau model, this structure is 
extended preserving the Legendre transform between two dual potential function parametrized in Lie algebra 
of the group acting transentively on the homogeneous manifold.  

1.1. Inference by natutal gradient and Legendre structure 

Classically, to optimize the parameter θ  of a probabilistic model, based on a sequence of observations ty , is 

an online gradient descent: 

( )
1

T
t t

t t t

l y
θ θ η

θ−

∂
← −

∂
                                                                   (1) 

with learning rate tη , and the loss function ( )ˆlog /t t tl p y y= − . This simple gradient descent has a first 

drawback of using the same non-adaptive learning rate for all parameter components, and a second drawback 
of non invariance with respect to parameter re-encoding inducing different learning rates. Amari has introduced 
the natural gradient to preserve this invariance to be insensitive to the characteristic scale of each parameter 
direction. The gradient descent could be corrected by 1( )I θ −  where I  is the Fisher information matrix with 
respect to parameter θ , given by: 

( ) ( )2

( / )

log /
  with  ij ij y p y

i j ij

p y
I g g E θ

θ
θ

θ θ

  ∂
 = = −    ∂ ∂    


                                        (2) 

with natural gradient:   
( )1

1 ( )
T

t t
t t t

l y
Iθ θ η θ

θ
−

−

∂
← −

∂
                                                              (3)                                                                               

Amari has proved that the Riemannian metric in an exponential family is the Fisher information matrix defined 
by: 

2
,  with  ( ) log y

ij
i j ij

g e dyθθ
θ θ

− ∂ Φ
= − Φ = − 

∂ ∂  
∫


                                               (4) 

and the dual potential, the Shannon entropy, is given by the Legendre transform: 
( ) ( )( ) , ( )  with    and  i i

i i

SS θ ηη θ η θ η θ
θ η

∂Φ ∂
= − Φ = =

∂ ∂
                                         (5) 
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We can observe that ( ),( ) log logye dyθθ ψ θ−Φ = − = −∫


 is linked with the cumulant generating function.  

J.L. Koszul and E. Vinberg have introduced an affinely invariant Hessian metric on a sharp convex cone 
through its characteristic function: 

*

*

,

,

( ) log log ( )  with  sharp convex cone

( )   with  Koszul-Vinberg Characteristic function

y

y

e dy

e dy

θ

θ

θ ψ θ θ

ψ θ

−
Ω Ω

Ω

−
Ω

Ω

Φ = − = − ∈Ω

=

∫

∫
                       (6) 

Jean-Louis Koszul has introduced the following forms 

1st Koszul form α : ( ) log ( )d dα θ ψ θΩ Ω= Φ = −                                    (7) 

2nd Koszul form γ : log ( )D Ddγ α ψ θΩ= =                                             (8) 

with the following property of positive definitiveness: 

( )
* * *

2

2 2
2

1 1, ,
2 2

1log ( ) ( ) ( ) . ( ) ( ). ( )  0
( )

with   ( )    and   ( ) ,
x x

Dd x u F d G d F G d
u

F e G e u
ξ ξ

ψ ξ ξ ξ ξ ξ ξ ξ
ψ

ξ ξ ξ

Ω
Ω Ω Ω Ω

− −

  
 = − >     

= =

∫ ∫ ∫           (9) 

Koszul has defined the following Diffeomorphism: 

*

*

,

,log ( ) ( )   with ( ) ed p d p
e d

ξ θ

θ θ ξ θη α ψ θ ξ ξ ξ ξ
ξ

−

Ω −
Ω

Ω

= = − = =∫ ∫
                              (10)  

with preservation of Legendre transform: 

( ) , ( )  with  ( )  and  ( )S d dSη θ η θ η θ θ ηΩ Ω Ω Ω= − Φ = Φ =                    (11) 

1.2. Souriau Lie Groups Thermodynamique and Souriau-Koszul-Fisher metric 

   This relations have been extended by Jean-Marie Souriau in geometric statistical mechanics, where he 
developed a “Lie groups thermodynamics” of dynamical systems where the (maximum entropy) Gibbs density 
is covariant with respect to the action of the Lie group. In the Souriau model, previous structures of information 
geometry are preserved: 

2
, ( ) *

2( )  with  ( ) log   and  :U

M

I e d U Mβ ξ
ωβ β λ

β
−∂ Φ

= − Φ = − →
∂ ∫ g                                (12)                                                                                                  

*( ) ( )( ) , ( )  with    and  S QS Q Q Q
Q

ββ β β
β

∂Φ ∂
= − Φ = ∈ = ∈

∂ ∂
g g                                  (13) 

In the Souriau Lie groups thermodynamics model, β  is a “geometric” (Planck) temperature, element of 
Lie algebra g  of the group, and Q  is a “geometric” heat, element of dual Lie algebra *g  of the group. 
Souriau has proposed a Riemannian metric that we have identified as a generalization of the Fisher metric: 

( ) [ ] [ ]( ) [ ]( )1 2 1 2  with  , , , , ,I g g Z Z Z Zβ β ββ β β β = = Θ 
                                      (14) 

( ) ( ) [ ]
1 11 2 1 2 2 2 1 2with  , , , ( )   where   ( ) ,Z ZZ Z Z Z Q ad Z ad Z Z ZβΘ = Θ + =                          (15) 

Souriau has proved that all co-adjoint orbit of a Lie Group given by 
{ }* 1 * *, subset of ,F gAd F g Fg g G F−Ο = = ∈ ∈g g  carries a natural homogeneous symplectic structure by a 
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closed G-invariant 2-form. If we define ( )1

*
*
g g

K Ad Ad −= = and ( )*
*( ) XK X ad= −  with 

1
* *, , , , ,g g

Ad F Y F Ad Y g G Y F−= ∀ ∈ ∈ ∈g g where if X ∈g , 1( )gAd X gXg −= ∈g , the G-invariant 2-form 

is given by the following expression ( ) ( ) [ ], , , , , ,X Y Fad F ad F B X Y F X Y X Yσ Ω = = ∈g . Souriau 

Foundamental Theorem is that « every symplectic manifold is a coadjoint orbit ». We can observe that for 
Souriau model, Fisher metric is an extension of this 2-form in non-equivariant case 

[ ] [ ]( ) [ ]( ) [ ]1 2 1 2 1 2, , , , , , , ,  g Z Z Z Z Q Z Zβ β β β β = Θ +  
 . 

The Souriau additional term [ ]( )1 2, ,Z ZβΘ is generated by non-equivariance through Symplectic cocycle. The 

tensor Θ  used to define this extended Fisher metric is defined by the moment map ( )J x , application from 
M (homogeneous symplectic manifold) to the dual Lie algebra *g , given by:  

[ ] { },( , ) ,X YX YX Y J J JΘ = −                                                                (16)                                                                                                 

with  ( ) :   such that ( ) ( ), , XJ x M J x J x X X→ = ∈*g g                                       (17) 

This tensor Θ  is also defined in tangent space of the cocycle ( )gθ ∈ *g  (this cocycle appears due to the 

non-equivariance of the coadjoint operator *
gAd , action of the group on the dual lie algebra; the action of the 

group on dual Lie algebra is modified with a cocycle so that the momentu map becomes equivariant relative to 
this new affine action): 

( ) ( )*( ) ( )g gQ Ad Ad Q gβ θ= +                                                              (18)                                                                             

( )gθ ∈ *g  is called nonequivariance one-cocycle, and it is a measure of the lack of equivariance of the moment 

map. 
( ) ( ), :                      with  ( ) ( )

               X,Y ( ),
eX Y X T X e

X Y

θΘ × → ℜ Θ =

Θ





g g                                       (19) 

The cocycle should verify: 
( )

( ) ( ) ( )
( )

*

* * * *

* *

*

( ) ( . ) ( )

( ) ( . . ) . . ( )

( ) ( ) . ( )

( ) ( ) ( )

st

s s s t

s t

s

st J st x Ad J x

st J s t x Ad J t x Ad J t x Ad Ad J x

st s Ad J t x Ad J x

st s Ad t

θ

θ

θ θ

θ θ θ

= −

   = − + −   
 = + − 

= +

                          (20) 

We can also compute tangent of one-cocycle θ  at neutral element, to compute 2-cocycle Θ : 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) [ ]
( ) { } [ ] ( )

1
*

,

( ),

  ,   , . , , . , ,

. ( ), ,   with  

( ), , ,

, , , ( ), ,

s s

e x p p J

e J x

e

s s J s x Ad J x J s x J x Ad

T T J x J x ad X

T X J x J x

T J J J x

ζ

ζ ξ ξ

ζ ξ

ζ

ζ θ θ ζ ζ ζ ζ ζ

θ ξ ξ ζ ζ ξ

θ ξ ζ ξ ζ

θ ξ ξ ζ ξ ζ ξ

−∈ = = − = −

= + =

=   + 

= − + = Θ

g

         (21) 

We can also write: ( ) ( )*( ) ( ) ,.x pT J x ad J xξξ ξ= − + Θ  

By differentiating the equation on affine action, we have: 
( ) ( ) ( )  ,  ,XdJ Xx ad J x d X x M Xθ= + ∈ ∈g             (22) 

[ ] { }
[ ] { }

( ), ( ), d ( ), ,  , ,

( ), ( ), , d ( ),  , , , ( )

 ( ), , , , , ( ) d ( ),

XdJ Xx Y ad J x Y X Y x M X Y

dJ Xx Y J x X Y X Y J X J Y x

J x X Y J X J Y x X Y

θ

θ

θ

= + ∈ ∈

= + =

− = −

g
         (23) 

It can be then deduced that the tensor could be also written: 

[ ] { },( , ) , ( ),   ,  ,X YX YX Y J J J d X Y X YθΘ = − = − ∈ g            (24) 

with the cocycle property: 
[ ]( ) [ ]( ) [ ]( ), , , , , , 0  ,  , ,X Y Z X Y Z X Y Z X Y ZΘ + Θ + Θ = ∈   g           (25) 

By noting the action of the group on the dual Lie algebra: 
*, ( , ) ( )sG s s Ad sξ ξ ξ θ× → = +* *g g                   (26) 
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Associativity is also derived: 

( ) ( )
1 2 1 2 1

1 2

* * * *
1 2 1 2 1 2

* *
1 2 2 1 1 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( )   ,  , ,
s s s s s

s s

s s Ad s s Ad Ad s Ad s

s s Ad Ad s s s s s s G

ξ ξ θ ξ θ θ

ξ ξ θ θ ξ ξ

= + = + +

= + + = ∀ ∈ ∈ *g
            (27) 

This study of the moment map J  equivariance, and the existence of an affine action of G on *g , whose linear 
part is the coadjoint action, for which the moment J  is equivariant, is at the cornerstone of Souriau theory of 
geometric mechanics and Lie groups thermodynamics. 

1.3. Souriau Entropy and Souriau-Fisher-Koszul metric Invariance under the action of the group and 
Covariant Souriau Gibbs density 

In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization in information geometry 
has been replaced by invariance with respect to the action of the group. When an element of the group g  acts 
on the element β ∈g  of the Lie algebra, given by adjoint operator gAd . Under the action of the group 

( )gAd β , the entropy ( )S Q  and the Fisher metric ( )I β  are invariant: 

( ) ( )
( )

( )
( )

( )

g

g

g

S Q Ad S Q
Ad

I Ad I

β
β β

β β

   =  ∈ → ⇒ 
  =  

g                                                (28) 

In the framework of Lie group action on a symplectic manifold, equivariance of moment map could be 
studied to prove that there is a unique action a(.,.) of the Lie group G  on the dual *g  of its Lie algebra for 
which the moment map J  is equivariant, that means for each Mx ∈ :  

( ) ( ) )()())(,()( * gxJAdxJgaxJ gg θ+==Φ                                                (29)                                                 

When coadjoint action is not equivariant, the symmetry is broken, and new “cohomological” relations should 
be verified in Lie algebra of the group. A natural equilibrium state will thus be characterized by an element of 
the Lie algebra of the Lie group, determining the equilibrium temperature β . The entropy )(Qs , parametrized 
by Q  the geometric heat (mean of energy U , element of the dual Lie algebra) is defined by the Legendre 
transform of the Massieu potential ( )βΦ  parametrized by β  ( ( )βΦ  is the minus logarithm of the partition 
function ( )βψ Ω

).  
 
Souriau has then defined a Gibbs density that is covariant under the action of the group: 

, ( )
( ) , ( ) , ( )

, ( )

, ( )

, ( )

( )   ,  with  ( ) log

( )
( ) ( ) ( )

U
U U

Gibbs U
M

M

U

M
U

M
M

ep e e d
e d

U e d
Q U p d

e d

β ξ
β β ξ β ξ

ωβ ξ
ω

β ξ
ω

ωβ ξ
ω

ξ β λ
λ

ξ λ
β ξ ξ λ

β λ

−
Φ − −

−

−

−

= = Φ = −

∂Φ
= = =

∂

∫∫

∫
∫∫

                       (30) 

 
Figure 1. Fondamental Equation of Souriau Lie Groups Thermodynamics. 
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Figure 2. Souriau Model of Lie Groups Thermodynamics. 

Souriau completed his “geometric heat theory” by introducing a 2-form in the Lie algebra, that is a 
Riemannian metric tensor in the values of adjoint orbit of β , [ ]Z,β  with Z  an element of the Lie algebra. 
This metric is given for ( )Q,β : 

[ ] [ ]( ) ( ) [ ] [ ][ ]212121 ,,,,, ,,, ZZQZZZZg βββββ +Θ=             (31) 
where Θ  is a cocycle of the Lie algebra, defined by θeT=Θ  with θ  a cocycle of the Lie group defined by 

( ) QAdAdQM MM
*)()( −= βθ . 

We observe that Souriau Riemannian metric, introduced with symplectic cocycle, is a generalization of 
the Fisher metric, that we call the Souriau-Fisher metric, that preserves the property to be defined as a Hessian 

of the partition function logarithm 
2

2

2

2 log
β

ψ
ββ ∂

∂
=

∂
Φ∂

−= Ωg  as in classical information geometry. We will 

establish the equality of two terms, between Souriau definition based on Lie group cocycle Θ  and 
parameterized by “geometric heat” Q (element of dual Lie algebra) and “geometric temperature” β (element of 
Lie algebra) and hessian of characteristic function ( ) )(log βψβ Ω−=Φ  with respect to the variable β: 

[ ] [ ]( ) ( ) [ ] [ ][ ] 2

2

212121
log,,,,, ,,,
β

ψ
βββββ ∂

∂
=+Θ= ΩZZQZZZZg         (32) 

If we differentiate this relation of Souriau theorem ( ) ( )gQAdAdQ gg θβ += )()( * , this relation occurs: 

[ ]( ) [ ]( ) [ ] [ ]( ),.,~),.(,,.,~,., 1.11 1
ββββ

β β ZAdQZZQ
Z Θ=+Θ=−

∂
∂           (33) 

[ ]( ) [ ]( ) [ ] [ ]( )212.2121 ,,~),(,,,~.,,
1

ZZZAdQZZZZQ
Z ββββ

β βΘ=+Θ=
∂
∂

−         (34) 

[ ] [ ]( )21 ,,, ZZgQ ββ
β β=

∂
∂

−⇒                  (35) 
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Figure 3. Souriau-Fisher metric as extension of KKS 2-form in case of non-null Cohomogy. 

As the entropy is defined by the Legendre transform of the characteristic function, a dual metric of the 
Fisher metric is also given by the hessian of “geometric entropy” ( )S Q  with respect to the dual variable given 

by Q: 
2

2

( )S Q
Q

∂
∂

. 

For the maximum entropy density (Gibbs density), the following three terms coincide: 
2

2 log
β

ψ
∂

∂ Ω  that 

describes the convexity of the log-likelihood function, 
2

2

log ( )
( )

p
I E β ξ

β
β

 ∂
= −  

∂  
 the Fisher metric that 

describes the covariance of the log-likelihood gradient, whereas ( )( )[ ] )()( ξξξβ VarQQEI T =−−=  that 

describes the covariance of the observables. We can also observe that the Fisher metric 
β

β
∂
∂

−=
QI )(  is exactly 

the Souriau metric defined through symplectic cocycle: 
[ ]( ) [ ] [ ]( )2121 ,,,,,~)( ZZgZZI ββββ ββ =Θ=               (36) 

The Fisher metric 
ββ

ββ
∂
∂

−=
∂
Φ∂

−=
Q)(I 2

2

)(  has been considered by Souriau as a generalization of “heat 

capacity”. Souriau called it K  the “geometric capacity”. 

1.4. Covariant Souriau Gibbs density and Information Manifold Foliation 

   R.F. Streater has studied in 1999, Information Geometry for some Lie algebra where for certain unitary 
representation of a Lie algebra, he has defined the statistical manifold of states as convex cone for which the 
partition function is finite, making reference to Bogoliubov-Kubo-Mori metric. But Streater has only developed 
the case with null cohomology for so(3) and sl(2,R) Lie alebras. Nevertheless, as observed by R.F. Streater in 
his paper “Information Geometry for some Lie algebras” [83], referring to Kirillov work and Roger Balian 
paper, “We can expect further natural structures to arise in this case. Indeed, it is known (*) that the dual to 
the Lie algebra, which parametrizes the state-space in this case, foliates into coadjoint orbits; there are also 
the level sets on the entropy; Kirillov form, and the BKM (Bogoliubov-Kubo-Mori) metric, together make 
each orbit into kähler space, along the lines proposed by Kostant. Motion along these holomorphic directions 
is nondissipative. The transversal to the orbits is a real half-line, which represents the dissipative 
direction…We study the case of sl(2,R) in the discrete series of representations. We show the information 
manifold foliates into level sets of the entropy, each being isometric to H, the Poincaré upper half-plane… The 
states of constant entropy are the hyperboloids and β  is the dissipative coordinate…For an integrable system 

described by a Lie algebra in a traceable representation, we find that the information manifold foliates into 
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complex spaces; the level sets of entropy can be given a complex structure by the method of Kostant. Motion 
remaining on the complex surfaces is nondissipative, whereas motion transversal to these surfaces is 
dissipative. In information geometry, the state is parametrized by the canonical coordinates. Which function of 
them is measured by a thermometer? In our models, it is reasonable to designate 1/ β to be the temperature; 

it is a dissipative coordinate, and it increases with time, showing that the system is thermalizing”. 

2. Mathematical definition of Souriau Moment map 

In previous chapter, we have introduced Souriau moment map. In this chapter, we provide mathematical 

definition of Souriau moment map, as defined in Souriau's book "Structure of Dynamical System: A Symplectic 

View of Physics" [6] with modern notations [105-106,108]. More details could be also find in Jean-Louis 

Koszul Book “Introduction to Symplectic Geometry”, that we have recently supervised translation [109]. 

2.1. Operations on Vector Fields 

Consider a map : M NF X R Y R⊂ → ⊂ , ( )y F x=  , the derivative of F  at x X∈ , : N MDF X R ×→  is 

given by: 
1 1

1 11

0

1

( ) ( )( )( )

M

t
N MN N

M

y y
y xx x F x t x F xDF x x Lim

t
y xy y

x x

δ δ
δδ

δ δ
→

 ∂ ∂
    ∂ ∂  + −   

= = =    
    ∂ ∂     ∂ ∂ 



    



      (37) 

Second derivative is given by the linear map 2 : N M MD F X R × ×→ :
2

2
2 ( ) ( )( )y y x D F x x

x x
δ δ δ∂ ∂  = = ∂ ∂ 

 (38) 

Consider a vector Field V  on MX R⊂   defined by : : M MV X R R⊂ → , operations on vector fields are 
given by adjoint action and Lie bracket: 

( )1 1

0

( ) ( ) ( ) ( )   with  ( )tV
F

t

dAd V y F e F y DF x V x x F y
dt

− −

=

 = = =          (39) 

[ ] ( ) ( )
0

, ( ) ( ) ( ) ( ) ( ) ( )sUe
s

dU V x Ad V x DU x V x DV x U x
ds =

= = −         (40) 

0-form is a scalar, 1-form are row ( )1 Mω ω ω=   in dual space. 2-forms can be regarded as antisymmetric 

matrices ( )ijω  with ( )
11 1

1

,
M

t

M MM

u v u v
ω ω

ω
ω ω

 
 =  
 
 



  



. m-forms are all scalar multiples of the standard volume 

form vol, defined by ( ) ( )1 1, , det matrix with columns ,...,m mVol v v v v= .   

2.2. Derivative rules by Sophus Lie, Elie Cartan and Henri Cartan 

With the following classical definitions: 
• Pull back: *F ω  is a p-form on X   

( ) ( )*
1 ( ) 1, , ( )( ), , ( )( )p F x pF v v DF x v DF x vω ω=                (41) 

• Interior product: Vi ω  is the (p-1)form on M obtained by inserting ( )V x as the first argument of ω  
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( ) ( )2 2, ( ), , ,V p pi v v V x v vω ω=                                             (42) 

• Exterior product: θ ω∧  is the (p + 1)-form on X  where ω  is a p-form and θ  is a 1-form on M
(where the hat indicates a term to be omitted).: 

( ) ( ) ( )0 0
0

ˆ, , 1 ( ) , , , ,
p

i
p i i p

i
v v v v v vθ ω θ ω

=

∧ = −∑                                      (43) 

• Lie derivative : VL ω  is a p-form on M , and 0VL ω =  if the flow of V consists of symmetries of ω : 

( ) ( )*
1 1

0

, , , ,tV
V p p

t

dL v v e v v
dt

ω ω
=

=                                               (44) 

dω  is the (p+1)-form on M defined by taking the ordinary derivative of ω  and then 
antisymmetrizing: 

• Exterior derivative:  

( ) ( )0 0
0

ˆ, , 1 ( )( , , , , )
p

i
p i i p

i
d v v v v v v

x
ωω

=

∂
= −

∂∑                                        (45) 

[ ] [ ] [ ]0,   ;  1,   ;  2,i i j j i i jk j ki k iji ij ijk
p d p d p dω ω ω ω ω ω ω ω ω= = ∂ = = ∂ − ∂ = = ∂ + ∂ + ∂        (46) 

From these definitions, the properties of the exterior and Lie Derivative were established by Sophus Lie, Elie 
Cartan, and Henri Cartan: 

• V V VL di i dω ω ω= +  (lie. Cartan)                                                   (47)   
• 

[ ], V U U VU Vi i L L iω ω ω= −  (Henri Cartan)                                             (48)   

• 
[ ], V U U VU VL L L L Lω ω ω= − (Sophus Lie)                                              (49)   

2.3. Souriau Moment Map 

Considering Manifolds and Lie groups, We define the tangent bundle TX of X  as the disjoint union of the 

xT X , or the set of all pairs x
x

δ 
 
 

 with x X∈  and xx T Xδ ∈ . If :F X Y→  is a smooth map between 

manifolds, its tangent map is the map: 
*

( )( )
( )

x DF x x
F

x F x
δ δ   

=   
   

         (50)   

A Lie group is a group G  with a manifold structure such that the product ( ),g h gh  and the inversion 
1g g −  are smooth maps from G G×  (resp. G) to G . Its Lie algebra is the tangent space eg T G=  at the 

identity element. A smooth action of G  on a manifold X  is a group morphism: 

( )
: ( )

     , .
G X Diff X

g x g x
Φ × →


                                                                  (51)   

The orbit of x X∈  is { }( ) . :G x g x g G= ∈ .  

The tangent space to an orbit at x : 

{ }( ) ( ) : /x xT G x Z x Z= ∈g = g g  with 
0

( ) ( )tZ

t

dZ x e x
dt =

=  and where { }: ( ) 0x Z Z x= ∈ =g g          (52)   

Let ( ),M σ  be a connected symplectic manifold. A vector field η  on M  is called symplectic if its flow 

preserves the 2-form : 0Lησ = . If we use Elie Cartan's formula, we can deduce that 0L di i dη η ησ σ σ= + =  

but as 0dσ =  then 0diησ = . We observe that the 1-form iησ  is closed. When this 1-form is exact, there is 

a smooth function x H  on M  with:  
i dHησ = −                      (53)   
This vector field η  is called Hamiltonian and could be defined as symplectic gradient Symp Hη = ∇ .  

Let a Lie group G  that acts on M  and that also preserve σ . A moment map exists if these infinitesimal 
generators are actually hamiltonian, so that a map *:J M → g  exists with: 

XZ Zi dHσ = −   where  ( ),ZH J x Z=                                                     (54)            

The Poisson bracket of two functions H , 'H  is defined by : 
{ } ( ) ( ), ' , ' ',Symp SympH H H Hσ η η σ= = ∇ ∇  with i dHησ = −  and ' 'i dHη σ = −                     (55)            
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If G  is connected, then the moment map is G-equivariant if and only if it satisfies { } [ ]' , ',Z Z Z ZH H H= . 

Souriau has proved thet every coadjoint orbit of a Lie group is a homogeneous symplectic manifold when 
endowed with the KKS 2-form ( ) [ ]( ), '( ) , ',Z x Z x x Z Zσ = , and conversely, every homogeneous symplectic 

manifold of a connected Lie group G is, up to a possible covering, a coadjoint orbit of some central extension 
of G. σ  is G-invariant. 

3. Poincaré Unit Disk, SU(1,1) Lie Group and Souriau Moment map 

We will introduce Souriau moment map for SU(1,1)/K group that acts transitively on Poincaré Unit Disk. 

3.1. Poincaré Unit Disk and SU(1,1) Lie Group 

The group of complex unimodular pseudo-unitary matrices (1,1)SU , is the set of elements u  such 
that [20-22,27-29, 79-82]:  

uMu M+ =   with  1 0
0 1

M
+ 

=  − 
                                                    (56)                                               

We can show that the most general matrix u  belongs to the Lie group given by: 

2 2
* *(1,1) / 1,  ,

a b
G SU a b a b C

b a
  

= = − = ∈  
  

                                          (57) 

Its Cartan decomposition is given by: 

( ) ( ) 1/21 2*
** * *

01
  with  , 1

01
a aa b z

a z b a a z
a ab a z

−−    
= = = −    

    
                        (58) 

*

** * * *
* *

'' ' 01 1 '
'   with  

0 ' '1 ' 1 '

a bz aa aa b z z
a az ba ab a z z z

b z a

 = +      =    +     =       +

                (59)                   

( )1,1SU  is associated to group of holomorphic automorphisms of the Poincaré unit disk 

{ }/ 1D z x iy C z= = + ∈ <  in the complex plane, by considering its action on the disk as  

( ) ( )* *( ) /g z az b b z a= + + . The following measure on Unit disk: 

( )
( )

*
*

0 22

1,
2 1

dz dzd z z
i z

µ
π

∧
=

−

                                                            (60) 

is invariant under the action of (1,1)SU  captured by the fractional holomorphic transformation: 

( ) ( )
* *

2 22 2

' '

1 ' 1

dz dz dz dz

z z

∧ ∧
=

− −

                                                                (61) 

The complex unit disk admits a Kähler structure determined by potential function: 

( ) ( )* *', log 1 'z z z zΦ = − −                       (62) 

The invariant 2-form is: ( )
( )

2 * *
*

2* 2

,1 1

1

z z dz dzdz dz
i z z i z

∂ Φ ∧
Ω = ∧ =

∂ ∂ −

                              (63) 

which is closed 0dΩ = . This group (1,1)SU  is isomorphic to the group (2, )SL   as a real Lie group, 
and the Lie algebra ( )1,1=g su  is given by: 
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* / ,
ir

g r R C
ir
η

η
η

 −  
= ∈ ∈  

  
                                                         (64) 

with the bases ( )1 2 3, ,u u u ∈g : 
1 2 3

0 0 1 01 1 1 ,  , 
0 1 0 02 2 2
i i

u u u
i i

− −     
= = =     

     
 

with the commutation relation: [ ] [ ] [ ]3 2 1 3 1 2 2 1 3, , , , ,u u u u u u u u u= = − = −                          (65) 

Dual base on dual Lie algebra is named ( )* * * *
1 2 3, ,u u u ∈g . The dual vector space * *(1,1)=g su  can be 

identified with the subspace of (2, )Csl  of the form:  

* 0 1 0 1 0
/ , ,

1 0 0 0 1
z x iy i

g x y z x y z R
x iy z i

 +        
= = + + ∈        − + − − −        

                       (66) 

Coadjoint action of g G∈  on dual Lie algebra *ξ ∈g  is written .g ξ . 

3.2. Coadjoint Orbit of SU(1,1) and Souriau Moment Map 

We will use results of C. Cishahayo and S. de Bièvre [15] and B. Cahen [16,17] for computation of 
moment map of (1,1)SU . Let *r R +∈ , orbit ( )*

3ruΟ  of *
3ru  for the coadjoint action of g G∈  could 

be identified with the upper half sheet 3 0x >  of { }* * * 2 2 2 2
1 1 2 2 3 3 1 2 3/x u x u x u x x x rξ = + + − − + = , the two-

sheet hyperboloid. The stabilizer of *
3ru  for the coadjoint action of G  is torus 

0
,

0

i

i

e
K

e

θ

θ
θ

−

   = ∈  
   

 . K induces rotations of the unit disk, and leaves 0 invariant. The stabilizer 

for the origin 0 of unit disk is maximal compact subgroup K of SU(1,1). We can observe [16] that 

( )*
3 /ru G KΟ = . On the other hand ( )*

3 /ru G KΟ =  is diffeomorphic to the unit disk 

{ }/ 1D z C z= ∈ < , then by composition, the Souriau moment map is given by: 

( )

( ) ( ) ( )

*
3

2* *
* * *
1 2 32 2 2

:

1
      ( )

1 1 1

J D ru

zz z z zz J z r u u u
z i z z

→ Ο

 ++ − = + +  − − −
 



                                    (67) 

J  is linked to the natural action of G  on D  (by fractional linear transforms) but also  the coadjoint 
action of G  on ( )*

3 /ru G KΟ = . 1J −  could be interpreted as the stereographic projection from the 

two-sphere 2S  onto C ∪ ∞ [46]. In case 
2
nr =  where , 2n N n+∈ ≥  then the coadjoint orbit is given 

by ( )n nζΟ = Ο  with * *
32n

n uξ = ∈g , with stabilizer of  nξ  for coadjoint action the torus 

0
,

0

i

i

e
K R

e

θ

θ
θ

−

   = ∈  
   

 with Lie algebra 3Ru . ( )n nζΟ = Ο  is associated with a holomorphic 

discrete series representation nπ  of G  by the KKS (Kirillov-Kostant-Souriau) method of orbits.  

( ) ( ) ( )
2* *

* * *
1 2 32 2 2

:

1
      ( )

2 1 1 1

nJ D

zn z z z zz J z u u u
z i z z

→ Ο

 ++ − = + +  − − −
 


                                    (68) 
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Group G  act on D  by homography 
* * * *. .

a b az bg z z
b a b z a

  +
= =  + 

. This action corresponds with 

coadjoint action of G  on nΟ .  The Kirillov-Kostant-Souriau 2-form  of nΟ  is given by: 

( ) ( ) ( )( ) [ ], , ,  , ,  and n nX Y X Y X Yζ ζ ζ ζ ζΩ = ∈ ∈Οg                                     (69) 

and is associated in the frame by J  with: 

( )
*

221
n

in dz dz
z

ω = ∧
−

                          (70)                  

with the corresponding Poisson Bracket: { } ( )22
* *, 1 f g f gf g i z

z z z z
∂ ∂ ∂ ∂ = − − ∂ ∂ ∂ ∂ 

                 (71) 

It has been also observed that there are 3 basic observables generating the (1,1)SU  symmetry on 
classical level: 

2 * *

1 22 23 2

, 1 ,1 ( ) ( )( )
1 11

D R D R D R
z z z zz z k z z k zz k z i z zz

→ → → 
  − ++  = ==  − −−  

 
                              (72) 

With the Poisson commutation rule: { } { } { }3 1 2 3 2 1 1 2 3, , , , ,k k k k k k k k k= = − = −                    (73) 

( )1 2 3, ,k k k vector points to the upper sheet of the two-sheeted hyperboloid in 3R  given by 
2 2 2
3 1 2 1k k k− − = , whose the stereographic projection onto the open unit disk is:

( )1 2 3

arg32 1

3 3

, ,

1
1 1

i z

k k k D

kk ikz e
k k

+ ∈Η →

 −+

= = + +

                                                            (74) 

Under the action of 2 2
* *(1,1) / 1,  ,

a b
g G SU a b a b C

b a
  

∈ = = − = ∈  
  

: 

2
3 2 1 3

2 2 *
3 3 2 1

2 11
1 1 2

z zk k k ik k
k k k k ik z z z

−

+

 ++     = =     − − +     

 is transform in: 

( ) ( )
( ) ( )

( )
1 1' '

3 31 13
' ' 1 1

33 3

. .

. .

tk g z k g z k kk k
g g

k kk k k g z k g z

− −
− −− −−

− −
++ +

     = =         

                                    (75) 

This transform can be viewed as the co-adjoint action of (1,1)SU  on the coadjoint orbit identified 
with 2 2 2

3 1 2 1k k k− − = . 

4. Covariant Gibbs Density by Souriau Thermodynamics for Poincaré Unit Disk 

4.1. Covariant Gibbs densité for Poincaré Unit Disk 

   Representation theory studies abstract algebraic structures by representing their elements as linear 
transformations of vector spaces, and algebraic objects (Lie groups, Lie algebras) by describing its 
elements by matrices and the algebraic operations in terms of matrix addition and matrix 
multiplication, reducing problems of abstract algebra to problems in linear algebra. Representation 
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theory generalizes Fourier analysis via harmonic analysis. The modern development of Fourier 
analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel 
formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. 
This has been solved by geometric approaches based on “orbits methods” (Fourier-Plancherel 
formula for G is given by coadjoint representation of G in dual vector space of its Lie algebra) with 
many contributors (Dixmier, Kirillov, Bernat, Arnold, Berezin, Kostant, Souriau, Duflo, Guichardet, 
Torasso, Vergne, Paradan, etc.) [23-26, 33-38, 40-41].  

   For classical commutative harmonic analysis, we consider the following groups: 

{ }
{ }1 2 1 2

/  for Fourier series,     for Fourier Transform
G group character (linked to ) : :   with / 1
ˆ / . ( ) ( ) ( )  and Fourier transform is given by:

n n n n

ikx

G R Z G R
e G U U z C z

G g g g

χ

χ χ χ χ χ

= Τ = =

→ = ∈ =

= =

 

( ) 1

ˆ

:

ˆ     ( ) ( )
G

G C

g g g d

ϕ

ϕ ϕ χ χ χ−

→

= ∫
   and   

( )

ˆˆ :

ˆ     ( ) ( )
G

G C

g g dg

ϕ

χ ϕ χ ϕ χ

→

= ∫
                     (76) 

For non-commutative harmonic analysis, Group unitary irreductible representation is 
( )U : G U→ Η  with H Hilbert space and character by U ( ) Ugg trχ = . Fourier transform for non-

commutative group is U ( )Ug
G

g dgϕ ϕ= ∫  with character U ( ) Ug tr ϕχ = . If we describe group element 

with exponential map 
exp( )U ( )U XX dXψ ψ= ∫

g

, we have: 

1
.

1 *

trU dim . .

. : , Four. Transf.

G f j

j

ψ τ µ ψ

ψ

∧
−

∧
−

 
=  

 

→g g

with 
*

.

1 1
. .

: Liouville meas. on . ,

. : Integral of . wrt  

G f

G f G f

G f f

j j

µ

µ ψ ψ µ
∧ ∧

− −

 Ο = ∈

  
  

 

g
                     (77) 

where ( ) ( )( )
2

1/2

0

1det   with  ( )
2 2(2 1)! 2

n

X
n

x x xj X s ad s x sh
n

∞

=

     = = =     +     
∑                    (78) 

Kirillov Character formula is: ( ) ( ) 1 ,
exp( )exp( ) trU ( )i f X

U XX j X e d fχ µ−
Ο

Ο

= = ∫                  (79) 

,
exp( )( ) ( )trUi f X

Xe d f j XµΟ
Ο

=∫ with ( )
1/2/2 /2

det  
/ 2

X Xad ad

X

e ej X
ad

−  −
=      

                         (80) 

   We will use Kirillov representation theory and his character formula to compute Souriau covariant 
Gibbs density in the unit Poincaré disk.  For any Lie group G , a coadjoint orbit *Ο ⊂ g   has a 
canonical symplectic form 

0ω  given by KKS 2-form. As seen, if G  is finite dimensional, the 
corresponding volume element defines a G -invariant measure supported on Ο , which can be 
interpreted as a tempered distribution. The Fourier transform (where d is the half of the dimension 
of the orbit O) : 

*

, *1( )   with   and  
! d

i x
O

x e d x
d

λ ω λ−

Ο⊂

ℑ = ∈ ∈∫
g

g g                                            (81)                                             

is Ad G -invariant. When *Ο ⊂ g  is an integral coadjoint orbit, Kirillov formula, given previously, 
expresses Fourier transform ( )xℑ  by Kirillov character χΟ

: 
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( ) ( )( )
( )

1/2 sinh / 2
( ) ( )   where  ( ) det

/ 2
x ad x

x j x e j x
ad x

χΟ

 
ℑ = =   

 
                                   (82) 

χΟ  is, as defined previously, the “Kirillov character” of a unitary representation associated to the 
orbit. We will consider the universal covering of (1,1)PSU , the Lie algebra is: 

*
* *(1,1) / ,

iE p
E R p C

p iE
   = = ∈ ∈  

−   
g su                                                  (83) 

As observed in [18-19], the Ad-invariant form 22 2m E p= −  allows to identify the following 

operator Ad  and *Ad , m  could be considered analogously as rest mass, E  as energy, and 

1 2p p ip= +  as the momentum vector. The coadjoint orbits are the rest mass shells. Let 

{ }/ 1D w C w= ∈ <  Poincaré unit disk, for any 0m > , there is a corresponding action of the 

universal covering of (1,1)PSU  on /2mκ  (with κ  the holomorphic cotangent bundle of unit disk), 
with the invariant symplectic form: 

( )
( )

*
2*

22
log 2

1

dw dwcurv i dw i
w

ω κ ∧
= = − ∂∂ =

−

                                               (84) 

The moment map is an equivariant isomorphism ( m
+Ο  coadjoint orbit for 2 0m >  and 0E > ): 

( )( ) ( ) ( ) ( )2/2
2

: , , 2 ,1
1

m
m

mJ w D curv p E iw w
w

κ +∈ = + ∈Ο
−

                                 (85) 

In case 1m > , the Kirillov character formula is given by: 

*

1

1

.
,

.1.
exp ( )

. m

m

x iE pi
x p iE

m

x
j x e

x
χ ω +

−
+

−

  
−     − − −  

Ο
Ο

   
=    −   

∫                                        (86) 

where 1/2 / 2 / 2 sinh( )( ) det sinh /
/ 2 / 2

x x xj x ad ad
x x x

     
= =     − −      

          (87) 

which reduces to :

( )

2

2
1

( 1)
1 *

22 2

1( )
1 1

w
m xmx

w
x

D

e j x e dw dw
e w

+
−

−= ∧
− −

∫                 (88) 

Finally, the Souriau-Gibbs density is given by: 
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( ) ( ) ( ) ( )

( )

*

*

*

2 *

2 2

* 2

2 2

*

,

2

2

1
2

1 1
,

1
2

1 1

  with  , 2 ,1
1

( )

( )

x i iE pi
i x p iE

Gibbs mx i

i x
m

w wim m
x i w w

i x wwm im
w w

Gibbs x i

i x
m

e mp w p E iw w
w

j x e

ep w

j x e

η

η

η

η

η

η

η

η

χ

χ

   
−       − −   

+

 
  − 

 + 
 − − 
 −     − +   − −
 − − 



−

= = + ∈Ο
  −
 
 
 

=

( ) ( ) 2* ** *2

22 2

* *

1
22

11 1

( ) ( )

x w w x ww ww
m xm x

ww w

x i x i

i x i x
m m

e e

j x e j x e

η ηη η

η η

η ηχ χ

   − + +++    −− −      −− −   

    
          − −     

= =
     
     
     
     

                (89)                                  

with ( ) ( ) ( )1 *
*   where  

ix
Q Q

ix
η β

β β
η β

−− ∂Φ 
= Λ ∈ = = Λ ∈ − − ∂ 

= g g  and 

2

2 2

2

2 2

1
2

1 1
Mean moment map :   where  

1
2

1 1

w wm i m
w w

Q E w D
wwi m m

w w

  +
 − 

− −  
= ∈  

+  −  − −   

 

Nota 1: Localization for Fourier-Laplace transform 

We can observe that there is another way to compute the Laplace or Fourier transform: 

 
( )

, *1( )   with :   and  
2 !

i x n
n

M

x e d M x
n

λ ω λ
π

ℑ = → ∈∫ g g                                     (90) 

Let *:   and  M xλ → ∈g g  be the moment map, Duistermaat and Heckman have used the method of exact 
stationary phase to prove a formula that expresses this integral explicitely in term of local invariant. When x  
is purely imaginary, the integral is the partition function of a statistical system with phase space M. This 
approach is also valid for Im( ) 0x >  belonging to a special cone in g . The non-abelian measure was first 
evaluated by Duflo and Vergne. For each regular ( ), Im( )Cx x Int C∈ ∈g , the integral exist and: 

( )

( ),
, 1( )

2 ! ( )

i p x
i x n n

n n
ppM

i
i

ex e d i
n x

λ
λ ω

π α
=

ℑ = = ∑∫
∏

             (91) 

Nota 2: Extension for SU(p,q) Unitary Group for Siegel Unit Disk 

To address computation of covariant Gibbs density for Siegel Unit Disk, we can consider ( , )SU p q
Unitary Group: 

( )
0

( , )  and  ( ) ( ) / ( ), ( ),det( )det( ) 1
0
A

G SU p q K S U p U q A U p D U q A D
D

  
= = × = ∈ ∈ =  

  
        (92) 

We can use the following decomposition for Cg G∈ : 

1 1

1

00
,

0 0
ppC

qq

II BDA B A BD C
g G g

D C IIC D D

− −

−

    − 
= ∈ =             

             (93) 
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and consider the action of Cg G∈  on Siegel Unit Disk ( ){ }/ 0pq pSD Z M C I ZZ += ∈ − >  given by: 

1 1

1

00
,

0 0
ppC

qq

II BDA B A BD C
g G g

D C IIC D D

− −

−

    − 
= ∈ =             

              (94) 

Benjamin Cahen has study this case and introduced the moment map by identifing G-equivariantly 
*g with g  by means of the Killing form β  on Cg  : 

( ) ( )  G-equivariant with by Killing form , 2( )  X Y p q Tr XYβ = +*g g  

The set of all elements of g  fixed by  K is h: 

{ }

( ) ( )

0 0

2
0

0
element of  fixed by   , ,

0

, , 2 ,

p

q

qI
G K i

pI

Z Z i p q Tr ZZ Z D

ξ ξ λ

ξ λ+ +

− 
∈ =  

 

 ⇒ = − + ∀ ∈ 

h= h             (95) 

Then, we the equivatiant moment map is given by: 

( ) ( ) ( )( )
( )

( )

*
0

*

0

 ,  ,   exp exp exp

,   then . ( )

 is a diffeomorphism from S  onto orbit 

C

g

X g Z D Z Ad Z Z Z

g G Z D g Z Ad Z

D O

ψ ζ ξ

ψ ψ

ψ ξ

+ +∀ ∈ ∈ = −

∀ ∈ ∈ =            (96) 

with: 

( )
( ) ( ) ( ) ( )

( ) ( )( )

1 1

1 1
( )

p p q

q q q

I ZZ pZZ qI p q Z I Z Z
Z i

p q I Z Z Z pI qZ Z I Z Z
ψ λ

− −+ + +

− −+ + + +

 − − − + − =   − + − + − 

           (97) 

and ( ) ( ) 1

exp exp
0

p q

q

I Z I Z Z
Z Z

I
ζ

−+
+

 − =
 
 

               (98) 

5. New Entropy Definition as Generalized Casimir Invariant Functions for Coadjoint and 
Adjoint Representation 

5.1. Casimir Invariant and Generalized Casimir Invariant 

   Hendrik Brugt Gerhard Casimir, a Dutch physicist, studied what is called Casimir operators and Casimir 
invariants (H. Casimir and Van der Waerden studied the SU(2) group, the group of isospin/angular momentum,  
as the model of the algebraic approach to the study of the unitary representations of semi-simple compact Lie 
groups). Kirillov has explained that Casimir operators are in one-to-one correspondence with polynomial 
invariants characterizing orbits of the coadjoint representation. Solutions are not necessarily polynomials and 
the nonpolynomial solutions are called generalized Casimir invariants. For certain classes of Lie algebras, all 
invariants of the coadjoint representation are functions of polynomial ones. In physics, Hamiltonians and 
integrals of motion of classical integrable Hamiltonian systems are not polynomials in the momenta [84-
100,103-104]. 

5.2. Souriau Entropy as Generalized Casimir Invariant in Coadjoint representation 

  In Souriau Lie groups Thermodynamics, we will see that coadjoint orbits lie on level sets of the Entropy that 

could be considered as a Casimir invariant function: 
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( )

*:
    
S R

Q S Q
→



g                    (99) 

We will consider first the case of null-cohomology, Entropy as Casimir invariant function is a conserved 

quantity, because Casimir function has null Lie Poisson brackets functions [100,101]:  

{ }( ) ( )

( ) ( )

* *

0

, , , 0  ,   : ,     ,  , ,   Cartan-Killing form

with  S ,

S HS H Q Q H R Q A B B A B
Q Q

d SQ S Q Q Q
d Qε

δ δ
ε =

 ∂ ∂
= = ∀ → ∈ = ∂ ∂ 

∂
∂ = + =

∂

g g
  (100) 

We can observe that S
Q

β ∂
=

∂
, then: 

 [ ]* *, , , 0  ,   : ,     ,  ,a
H HQ Q ad H R Q ad b a b
Q Qββ

 ∂ ∂
= = ∀ → ∈ = ∂ ∂ 

g g       (101) 

We can also write: 

* *, , , , 0  , :S S
Q Q

S H H HQ Q ad ad Q H R
Q Q Q Q∂ ∂

∂ ∂

 ∂ ∂ ∂ ∂
= = = ∀ → ∂ ∂ ∂ ∂ 

g         (102) 

It means that * * 0  ,  S
Q

Sad Q ad Q
Qβ β∂

∂

∂
= = =

∂
. We can remark that if we note * * 0i

k
S ij kS
Q j Q

ad Q C ad Q∂  ∂
 ∂ ∂ 

 
= =  

 
 

with k
ijC  the structure tensor, we observe that this equation is in fact the Casimir condition for invariant 

function in coadjoint representation as we will see hereafter. The restriction of the Lie-Poisson bracket to an 

orbit generates a symplectic structure on the orbit, called the KKS (Kirillov-Kostant-Souriau) structure, or the 

canonical symplectic structure. Casimir function is characterized as a quantity which commutes with each linear 

functional on the Poisson manifold, and then it is conserved by dynamics of any Hamiltonian. 
Given a Hamiltonian *:H R→g , the equation of motion for *Q ∈g  is: 

{ } { }* *,   with , 0H S
Q Q

dQ dQQ H ad Q H S Q S ad Q
dt dt∂ ∂

∂ ∂

= = = ⇒ = = =          (103) 

In case of non-null cohomology, the Lie Poisson brackets functions are given by:  

{ } ( )

[ ] { }
( ) ( )

* *

,

, , , , 0  ,   : ,   

with   ( , ) ,    where  ( ) ( ),

, :                      with  ( ) ( )

               X,Y ( ),

X Y XX Y

e

S H S HS H Q Q H Q
Q Q Q Q

X Y J J J J x J x X

X Y X T X e

X Y

θ

Θ

   ∂ ∂ ∂ ∂
= + Θ = ∀ → ∈  ∂ ∂ ∂ ∂   

Θ = − =

Θ × → ℜ Θ =

Θ


 







g g

g g

                     (104) 

That we can develop in the following: 
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{ } ( )

{ } ( )

{ } ( )

{ } ( )

*

* *

, , , , 0

, , , 0

, , , 0

, , , 0 0

S
Q

S
Q

S S
Q Q

S H S HS H Q Q
Q Q Q Q

H S HS H Q Q ad
Q Q Q

H S HS H Q ad Q
Q Q Q

S H SH S H Q ad Q ad Q
Q Q Q

Θ

∂Θ
∂

∂Θ
∂

∂ ∂Θ
∂ ∂

   ∂ ∂ ∂ ∂
= + Θ =  ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
= + Θ = ∂ ∂ ∂ 

 ∂ ∂ ∂
= + Θ = ∂ ∂ ∂ 

   ∂ ∂ ∂
∀ = + Θ + = ⇒ + Θ =   ∂ ∂ ∂   









                     (105) 

We have found the generalized Casimir equation for Entropy in the non-null cohomology case: 

{ } ( ), 0S H Q
Θ

=
                                                                    (106) 

That coulbe also written: 

* 0S
Q

Sad Q
Q∂

∂

 ∂
+ Θ = ∂ 

                                                                (107) 

This equation was observed by Souriau in his paper of 1974, where he has written that geometric temperature 

β  is a kernel of βΘ , that is written: 

[ ] ( ), , , 0Ker Q Z Zββ β β∈ Θ ⇒ + Θ =                                                   (108) 

That we can develop to recover the Casimir equation: 

( ) ( )*

* *

*

, , 0 , , 0

, , , 0,

0

S S
Q Q

S
Q

Q ad Z Z ad Q Z Z

S S Sad Q Z Z ad Q Z Z
Q Q Q

Sad Q
Q

β ββ β

β ∂ ∂
∂ ∂

∂
∂

⇒ + Θ = ⇒ + Θ =

   ∂ ∂ ∂
= ⇒ + Θ = + Θ = ∀   ∂ ∂ ∂   

 ∂
⇒ + Θ = ∂ 

 


                         (109) 

Then the generalized Casimir Equation in non-null cohomogy is given by: 

* * 0i
k

S ij k jS
Q jj Q

Sad Q C ad Q
Q∂  ∂

 ∂ ∂ 

   ∂
+ Θ = + Θ =     ∂  

                                             (110) 

Given a Hamiltonian *:H R→g , the equation of motion for *Q ∈g  is: 

{ } { }* *,   with , 0H S
Q Q

dQ H dQ SQ H ad Q H S Q S ad Q
dt Q dt Q∂ ∂Θ Θ

∂ ∂

   ∂ ∂
= = + Θ = ⇒ = = + Θ =   ∂ ∂   

 
       (111) 

Level sets of the Casimir Entropy function, on which the coadjoint orbits lie, are symplectic manifolds. 

5.3. Souriau Entropy invariance in coadjoint representation 

If we note ( )*An g  the space of analytic function on the dual Lie agebra *g , a function ( )* *F ∈An g  is a 

Casimir invariant if for any *,g G X∈ ∈g , we have ( )* * *( )gF Ad X F X= . We have observed previously that 

Souriau’s Entropy analytic function ( )S Q  defined on dual Lie algebra *g  by Legendre transform of Massieu 
Characteric analytic function ( )βΦ  (minus logarithm of Laplace transform) defined on Lie algebra g  was an 
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invariant function under the affine coadjoint action ( ) ( ) ( )*( ) ( )g gS Q Ad S Ad Q g S Qβ θ   = + =   . In case of 

null-cohomology, Souriau cocycle cancels ( ) 0gθ = , and we recover Casimir invariant function in coadjoint 

representation ( )* ( )gS Ad Q S Q  =  .  

We can then claim that Souriau Entropy is an extended Casimir invariant function in case of non-null 
cohomogy. This characteristic of Souriau Entropy could be a new general definition of Entropy. In Souriau 
Lie groups Thermodynamics, Entropy ( )S Q  is a generalized Casimir invariant function for coadjoint 

representation in case of non-null cohomology, and Massieu Characteristic function by Legendre duality is 
a generalized Casimir function for adjoint representation.  
We will explain how to prove that Souriau Entropy is invariant under the action of the group, starting from its 

definition: 

*( ) ( )( ) , ( )  with    and  S QS Q Q Q
Q

ββ β β
β

∂Φ ∂
= − Φ = ∈ = ∈

∂ ∂
g g                            (112) 

with , ( ) *( ) log   and  :U

M

e d U Mβ ξ
ωβ λ−Φ = − →∫ g                                    (113) 

Considering Souriau Entropy ( )S Q  where the heat *( )Q β
β

∂Φ
= ∈

∂
g  an element of the dual Lie algebra is 

parameterized by β ∈g  an element of the Lie algebra, the Lie group G  acts through g G∈ by adjoint 

operator gAd , the entropy is given by ( )( )gS Q Ad β    with ( )( )gQ Ad β given by fundamental Souriau 

equation:  

( ) ( )*( ) ( )g gQ Ad Ad Q gβ θ= +                                                   (114) 

The invariance of Souriau Entropy is deduced from the following developments: 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1*
11

1

*
1

1

1

( ),

,,

,

, ( )1 *

1 *

( ) ( ( ))

( ( ))

( ( ))

( ) ( ( ))

log ( ) ( ) , , ( )

g

gg

g

Ad U
g g

M

U Ad gAd U

g
M M

g
g

Ad g

gg

g g

Ad Ad e d

Ad e d e d

Ad e

g Ad g Ad e

Ad g Ad g

β
ω

β β θβ

ω ω

β θ

β θ

β β β λ

β λ λ

β β

θ θ β β

β β β β β θ β β θ

−
−−

−

−

−

−

−

− −−

−−

−

∈ → ⇒ Ψ =

Ψ = =

Ψ = Ψ

= − ⇒ Ψ = Ψ

Φ = − Ψ ⇒ Φ = Φ − = Φ +

∫

∫ ∫

g

             (115) 

Based on this expression of Massieu Characteristic function transform by action of the group, we can use 

Legendre transform to study how Souriau Entropy is changed: 
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( )( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( )

1

1 1

*

1

* 1

* *

* * *

( ) , ( ) ,

( ) ( )

( ) log ( ( )) ,

, ( ) ,

, ( ) , ( )

, ( ) ,

g g g g

g g

g g

g g g

g g g g

g gg g

S Q Q S Q Ad Ad Q Ad Ad

Q Ad Ad Q g

Ad Ad g

S Q Ad Ad Ad Q g g

S Q Ad Ad Ad Q g Ad g

S Q Ad Ad Ad Q Ad g A

β β β β β β

β θ

β β β θ β

β β θ β θ β

β β θ β θ β

β β θ β

−

− −

−

−

= − Φ ⇒ = − Φ

 = +


Φ = − Ψ = − + Φ

⇒ = + + − Φ

⇒ = + − − Φ

⇒ = + − ( )

( )( ) ( ) ( )

1

1

*

* *

( )

( ) ,

g

g gg

d g

Ad Ad Q Q S Q Ad Q S

θ β

β β β β

−

−

− Φ

= ⇒ = − Φ =

                       (116) 

We finally prove that Souriau Entropy is invariant in coadjoint representation ( )( ) ( )* ( )gS Ad Q g Sθ β+ =  in 

general case of non-null cohomology, that we could write ( ) ( )# ( )gS Ad Q S β= , if we note affine coadjoint 

action ( )# *( ) ( )g gAd Q Ad Q gθ= + . This is also true in case of null-cohomology when the Souriau cocycle cancels 

( ) 0gθ = , and we recover classical generalized Casimir invariant function definition on coadjoint representation 

for Entropy ( ) ( )* ( )gS Ad Q S β=  generalized Casimir invariant function definition on adjoint representation for 

Massieu Characteristic function ( ) ( )( )gAd β βΦ = Φ  . 

5.4. Souriau Entropy given by Casimir Invariant Functions Equations 

Based on development given in the following we can state that: 
As the Entropy S  is a generalized Casimir invariant function in the coadjoint representation,  

( )* ( )te
S Ad h S hξ = , then S  should be solution of the following differential equation: 

( )
( ) [ ]

( )
0   ,   , , dim ,  with  

, , ,

k
ij k ij ijk

ij k i j
j Q ij

C Q C Q BS Q
C Q i j k

Q B x y B x y Q x y

 = =∂ = = ∂ = =
g                      (117) 

Where k
ijC is the structure tensor of the Lie algebra g  in the basis ( )1 2, ,..., ne e e , while kX  are the coordinates 

in *g  in the basis ( )1 2, ,..., ne e e defined by ,j
i ije e δ= . The structure tensor s given by 

( ) ( ) ( ), k
i i ij ke e C eφ φ φ=    with ( )   ,  1,...,k

i ij k
j

e C X i n
X

φ ∂
= =

∂
.                                                              

5.5. Characterization of Generalized Casimir Invariant Functions in Coadjoint Representation 

We will describe recent characterization of generalized Casimir invariant functions by Oleg L. Kurnyavko and 
Igor V. Shirokov [85,89,96] who have proposed Algebraic method for construction of Casimir invariants of Lie 
groups coadjoint representations. Modern invariant theory based on geometric methods, which was credited 
classically as non-constructive, has some exception admitting a constructive solution related to the constructing 
invariants of Lie Groups representations. 
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Let T  be a connected Lie group, ( )T G  a representation of the group G  in the linear space V , gT  the 

operators associated to the representation of the group G  on the linear space V , then the invariants are given 

by: 

( ) ( )  ,  , , ( ), ( ) ( )g gF T x F x x V g G T T G F x C V∞= ∈ ∈ ∈ ∈                                (118) 

With the properties that: 

( )1

1
  ,    ,  

a b a be g g g g gg
T I T T T T T−

−
= = =                                             (119) 

Solution is given by the following differential equation: 

( )dim

,

( ) 0  with    and  1,...,dim

i
V g ji j i

kj kji k
i j

g e

TF xt x t k G
x g

=

∂∂
− = = =

∂ ∂∑                           (120) 

i
kjt  are elements of the matrices of the Lie algebra representation basis of G . 

That we can write i j
k kj it t x

x
∂

= −
∂

 and ( ) 0kt F x = . 

If we consider the dual space *V , the co-tangent representation is given by: 
*( ) , ( ) ,T g X T g x X x=                                                     (121) 

And co-represnetation invariants are given by: 

* * *( ) 0  with  i
k k kj i

j

t F X t t X
X
∂

= =
∂

                                                     (122) 

They have underlined the relationship between invariants of representations and conjugate representations, 

where the algebraic construction of Lie groups representations invariants are given by invariants of the 

conjugate representation with respect to the invariants of the original representation. 

Shirokov Theorem 1: 
Let ( )F x  be a non-degenerate invariant of the representation ( )T G , then conjugate representation invariant 

can be found by Legrendre tranform: 

* ( ) ( )( ) ( ) , ( )  with  such that i
i i i

F x F xF X x X F x x X F x X X
x x

∂ ∂
= − = − = =

∂ ∂
                   (123) 

and also the converse problem: 
* *

* * ( ) ( )( ) ( ) , ( )  with  such that i i
i

i

F X F XF x x X F X x X F X x x
X X

∂ ∂
= − = − = =

∂ ∂
                (124) 

Shirokov has considered ( )F x  the representation invariant ( )T G , and *( )F X the representation invariant 
*( )T G conjugate to ( )T G , with the conditions : 

( ) 0i j
kj i

F xt x
x

∂
− =

∂
 and 

*( ) 0i
lj i

j

F Xt X
X

∂
=

∂
                                          (125) 
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( )
*

*

*

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) (

k k
i i k i i k ik
lj i lj i k lj i k lj i lj i k

j j j j j

k k
i i i k j i
lj i lj i lj k ljk i i k

j j j

i i
lj i lj j

j

XF X x F x xt X t X x X X F x X t X X t X x t X
X X X X x X

F X x F x F x F x F x xt X t X t x t
X X x x x x X

F X Ft X t x
X

δ

∂∂ ∂ ∂ ∂ ∂ = − = + − ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + −

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
=

∂
) 0i

x
x

=
∂

    (126) 

Invariant Casimir Functions of the coadjoint representation has been studied for completely integrable 

Hamiltonian systems, as classical systems on the orbits of the coadjoint representation. Oleg L. Kurnyavko and 

Igor V. Shirokov have considered the relationship between invariants of representations of Lie groups and their 

conjugate dual representations. 
Considering the coadjoint action given by: 

1
* *, ,   ,  , ,g g

Ad X x X Ad x g G X x−= ∈ ∈ ∈g g                                      (127) 

Invariants of a coadjoint representation are called Casimir functions, with the property: 

( ) ( )* * *
gF Ad X F X=                                                        (128) 

the infinitesimal invariance is given by the equations: 

( )*

( ) 0   with  ( ) ,   , , dimk
ij ij ij k

j

F X
C X C X C X i j k

X
∂

= = =
∂

g             (129) 

The number of functionally independent invariants is given by the rank of the matrix ( )ijC X , called the index 

of the Lie algebra g : 
*

*dim sup ( )ij
X

ind rankC X
∈

= −
g

g g  

From these adjoint and coadjoint representation, Shirokov has introduced the following theorem: 

Shirokov Theorem 2: 

Let ( ) ( )gF Ad x F x=  be a non-degenerate invariant of the adjoint representation GAd , then conjugate 

representation invariant, invariant of coadjoint representation *
GAd  can be found by formula: 

* ( ) ( )( ) ( ) , ( )  with  such that i
i i i

F x F xF X x X F x x X F x X X
x x

∂ ∂
= − = − = =

∂ ∂
           (130) 

and also the converse problem , let ( ) ( )* * *
gF Ad X F X= , invariant of coadjoint representation GAd  is given 

by:  
* *

* * ( ) ( )( ) ( ) , ( )  with  such that i i
i

i

F X F XF x x X F X x X F X x x
X X

∂ ∂
= − = − = =

∂ ∂
            (131) 

Nota: ( )
( ) [ ]

* ( )
0   ,   , , dim ,  with  

, , ,

k
ij k ij ijk

ij k i j
j X ij

C X C X BF X
C X i j k

X B x y B x y X x y

 = =∂ = = ∂ = =
g        (132) 

5.6. Constructing Generalized Casimir Invariant Functions in Coadjoint Representation 

I. V. Shirokov has proposed a method for constructing invariants of the coadjoint representation of Lie groups  

with an arbitrary dimension and structure based on local symplectic coordinates on the coadjoint orbits.  Oleg 

L. Kurnyavko and Igor V. Shirokov have also proposed a general method for constructing Casimir invariants. 
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We will give some other developments of Casimir Invariant Functions by A.T. Fomenko and V.V. Trofimov, 
related  to Orbits of the coadjoint representation and the associated canonical symplectic structure 

The coadjoint orbit hΟ  passing through the point *h ∈g  is given by 

{ }* *= /   where  h gAd h g G hΟ ∈ ∈g                                               (133) 

{ }* * *= / ,h hT ad h hρ ρΟ ∈ ⊂ ∈g g g  

*
exp

0

  ,  
t

h h

t

d Ad h
v T

dt
ρ

ρ

=

 
 = ∈ Ο ∈g                                               (134) 

( ) ( )

[ ]

1 *
1 ,

* *
exp exp

0 0

exp exp

00

*

Let  ,...,  basis of ,  ,...,  basis of ,  with ,

, ,

,
,

, , , ,

t t

t t

n i
n j i j

i ii i
i

t t

i ii

tt

i
i i i

e e e e e e

d h Ad h d Ad h e
h h e v

dt dt

d h Ad e d Ad e
v h

dt dt

v h e ad h e v e v a

ρ ρ

ρ ρ

ρ

δ

ρ

− −

= =

==

=

   
   = ⇒ = =

   
   = =

= − = − = ⇒ = −

g g

*d hρ

                       (135) 

Kirillov, Kostant and Souriau have introduced a KKS 2-form on co-adjoint co-orbits that then inherit a structure 
of homogeneous symplectic manifold: 

{ }
( ) ( ) [ ]

1 1 1 1

* * *

* * * *
1 1

, = / ,

, , , ,   with  =   and  

h h

h

T ad h h

ad h ad h h ad h ad h

χ

ξ η ξ η

ξ η ρ

ω ξ η ω ξ η ξ η

∈ Ο ∈ ⊂ ∈

= = =

g g g                      (136) 

This KKS 2-form ω  is invariant with respect to the coadjoint action ( ) ( )* *, ,g f f hAd Adω ξ η ω ξ η= : 

( ) ( )

( ) ( )
( ) ( ) ( )( )

1 1

1 1

1 1 1 1

1 1

* * * * * *

* * * *

* * * * * * * *

* * * * * *

*

, ,

with    ,    ,    and  , ,

  and  

, ,

,

f f

f f

g f f g f f

f

f Ad f f Ad f

g f f g Ad f Ad f

g f

Ad Ad Ad ad h Ad ad h

g Ad h ad h ad h f G g h

Ad ad h ad Ad h Ad ad h ad Ad h

Ad Ad ad Ad h ad Ad h

Ad A

ξ η

ξ η

ξ ξ η η

ξ η

ω ξ η ω

ξ η

ω ξ η ω

ω ξ

=

= = = ∈ ∈

= =

=

g

( ) ( )
( ) [ ] [ ]

( ) [ ]
( ) ( )

1 1

1 1

* * *
1 1

* * * *
1 1 1 1

* *
1 1

* *

, , ,

, , , , ,   with  

, , ,

, ,

f ff g Ad Ad f f

g f f f f f

g f f

g f f h

d ad g ad g g Ad Ad

Ad Ad g Ad Ad g h Ad g

Ad Ad h

Ad Ad

ξ ηη ω ξ η

ω ξ η ξ η ξ η

ω ξ η ξ η

ω ξ η ω ξ η

− −

 = =  

= = =

=

=

                    (137) 

The symplectic structure is given due to the property that 0dω = , that could be proved making link with Jacobi 

identity. 
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( )

{ } ( ) ( ) ( )

( ) { }

Let    such that  , ( )  smooth vector field on 

, ,

with  ,

i
skew skew i

i
i j

skew skew ij skew skew
i j

i ij ij
skew j i j

j i j

mgrad m v grad m v m v M
x

m n grad m grad n grad m grad n

m m ngrad m m n
x x x

ω

ω ω

ω ω

<

<

∂
= =

∂

= =

∂ ∂ ∂
= ⇒ =

∂ ∂ ∂

∑

∑

∑ ∑

          (138) 

We can compute terms of Jacobi identity: 

{ }{ } ( ){ } { }

{ } ( ) ( ) ( )

{ } ( ) { } { } ( ) { }

, , , ,    with  : Lie derivative

If  

,

, , , ,

SkewSkew grad m

Skew

ijij ij ij
i j i j i j i j

ij ij
i j i j

m n p grad m n p L n p L

grad m
n pn p n p p nL n p L L

x x x x x x x x
n p n pL n p L n p n p L m n
x x x x

ζ

ξ ξ ξ

ξ ξ ξ

ξ
ξ ξ

ω ω ω ω

ω ξ ξ ω

= − = −

=

∂ ∂∂ ∂ ∂ ∂ ∂ ∂ = = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂

= + + = −
∂ ∂ ∂ ∂

{ } { }{ }

{ }{ } { }{ } { }{ } ( )

, , ,

, , , , , , ij
i j

p n m p

n pm n p m n p n m p L
x xξ ω

−

∂ ∂
⇒ + + =

∂ ∂

        (139) 

Using Elie Cartan formula ( ) ( )L i d diξω ξ ω ξ ω= + . If ξ  is a Hamiltonian vector field, ( ) 0di ξ ω =  and 

then ( )L i dξω ξ ω= .We can the observe that if 0dω = , then the Jacobi identity is satisfied 

{ }{ } { }{ } { }{ }, , , , , , 0m n p m n p n m p+ + =  and conversely.  

Let consider the Berezin Bracket:  

{ }

( ) ( )1 2 *
1 2

1 *
1

,   with  ,

where  , ,...,  basis of Lie algebra , ,..., basis of dual Lie algebra 

of corresponding coordinates ,...,  for , ,...,  for 

k k
ij k i j ij ki j

n
n

n
n

m nm n C x e e C e
x x

e e e e e e

x x x x

∂ ∂  = − = ∂ ∂
g,  g

g g

           (140) 

This Berezin Bracket is given by: 

{ } ( ) ( )( )

{ } [ ]

* *
( ) ( ), ( ) ( )

, , ,   with    ,  

x dn x dn x xx

k
x x ij k x i x ji jx

i j

m n dm ad x ad x dm

n m n mm n x dn dm C x dn e dm e
x x x x

= =

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂

         (141) 

By developping Berezin Bracket { },   with  ,k k
ij k i j ij ki j

m nm n C x e e C e
x x

∂ ∂  = − = ∂ ∂
, we can prove that the bracket 

verify jacoby identy { }{ } { }{ } { }{ }, , , , , , 0m n p m n p n m p+ + =  and then 0dω = .  

We will see that differential equation for (semi-)invariants of the coadjoint representations could be established. 

We will note ( )*An g  the space of analytic function on the dual Lie agebra *g . A function ( )* *F ∈An g  is 

an invariant if for any *,g G X∈ ∈g , we have ( )* * *( )gF Ad X F X= , and is semi-invariant if 

( )* * *( ) ( )gF Ad X g F Xχ=  where ( )gχ  is a character of the Lie group G . 
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We have a representation of Lie algebras ( ): Vecφ → Γg defined on basis ( )1 2, ,..., ne e e  in g ,where ( )Vec Γ

is the space of vector fields on Γ  an open subset in *g , given by: 

( )   ,  1,...,k
i ij k

j

e C X i n
X

φ ∂
= =

∂
                                                (142) 

Where k
ijC is the structure tensor of the Lie algebra g  in the basis ( )1 2, ,..., ne e e , while kX  are the coordinates 

in *g  in the basis ( )1 2, ,..., ne e e defined by ,j
i ije e δ= . The representation is not dependent of the choice of 

the basis, with the property: ( ) ( ) ( ), k
i i ij ke e C eφ φ φ=   . 

We have the property, that: 

( ) ( )( ) ( )
* *

*

0

t
n

ne
n

t

d F Ad h
F h

dt
ξ

φ ξ
=

 = −
 

                                            (143) 

This result is obtained by the following development: 

( )

[ ] [ ]

( )

* * ** *

0 00

0

0

* *

0

, ,
( ). ( ).

,
, , ,   with , ,

,
,

t t t

t

t

t

i ie e e

i i
t tt

ie k j j k j
i ij k i j i ji k

t

ie k k j k j
k ji k ji k

t

e k
ji

t

dF Ad h d Ad h X d h Ad eF Fh h
dt X dt X dt

d h Ad e
h e h C e e e e C e

dt

d h Ad e
h e C e C h

dt

dF Ad h
C

dt

ξ ξ ξ

ξ

ξ

ξ

ξ ξ ξ ξ ξ

ξ ξ

ξ

−

−

−

= ==

=

=

=

∂ ∂
= =

∂ ∂

 = − = − = = 

= − = −

= − ( ) ( )( )
*

* ( )j
k

i

Fh F h
X

ξ φ ξ∂
= −

∂

               (144) 

We use then Taylor expansion of ( )* *
te

F Ad hξ  given by: 

( ) ( ) *
* * *

1

( )
( ) ( ).

!t

n
n

e
n

F
F Ad h F h h t

nξ

φ ξ∞

=

−
= + ∑                                         (145) 

We can observe that *F  is invariant if ( )* * *( )te
F Ad h F hξ =  and then ( ) *( ) 0n Fφ ξ− =  or *( ) 0Fφ ξ =  that 

could be written ( )
*

0k j
ji k

i

FC h
X

ξ ξ∂
=

∂
. 

If *F  is semi-invariant of the coadjoint representation of group if and only if: 

( )* *( )   with    (d  : derivative of   at the group  identity elementi i i ie F F d e Gφ λ λ χ χ χ= − =  

( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )

** * *

* *
*

** * *

1

( )  with  

( )

1 . ( )
!

t

t

tt t
e

n

n

n
e

n

F Ad h e F h e e

F h F h

F Ad h t F h
n

ξ

ξ

χ ξξ ξχ χ

φ ξ χ ξ

χ ξ∞

=

= =

 − =
 

    ⇒ = +
  

∑

                                     (146) 
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6. Lie Groups Thermodynamics for SE(2) Lie group 

After ( )1,1SU  Lie group with null cohomology and then without Souriau one-cocycle, we will consider 
Souriau model for (2)SE  Lie group with non-null cohomology and then with introduction of Souriau one-
cocycle [107]. 

We will consider first (2)SO  Lie group: 

cos sin
(2) /

sin cos
SO R Rϕ

ϕ ϕ
ϕ

ϕ ϕ
 −  

= = ∈  
  

                  (147) 

A vector at the identity to (2)SO  is given by: 

1

0

0 1
  with ,

1 0
t T

t

dR
dt

η η −

=

 
= − ℑ ℑ = ℑ = ℑ = −ℑ − 

              (148) 

We consider the special Euclidean group ( ) 2(2) 2SE SO R= × . 

( ) 2(2) / 2 ,
0 1
R

SE R SO Rϕ
ϕ

τ
τ

  
= ∈ ∈  

  
                  (149) 

the group operation is given by: 

( ) ( ) ( )

1 2 1 2 1 1 2 1

1 2 1 2 1

1 2 2 1 2 1

1 2 2 1

0 1 0 1 0 1 0 1

, . , ,

R R R R R R R

R R R R

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

τ τ τ τ τ τ

τ τ τ τ

+

+

+ +       
= =       

       

⇒ = +

           (150) 

( ) ( )1 1 1

1 1 1

1
11 1

1 1, ,
0 1 0 1

R R R
R R Rϕ ϕ ϕ

ϕ ϕ ϕ

τ τ
τ τ

−
−− −

− −

−   
= ⇒ = −   

   
         (151) 

The Lie algebra ( )2se  of (2)SE  has underlying vector space 3R  and Lie bracket:  

( ) ( )2, (2) 2
0 0

u
u se R R se

ξ
ξ

− ℑ 
∈ = × ⇒ ∈ 

 
            (152) 

Lie bracket is given by: 

( ) ( ) ( ), , , 0,u v v uξ η ξ η= ℑ + ℑ                 (153) 

Adjoint action of (2)SE  is given by: 

( ) ( )

( ) ( ) ( )
,

,

,
0 1 0 0 0 1 0 0

, ,

R

R

R u R R R u
Ad u

Ad u R u

ϕ

ϕ

ϕ ϕ ϕ ϕ
τ

ϕτ

τ ξ τ ξ ξ τ
ξ

ξ ξ ξ τ

− −− ℑ − − ℑ ℑ +       
= =       

       
= + ℑ

       (154) 

Coadjoint action of (2)SE  is given by:  
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( ) ( ) ( )*
,

, . ,
R

Ad m m R R
ϕ

ϕ ϕτ
ρ ρ τ ρ= + ℑ               (155) 

The moment map ( )2 *: 2J R se→  of (2)SE  is defined by:  

( ) ( ), ( ) ( ). ,uJ x J x uξ ξ=                 (156) 

with the right action of (2)SE  on 2R :  

( ) ( ). ,x R R xϕϕ τ τ−= −                 (157) 

the infinitesimal generator of ( ), (2)u seξ ∈  has the expression: 

( )
( ) ( )

2

00

. ,
, ( ) t t

R

tt

d x R tu d R x tu
u x x u

dt dt
ξ ξξ ξ−

==

   −   = = = ℑ −         (158) 

Let ( ) ( )2 *
, ( ) : 2uJ x R seξ →  be the moment map of this action relative to the symplectic form, we can 

compute it from its definition: 

( ) ( )( )
( )( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

,

,

2 2
,

2 2
,

( ). 2 , ,

with   , , , . .

( ). 2 .

1 1( ) 2 . 2 , . ,
2 2

1( ) ( ). , ( ) 2 ,   ,  
2

u R

R

u

u

u

dJ x y u y

u y x u y x u y x u y

dJ x y x u y

J x x u x x x u

J x J x u J x x x x R

ξ

ξ

ξ

ξ

ω ξ

ω ξ ω ξ ξ ξ

ξ

ξ ξ

ξ

= −

= ℑ − = ℑ − ℑ = + ℑ

⇒ = − + ℑ

   ⇒ = − + ℑ = − −ℑ   
   

 = ⇒ = − −ℑ ∈ 
 

       (159) 

We then compute the one-cocycle of (2)SE  from the moment map:  

( )( ) ( )( ) ( ) ( )

( )( )

*
, ,

2 2
,

2

0. , (0)

1 12 , 2 ,
2 2

R
R J R Ad J J R

R R R

ϕ
ϕ τ ϕ ϕτ

ϕ τ ϕ πϕ

θ τ τ

θ τ τ τ τ

−

−
− −

= − = −

  = − ℑ = −   
   

          (160) 

Coadjoint orbit of (2)SE  are generated by: 

( ) ( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )

,

*
,

2
,

2 2

, , / , 2

. , 2 / , 2

m R

m

A m R R SE

x R R R R SE

ϕ τ
ϕ ϕρ

π ϕ π ϕρ ϕ

ρ θ τ τ

ρ τ τ ρ τ τ−
− − −

Ο = + ∈

   Ο = − − − ∈  
   

        (161) 

The Souriau Symplectic form in this case of non-null cohomology is given by: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

* *
, ', ' , ,

2 3
,

2 2

', ' 0, 2 , ', ' 0, 2 '. 2 .

with  ', ' . , 2

m m u v

m

ad m u ad m v v u u v

m x R R R R

ρ ρ ξ η

π ϕ π ρϕ

ω ρ ρ ρ ξ η

ρ ρ τ τ ρ τ−
− − −

− ℑ − ℑ = − ℑ + ℑ + ℑ

 
= − − − ∈Ο ⊂ 

 

   (162) 
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With the expression of moment map and Fourier Transform for  (2)SE  by Kirillov Orbit method and 
Kirillov character, we can compute Souriau Gibbs density, in the same way that we have developed the case 
for ( )1,1SU . 

7. Conclusion: Lie Groups Thermodynamics for Machine Learning 

   Lie Group tools based on Representation Theory and Orbits Methods could be used with Souriau-Fisher 
Metric on Coadjoint Orbits that is an extension of Fisher Metric for Lie Group through homogeneous 
Symplectic Manifolds on Lie Group Co-Adjoint Orbits. In appendix C, we provide an algorithm invented by 
Jean-Marie Souriau to compute Exponential Map of matrices, that we can use for “geodesic shooting”. 

  Different tools developed based on Souriau Lie Groups Thermodynamics and Kirillov Representation 
Theory for : 

• Supervised Machine Learning 

o Geodesic Natural Gradient on Lie Algebra: Extension of Neural Network Natural Gradient from 
Information Geometry on Lie Algebra for Lie Groups Machine Learning. 

o Souriau Maximum Entropy Density on Co-Adjoint Orbits: Covariant Maximum Entropy 
Probability Density for Lie Groups defined with Souriau Moment Map, Co-Adjoint Orbits Method 
& Kirillov Representation Theory 

o Symplectic Integrator preserving Moment Map: Extension of Neural Network Natural Gradient to 
Geometric Integrators as Symplectic integrators that preserve moment map  

• Non-Supervised Machine Learning 

o Souriau Exponential Map on Lie Algebra: Exponential Map for Geodesic Natural Gradient on Lie 
Algebra based on Souriau Algorithm for Matrix Characteristic Polynomial 

o Fréchet Geodesic Barycenter by Hermann Karcher Flow: Extension of Mean/Median on Lie 
Group by Fréchet Definition of Geodesic Barycenter on Souriau-Fisher Metric Space, solved by 
Karcher Flow. 

o Mean-Shift on Lie Groups with Souriau-Fisher Distance: Extension of Mean-Shift for 
Homogeneous Symplectic Manifold and Souriau-Fisher Metric Space 

 
Figure 4. Supervised/Non-Supervised Machine Learning based on Lie Groups Thermodynamics 
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La notion classique d’ensemble canonique de Gibbs est étendue au cas d’une variété 
symplectique sur laquelle un groupe de Lie possède une action symplectique (“groupe 
dynamique”). La définition rigoureuse donnée ici permet d’étendre un certains nombre de 
propriétés thermodynamiques classiques (la température est ici un élément de l’algèbre de 
Lie du groupe, la chaleur un élément de son dual), notamment des inégalités de convexité. 
Dans le cas de groupes non commutatifs, des propriétés particulières apparaissent : la 
symétrie est spontanément brisée, certaines relations de type cohomologique sont vérifiées 
dans l’algèbre de Lie du groupe – Jean-Marie Souriau, Mécanique Statistique, 
Groupes de Lie et Cosmologie, colloque CNRS n°237 – Géométrie 
Symplectique et physique mathématique 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 March 2020                   



 34 of 53 

 

Appendix A: Coadjoint orbits and Moment Map for SU(1,1) 

We give more details developpements to obtain SU(1,1)/K coadjoint orbit and moment map [39]. 

If we consider hyperbolic Group ( )2,SL R  

( )(2, ) 2, / 1
m p

SL R GL R mn pq
q n

  
= ∈ − =  

  
           (A1) 

Elements of ( )2,SL R could be written with Iwasawa decomposition: 

. .   with , ,t b t bg k a n k K a A n Nθ θ= ∈ ∈ ∈              (A2) 

2 2

2 2 2

2 2

cos sin
/ 0 2  with  

sin cos

0
/   with  

0

1
/   with  

0 1

i

t
t

t t

b

m iqK k e
m q

e
A a t R e m q

e

b mp qnN n b R b
m q

θ
θ

θ θ
θ π

θ θ
−

−

 −   −
= = ≤ < =  

+  

   = = ∈ = +  
   
   +

= = ∈ =  
+  

        (A3) 

K is a maximal compact sub-group of SLG . 

Group of Unit Disk automorphisms 

Consider (1,1)SU  sub-group of ( )2,SL R  given by 

2 2
* *(1,1) / det( ) 1,  ,

a b
SU A A a b a b R

b a
  

= = = − = ∈  
  

         (A4) 

The following interior automorphism that transforms (2, )SL R  to (1,1)SU , inducing an 
isomorphism between them: 

1

(2, ) (1,1)
11             with  
12

SL R SU
i

g CgC C
i

−

→

− 
=  

 


            (A5) 

(1,1)SU  acts on the Poincaré unit disk { }/ 1D z C z= ∈ < : 

1 1
* ** *.   with  (1,1)  and  

a baz bg z g SU z D
b ab a

− −  +
= = ∈ ∈ +  

         (A6) 

Valentine Bargmann has parameterized (1,1)SU : 

( )
( )
( )

1/22

1/22

1

1
arg  mod 2

1

i

i

b
a a e

b e

ω

ω

γ
γ

γ
ω α π

γ γ

−

−

 < = ⇒ = − 
 =  = −

           (A7) 
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Then ( ) ] ]{ }(1,1) , / 1, ,SU γ ω γ ω π π= < ∈ − +  with Group composition law given by: 

( ) ( ) ( )

( )
( ) ( )

12 ' *' 2 '

1*' 2 ' * 2 '

1 2

, . ', ' '', ''

'' ' 1

1'' ' log 1 1 '   mod  2
2

, ,

i i

i i

i

e e

e e
i

g g e

ω ω

ω ω

ω

γ ω γ ω γ ω

γ γ γ γγ

ω ω ω γ γ γ γ π

γ ω γ ω

−−

−− −

−

=

    = + +   


   = + + + +    

= ⇒ = − −

        (A8) 

(1,1)SU  is topological product of unit disk and circle. 

Universal covering of (2, )SL R  

If we consider ( ){ }, / 1,G Rγ ω γ ω= < ∈ , the following mapping: 

( )
: (1,1)

  ( , ) ,  mod 2
G SU
γ ω γ ω π

Θ →

Θ =
  with  ( ){ }0,2 /Ker k k ZπΘ = ∈         (A9) 

Topological product of unit Disk D  dans C  and real straight line R  is the universal covering of 
(1,1)SU . 

A maximal compact subgroup of (1,1)SU  is 1 0
/

0

i

i

e
CKC R

e

θ

θ
θ

−
−    = ∈  

   
 and the subgroup for 

G  is ( ) ( ){ }1 1 0, /CKC Rθ θ− −Θ = ∈ . 

Pukanszky and Sally have defined irreductible unitary representation of ( )2,SL R , classified in 

principal serie, discrete serie and complemantary serie. 

The Lie algebra g  of G  and (1,1)SU  is given by:  

1 2 0

1 0 0 1 0 11 1 1, ,  
0 1 1 0 1 02 2 2

l l l
−     

= = =     −     
              (A10) 

with the commutation relation: [ ] [ ] [ ]0 1 2 1 2 0 2 0 1, , , , ,l l l l l l l l l= = − =  . 

Dual Lie algebra *g  of g  to g  thanks to Killing form:  

( )1 1 2 2 0 0
1,2,0 1,2,0

, 2i i i i
i i

B x l y l x y x y x y
= =

 
= + − 

 
∑ ∑               (A11) 

Coadjointes orbits of (1,1)SU  

Considering adjoint representation :gAd →g g , and coadjointe representation as transpose linear 

mapping of 1g
Ad − , written by ( )1

*
*
g g

Ad Ad −= , * * *:gAd →g g . 

Let ( ),0,0f η=  in base { }1 2 0, ,l l l  with 0η >  coadjoint orbit of f  is: 
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( ) ( ) ( ){ }

1 / (2, )

1 2 , , / , , ,   with  1

a c
gfg g SL R

b d

bc bd ac bd ac a b c d R ad bc

η

η η η η

−  
Ο = = ∈  

  
Ο = + − + ∈ − =

        (A12) 

Stabilizer of f  is { } { }1
0

( ) / .   with /
0

t

t t

e
G f g G g f f A A A a t R

e−

   = ∈ = = ∪ − = = ∈  
   

    (A13) 

{ }(2, ) ' '   with  'SL R K NA A A A= = ∪ −   where 1
/

0 1b

b
N n b R

  
= = ∈  

  
 and 

cos sin
' / 0

sin cos
K kθ

θ θ
θ π

θ θ
 −  

= = ≤ <  
  

 and as 1(2, ) / ( )SL R G f is a bijection with ηΟ , then ηΟ  is in 

bijection with 'K N , diffeomorph to { }/ dK I N× . Then all element x η∈Ο  can be written through 

this bijection , ',b bx k n k K n Nθ θ= ∈ ∈ . ηΟ is set of points ( ) *
1 2 0, ,l x x x= ∈g such that: 

2 2 2 2
1 2 0 0x x x η+ − = >  a one sheet hyperboloid in *g . 

We will study discrete sequence. 

Quantization of Kähler Manifold 

Let ( ),M ω  a Kalherian manifold of dimension 2n (complex manifold with complex structure J) 

with 2-form ( ) ( ), ,g X Y X JYω= , a Riemannian structure on M . 

We have seen that (1,1)SU  is conjugate of 2 ( )SL R  in (2, )SL R  

2* *

* *

(1,1), ( )

1
1 1 12

a b
SU SL R

c d

i a b i ii
i c d

α β
β α

α β
β α

   
∈ ∈   

   
−     −

=     −     

               (A14) 

( ) ( )

( ) ( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

* *

*

* *
*

*
* *

*

* *

1
2
11
22

1 1
2 2

1
2

a
a d

ba d i b c i b c i
a da d i b c c

ii b c
d

α α β β
α α

α α β βα α α

β ββ α α β β
β β

α α β β

  = + + +  
 + = +

   = − − −= + + −   − = −   ⇒ ⇒   −+ = −    = − − + = − + −       − = − + 
  = + − + 

              (A15) 

Let 10,0,
2

f h = − 
 

 in base { }1 2 0, ,l l l  where 
1 2 0

1 0 0 1 0 11 1 1, ,  
0 1 1 0 1 02 2 2

l l l
−     

= = =     −     
with 1

2
h >  

(respectively 10,0,
2

f h = + 
 

  with  1
2

h < − )  , the coadjoint orbit of f  is: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 March 2020                   



 37 of 53 

 

( ) ( )( ) ( )

1

2 2 2 2 2 2 2 2

/ (2, )

1 1sign sign
1 2 2sign ; ;
2 2 2

h

h

a c
gfg g SL R

b d

h h h h
h h ac bd d c a b d c a b

−  
Ο = = ∈  

  
    − −          Ο = − + + − + + + +  
  

  

(A16) 

hΟ  appears as points ( ) *
1 2 0, ,l x x x= ∈g such that: 

2 0
22 2 2

1 2 0

0

10  if  1 20  with  
12 0  if  
2

x h
x x x h

x h

 > > + − = − − <  
   < < −



           (A17) 

hΟ  is one of hyperboloid sheets of *g , associated to representation hπ  of discrete serie of G . 

( )

( )

( )

1

2 2 2 2
2

2 2 2 2
0

'
' 1  with  ' sign

2 2
'

2

x h ac bd
hx d a c b h h h

hx d a c b


= +


  = − + − = −  

 
 = + + +

            (A18) 

Then, we obtain: 

( )
( )

( )

* *
1

* *
2

* *
0

'

'

'

x ih

x h

x h

αβ α β

αβ α β

αα ββ

 = −
 = − +


= +

                  (A19) 

If we set: 

( )

( )

( )

*

1 2

2 *

1 2

2 2

0 2

'

1

1 '

1

1 ' 1

1

i

i

ih z z
x

e z

z h z z
x

ze z

z h z
x

z

θ

θ

α

β
−

 − =
 −= 
− − + ⇒ = 

− = − + 
=

−

                (A20) 

We use the parametrization of hΟ  by unit disk D : 

{ }
( )1 2 0

/ 1

                            , ,
hD z C z

z x x x

= ∈ < → Ο


                (A21) 
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1 2

1 2

2

0 2

1 Im( )2 sign
2 1

1 Re( )2 sign
2 1

11 sign
2 1

zx h h
z

zx h h
z

z
x h h

z


  = − −    −


  = − −  

  −


+  = −    −

                 (A22) 

This parametrisation provides a kahlerian structure for hΟ , inherit from D . 

We have / (2, ) /h G K SL R KΟ = = , and as (2, )SL R  is isomorph to (1,1)SU , hΟ  is identified with 

0(1,1) /SU K D= . Stabilizer of the origin is 
0 *

0
/ 1

0
K

α
α

α
  

= =  
  

. Then hΟ  is globally 

diffeomorph to D  for all h . 

We can compute Liouville measure on hΟ . This measure is 
'

2
h

h
ωω
π

= where '
hω  is the canonical 2-

form on orbit. Parameterization on hΟ  gives: 

( )
( )

'
2

2

2 1
sign

2 2 1
h

h

i h
h dz

z
ωω
π π

− −
= =

−
                (A23) 

We can observe that: 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( )

* * *2 2 *
1 2

* * *2 2 *
2 2

* * * *
0 2

1 ' ' 1 ' 1
1

1 1 ' ' 1 ' 1
1

1 1 1 ' 2 ' 2 '
1

idx z z zz dh h z dz h z dz
z

dx z z zz dh h z dz h z dz
z

dx zz zz dh z h dz zh dz
z


  = − − + − − −  −
 −  = + − + + − +  −

  = + − + −  −

         (A24) 

( )
( )

( )2* 2
22

* *2 2
1 2 0 62

2 *

1 1
' 1

det 1 1
1 1 2 2

z z z z
ih z

dx dx dx z z z z
z z z z

 − − − −
 − −
 = + + +
 −  + 

           (A25) 

( )
2

2
1 2 0 2

2 ' 2' ' '
1

h
ihdx dx dx dh dz h dh
z

ω
π

−
= =

−
                 (A26) 

This the measure defined on open set of *g  given by 2 2 2
1 2 0 0l l l+ − < . 
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Appendix B: Bargman Parameterization of SU(1,1) 

(1,1)SU  is isomorphic to ( ) ( )2, 2,SL R Sp R=  through the complex unitary matrix W : 

( )2, / det 1
a b

SL R g g ad bc
c d

  
= = = − =  

  
                 (A27) 

( )
0 1

2, / ,
1 0

Ta b
Sp R g gJg J J

c d
 +    

= = = =    −    
               (A28) 

( ) ( )
1 1

1 /41 1  with  1
2 2

iW W e iπω ω
ω

ω ω

− −
−+ 

= = = = + 
− 

                  (A29) 

If we observe that 1W JW iM− = − , the isomorphism is given explicitely by: 
( ) ( )
( ) ( )

1 Re Im
( )

Im Re
a b

g u WuW
c d

α β α β
α β α β

− + − −  
= = =    + −   

                   (A30) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
* *

1( )
2

a d i b c a d i b c
u g W gW

a d i b c a d i b c
α β
β α

− + − − − + +  
= = =    − − + + + −   

                   (A31) 

We can also make also a link with (2,1)SO  of “1+2” pseudo-orthogonal matrices: 

( ) ( )
1 0 0

(2,1) 3,3 / det 1, , 0 1 0
0 0 1

TSO GL K K
 +  
  = Γ ∈ Γ = Γ Γ = Γ = −  
  −  

                (A32) 

( ) ( )

( ) ( )

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1
2 2
1 1( )
2 2

a b c d a b c d cd ab

g a b c d a b c d cd ab

bd ac bd ac ad bc

 + + + − + − − − 
 
 Γ = + − − − − + − 
 − − − +  
 

                 (A33) 

with ( ) ( ) ( ) ( ) ( ) 11
1 2 1 2 , ( ) ,g g g g I I g g −−Γ Γ = Γ Γ = Γ = Γ  

The (2,1)SO  matrix corresponds to any (1,1)SU : 

( ) ( )
( ) ( )

2 2 * *

2 2 2 2

2 2 2 2

2Re 2 Im

( ) 2Re Re Im

2Im Im Re

u

α β αβ αβ

αβ α β α β

αβ α β α β

 + 
 Γ = + −
 
 − − + − 

                    (A34) 

and ( ) ( ) ( )11 12 12 21 10 20
1 1,   
2 2

i iα β
α

= ± Γ + Γ + Γ − Γ = Γ − Γ  

The properties of connectivity of (2, )Sp R  is described by its isomorphy with (1,1)SU . Using 
unimodular condition: 

2 2 2 2 2 21 1 1  with   and R I R I R I R Ii iα β α α β β α α α β β β− = ⇒ + − = + ≥ = + = +  

If Iβ  is fixed, ( ), ,R I Rα α β  are constrained to define a one-sheeted revolution hyperboloid, with its 

circular waist in the α plane. 
To (1,1)SU , we can associate the simply-connected universal covering group, using the maximal 
compact subgroup ( )1U  and corresponding to the Iwasawa decomposition (factorization of a 

noncompact semisimple group into its maximal compact subgroup times a solvable subgroup). 

( )* 1

* * *

*

1arg ln
2

0
 with 0

0

i

i

i

i
e

e

e

ω

ω

ω

ω α α α
α β λ µ

λ α
β α µ λ

αµ β β
α

−

−


 = =
     = = >    

     
 = =

                 (A35) 
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2 2 22, 1 so ie ωβ µ α β λ µ µ λ= − = − = <                      (A36) 

Bargmann has generalized this parameterization for ( )2 ,Sp N R , more convenient but difficult to 

generalize to N dimensions. For ( )1,1SU :, Bargmann has used ( ),ω γ : 

2 2

1 ( 1) , ,
1 1

µ β γγ γ λ µ
λ α γ γ

= = < = =
− −

                (A37) 

For ( ) ( )2, 2,SL R Sp R= , the Bargman, parameterization is given by this decomposition of a non-

singular matrix into the product of an orthogonal and a positive definite symmetric matrix: 
cos sin Re Im
sin cos Im Re

a b
c d

ω ω λ µ µ
ω ω µ λ µ

− +    
=    −    

                    (A38) 

Conversely: ( ) ( ) ( ) ( )arg , ia d i b c e a d i b cωω µ −= + − − = − + +        

ω  is counted modulo 2π , ( )mod 2ω ω π≡ . 

( )1,1SU  and ( ) ( )2, 2,SL R Sp R=  are described when ω  is counted modulo 2π , ( )mod 2ω ω π≡ .  

Valentine Bargmann has proposed  the covering of the general symplectic group ( )2 ,Sp N R : 

( ) 2 2 2 2 2

0
2 , / , ,

0
NT T

N N N N N
N

IA B
Sp N R g gJ g J J J J

IC D
    = = = = − =    −     

                     (A39) 

with relations: 
, , , ,T T T T T T T T T T

NAB BA AC CA BD DB CD DC AD BC I= = = = − =                 (A40) 

( ) 1
2 22 ,

T T
T

N N T T

D B
g Sp N R g M g M

C A
−  −

∈ ⇒ = =  
− 

                   (A41) 

Bargmann has observed that although ( )2 ,Sp N R  is not isomorphic to any pseudo-unitary group, 

its inclusion in ( ),U N N  will display the connectivity properties through its unitary ( )U N  

maximal compact subgroup, generalizing the role of ( )1 (2)U SO=  in ( )2,Sp R . 

N NW W I= ⊗  a 2 2N N×  matrix where 
1 1
/4 /4

1
/4 /4

1
2

W W π π

π π

ω ω
ω ω

− − 
= =  

− 
with ( )/4 1 1

2
ie iπω = = + , which 

gives the N N×  block coefficients. 

( ) [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1
* *

1
2N N

A D i B C A D i B C
u g W gW

A D i B C A D i B C
α β
β α

−  + − − − + +  
= = =   − − + + + −   

               (A42) 

With 
*

*

,
0, 0

T
N N

T T T

I Iαα ββ α α β β

αβ βα α β β α

+ + +

+

 − = − =


− = − =
                  (A43) 

and 1 1
2 2

T

N N Tu M u M
α β
β α

+
− + −

+

 −
= =  

− 
                  (A44) 

The symplecticity property of g  becomes: 

1
2 2 2 2

0
,

0
N

N N N N N N
N

I
uM u M M iW J W

I
+ −  

= = =  − 
                    (A45) 

( ) ( )
( ) ( )

1 Re Im
( )

Im ReN N

A B
g u W uW

C D
α β α β
α β α β

− + − −  
= = =    + −   

                  (A46) 

Valentine Bargmann has extended the well-know theorem that any real matrix R  may be 
decomposed into the product of an orthogonal Q  and a symmetric positive definite matrix S , 
uniquely as R QS= . Bargmann has shown that if ( )2 ,R Sp N R∈ , then R QS=  with 

( ), 2 ,Q S Sp N R∈  where Q  maps onto unitary matrix and S  maps onto Hermitian positive definite 

matrix: 

( ) *

0
, , ( )

0 Nu Q I U N
α

αα α
α

+ 
= = ∈ 

 
 and ( ) *

0
exp ,

0
Tu S

ξ
ξ ξ

ξ
 

= = 
 

               (A47) 
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We can generalize Bargmann parameterization of ( )1,1SU to ( )2 ,Sp N R : 

{ } * *

0
, , ,det 0

0

i
N

i
N

e I
u

e I

ω

ω

λ µ
ω λ µ λ

µ λ−

  
= ⊕ >  

  
                  (A48) 

Then the Bargmann parameters are: 
1 detarg det , , , ,det det 0

det
i i iNe e e

N
ω ω ω αω α λ α µ β λ α

α
− −= = = = = >                 (A49) 

The ( )2 ,Sp N R  matrices in terms of the Bargmann parameters are: 

{ } ( ) ( )
( ) ( )

cos sin Re Im
, ,

sin cos Im Re
N N

N N

I I
g

I I
ω ω λ µ λ µ

ω λ µ
ω ω λ µ λ µ

− + − −  
=    + −  

                 (A50) 

V. Bargmann has proposed the covering of the general symplectic group ( )2 ,Sp N R : 

( ) 2 2 2 2 2

0
2 , / , ,

0
NT T

N N N N N
N

IA B
Sp N R g gJ g J J J J

IC D
    = = = = − =    −     

                 (A51) 

, , , ,T T T T T T T T T T
NAB BA AC CA BD DB CD DC AD BC I= = = = − =                        (A52) 

   Bargmann has observed that although ( )2 ,Sp N R  is not isomorphic to any pseudo-unitary group, 

its inclusion in ( ),U N N  will display the connectivity properties through its unitary ( )U N  

maximal compact subgroup, generalizing the role of ( )1 (2)U SO=  in ( )2,Sp R :  

N NW W I= ⊗ , 2 2  matrixN N× where 
1 1
/4 /4

1
/4 /4

1
2

W W π π

π π

ω ω
ω ω

− − 
= =  

− 
with ( )/4 1 1

2
ie iπω = = + . 

( ) [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1
* *

1
2N N

A D i B C A D i B C
u g W gW

A D i B C A D i B C
α β
β α

−  + − − − + +  
= = =   − − + + + −   

                (A53) 

with *, T
N NI Iαα ββ α α β β+ + +− = − =  and *0, 0T T Tαβ βα α β β α+− = − =                 (A54) 

The symplecticity property of  g  becomes: 

1
2 2 2 2

0
,

0
N

N N N N N N
N

I
uM u M M iW J W

I
+ −  

= = =  − 
                                         (A55) 

( ) ( )
( ) ( )

1 Re Im
( )

Im ReN N

A B
g u W uW

C D
α β α β
α β α β

− + − −  
= = =    + −   

                                   (A56) 
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Appendix C: Souriau Algorithm for Exponential Map 

The algorithm to compute characteristic polynomial of a matrix was discovered by Urbain Jean 
Joseph Leverrier in 1840, and was rediscovered in 1948 by Jean-Marie Souriau and modified to its 
present form, but published only in French. Other authors, P. Horst, D. K. Faddejew and Sominski, 
J.S. Frame, U. Wegner and L. Csanky, were credited with rediscovering the technique. As soon as 
1955, Souriau algorithm was tested and benchmarked by the National Bureau of Standards, Los 
Angeles, under the sponsorship of the Wright Air Development Center, U. S. Air Force, and the Office 
of Naval Research, and was concluded at the University of California, by the Office of Naval Research. 
As observed and illustrated by Souriau, for n=10, his algorithm uses only 8 thousands of additions 
and multiplications, compared to 37 million of additions and 62 million of multiplications for classical 
approach (Gaussian elimination). Main drawback of most efficient classical algorithm based on 
Krylov iterates cannot be parallelized. Souriau algorithm has a complexity O(n4) or O(n +1) in 
sequential computation, and so cannot compete with Krylov-based algorithm, but Souriau algorithm 
has been parallelized by L. Csanky, proving that characteristic polynomial computation could be 
solved in parallel time log2n with a polynomial number of processors. Souriau algorithm 
parallelization by Czansky has been improved more recently by Preparata & Sarwate using fast 
matrix product, and by Keller-Gehrig using matrix reduction. Reduction to complexity O(n ) is given 
for generic matrices, but for non-generic ones, only O(n logn) complexity could be achieved. A 
disadvantage of both algorithms (Le verrier and Gaussian elimination) is the presence of divisions.  
The computation of the matrix exponential is a classical problem in numerical mathematics as 
explained in 1978 paper of Moler & van Loan and many efficient algorithms described in 1998 paper 
Hochbruck, Lubich & Selhofer 1998. But this problem is very far from being fully solved , especially 
to approximate an exponential of a matrix which resides in a Lie algebra, a central problem in 
geometric integration as studied by Iserles, Munthe-Kaas, Nørsett, Zanna & Celledoni. 

From Le Verrier to Souriau Algorithm 

The algorithm to compute characteristic polynomial of a matrix was discovered by Urbain Jean Joseph 
Leverrier in 1840, and was rediscovered in 1948 by Jean-Marie Souriau and modified to its present form, but 
published only in French. Other authors, P. Horst, D. K. Faddejew and Sominski, J.S. Frame, U. Wegner and 
L. Csanky, were credited with rediscovering the technique. As soon as 1955, Souriau algorithm was tested and 
benchmarked by the National Bureau of Standards, Los Angeles, under the sponsorship of the Wright Air 
Development Center, U. S. Air Force, and the Office of Naval Research, and was concluded at the University 
of California, by the Office of Naval Research. As observed and illustrated by Souriau, for n=10, his algorithm 
uses only 8 thousands of additions and multiplications, compared to 37 million of additions and 62 million of 
multiplications for classical approach (Gaussian elimination). Main drawback of most efficient classical 

algorithm based on Krylov iterates cannot be parallelized. Souriau algorithm has a complexity O(n4) or O(nω+1) 
in sequential computation, and so cannot compete with Krylov-based algorithm, but Souriau algorithm has been 
parallelized by L. Csanky, proving that characteristic polynomial computation could be solved in parallel time 
log2n with a polynomial number of processors. Souriau algorithm parallelization by Czansky has been improved 
more recently by Preparata & Sarwate using fast matrix product, and by Keller-Gehrig using matrix reduction. 

Reduction to complexity O(nω) is given for generic matrices, but for non-generic ones, only O(nωlogn) 
complexity could be achieved. A disadvantage of both algorithms (Le verrier and Gaussian elimination) is the 
presence of divisions.  

The computation of the matrix exponential is a classical problem in numerical mathematics as explained in 
1978 paper of Moler & van Loan and many efficient algorithms described in 1998 paper Hochbruck, Lubich & 
Selhofer 1998. But this problem is very far from being fully solved , especially to approximate an exponential 
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of a matrix which resides in a Lie algebra, a central problem in geometric integration as studied by Iserles, 
Munthe-Kaas, Nørsett, Zanna & Celledoni [63-74]. 

Souriau matrix characteristic polynomial computation  

Jean-Marie Souriau introduced his algorithm in the framework of his lecture on Multilinear Algebra by 
consideration on volume form [59-62]. In a vector space E  of dimension n, we can prove that vector space of 

n-forms (n-form as an anti-symmetric n-linear operator with scalar value). After Selecting a frame ( )1 2, ,..., ne e e  

of E , we can define an n-form called “volume form” with: ( )( ) ( )1 2 ... 1nvol e e e =        (A57) 

Volume of parallelepiped generated by vectors ( )1 2, ,..., nx x x  is given by: ( )( ) ( )1 2 ... nvol x x x     (A58) 

Souriau called “espace jaugé (jauged space)”, all vector space E , of finite size, where we have selected a “unit-
jauge” defined by vol . If we define a linear operator :A E E→ , considered as “affiner” in a jauged space, we 

can then give definition of: 

• Determinant of A, ( )det A by: 

 ( ) ( )( ) ( ) ( )( ) ( )1 2 1 2det ... ...n nA vol v v v vol Av Av Av=                                  (A59) 

• Adjoint linear operator of A, ( )adj A , by: 

( )( ) ( ) ( )( ) ( )1 2 1 2( ) ... ...n nvol adj A v v v vol v Av Av=                                     (A60) 

• Trace number of A, ( )tr A , by: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( )

1 2 1 2 1 2

1 2

... ... ...

                                          ... ...
n n n

n

tr A vol v v v vol Av v v vol v Av v

vol v v Av

= +

+
                      (A61)             

By using the following relation deduced from previous equations: 

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 2 1 2 1 2( ) ... .. det ...n n nvol adj A Av v v vol Av Av Av A vol v v v= =                     (A62)                                       

If A is invertible, we recover classical equations:  

( ) ( )detadj A A A I=  and ( ) ( )11 detA A adj A
−− =                                             (A63) 

Using these formulas, we can try to invert [ ]I Aλ −  assuming that ( )det 0I Aλ − ≠ . If we use previous 

determinant definition, we have: 

( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( )

1 2 1 1 2 2

1 2

det ... ...

                                                = ... ...
n n n

n
n

I A vol v v v vol v Av v Av v Av

vol v v v

λ λ λ λ

λ

− = − − −

+
                         (A64) 
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where ( )det I Aλ −  is the characteristic polynomial of A, a polynomial in λ  of degree n, with: 

( )[ ] ( ) ( ) ( ) ( )det .adj I A I A I A I AQ Q P Iλ λ λ λ λ λ λ− − = − ⇔ = −                              (A65)           

(if λ  is an eigenvalue of A , the nonzero columns of ( )Q λ  are corresponding eigenvectors). We can then 

observe that ( )adj I Aλ −  is a polynomial of degree n-1. We can then define both ( )P λ  and ( )Q λ  by 

polynomials: 

( ) ( )
0

det
n

n i
i

i
P I A kλ λ λ −

=

= − = ∑    and   ( ) ( )
1

1

0

n
n i

i
i

Q adj I A Bλ λ λ
−

− −

=

= − = ∑                      (A66) 

With 0 1k =  , ( ) ( )1 detn
nk A= −  , 0B I=  and ( ) ( )1

1 1 n
nB adj A−

− = −                          (A67) 

By developing equation ( )[ ] ( )detadj I A I A I A Iλ λ λ− − = − , we can write: 

[ ] [ ]
1 1

1
1 1 1

0 0 1

n n n
n i n i n i

i i n i i n
i i i

k I B I A B B B A B Aλ λ λ λ λ
− −

− − − −
− − −

= = =

= − = + − −∑ ∑ ∑                             (A68) 

By identification term by term, we find the expression of matrices iB : 

0

1

1

   ,  1,..., 1
0

i i i

n n

B I
B B A k I i n
B A k I

−

−

=
 = + = −
 + =

                                                        (A69) 

We can observe that 1 1n

n

BA
k

− −= −  and also the Cayley-Hamilton theorem: 

1
0 1 1... 0n n

n nk A k A k A k I−
−+ + + + =                                                         (A70) 

To go further, we have to use this classical result from analysis on differentiationgiven by 

( ) ( )( )det G tr adj G Gδ δ=   . If we set ( )G I Aλ= −  and d
d

δ
λ

= , we then obtain 

( )( ) ( )detdtr adj I A I A
d

λ λ
λ

− = − providing: 

( )
1 1

1 1

0 0 0
( )

n n n
n i n i n i

i i i
i i i

dtr B k n i k
d

λ λ λ
λ

− −
− − − − −

= = =

 = = − 
 

∑ ∑ ∑                                           (A71) 

We can then deduce that ( ) ( )  ,  0,..., 1i itr B n i k i n= − = − . 

As 1i i iB B A k I−= + , ( ) ( )1 .i i itr B tr B A n k−= + , and then ( )1i
i

tr B A
k

i
−= −                          (A72) 

We finally obtain the Souriau Algorithm: 
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( )

( )

( )

0 0

1

1 1

1

1   and   
1   ,   ,  1,..., 1

1    or   

1   and   

i i i i

i i i i i i

n n n n

k B I

A B A k tr A i n
i

B A k I B B A tr B A I
i

A B A k tr A
n

−

− −

−

= =

 = = − = −

 = + = −


= = −

                 (A73) 

Souriau Algorithm to compute exponential map of matrix 

Souriau approach of Exponential computation is based on algebraic analogy: 

[ ] ( )
( ) [ ] ( ) ( )1 Q

I A I A Q P I
P

λ
λ λ λ λ

λ
−− = ⇔ − =                                               (A74)                            

and the differential property (with d
dt

λ = ): d d dI A Q P I
dt dt dt

     − =         
                         (A75)                                       

If a numeric function γ  verifies 0dP
dt

γ  = 
 

, then: 

( ) ( ) ( 1) (1)
0 1 1

0
... 0

n
n i n n

i n n
i

dP k k k k k
dt

γ γ γ γ γ γ− −
−

=

  = = + + + + = 
 

∑                                   (A76) 

with ( ) ( )n
n

n

d t
dt
γγ = n-th derivative of  function γ , with initial conditions: 

(1) ( 2) ( 1)(0) (0) ... 0   and   (0) 1n nγ γ γ γ− −= = = = =                                              (A77) 

In this case, the matrix function dQ
dt

γ Φ =  
 

 is solution of the differential equation ( ) ( )d t A t
dt
Φ

= Φ , with 

initial condition ( )0 IΦ = : 

1
( 1) ( 1) ( 2)

0 1 1
0

...
n

n i n n
i n

i

dQ B B B B
dt

γ γ γ γ γ
−

− − − −
−

=

 Φ = = = + + + 
 

∑                                      (A78) 

We can then observe that the exponential map of matrix tA  is given by: 

( )

1
( 1) ( 1) ( 2)

0 1 1
0

1
0 1

...

with    and  

n
tA n i n n

i n
i

i
i i

e B B B B

tr B A
B I B B A I

i

γ γ γ γ
−

− − − −
−

=

−
−

 = = + + +

 = = −

∑
                                            (A79) 

( )

( ) ( 1) (1)
0 1 1

1 ( 2) ( 1)

  such that  ... 0

with   ,   (0) ... 0   and   (0) 1

n n
n n

i n n
i

k k k k
tr B A

k
i

γ γ γ γ γ

γ γ γ

−
−

− − −

 + + + + =



= − = = = =


                              (A80) 

The solution ( )tγ  of characteristic ordinary differential equation is obtained in [ ]0,h  of the spectral interval 

of integration. In the remaining part, the exponential function ( )tΦ  is computed by:  

( )( ) ( ) pph hΦ = Φ                                                                      (A81)                                                                                        

Souriau Algorithm for Exponential Map of Matrix is given by: 
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( )

( )

[ ]

1
0 1

1
0

( ) ( 1) (1)
0 1 1

( 2) ( 1)

  and  
1)

1  ,    1,...,

  integrated on 0,   such that

2) ... 0
with   (0) ... 0   and   (0) 1

3) Computation

i
i i

i
i

n n
n n

n n

tr B A
B I B B A I

i
tr B A

k k i n
i
h

k k k k

γ

γ γ γ γ

γ γ γ

−
−

−

−
−

− −


= = −


 = = − =



+ + + + =
 = = = =

[ ]

[ ] ( ) ( )

1
( 1)

0

0 0

 of ( ) ( )   on  0,

4) Extension of Computation on 0,  by  ( )
5)  ( ) ( )   with  (0)

n
tA n i

i
i

p

t e t B h

ph pt t
X t t X X X

γ
−

− −

=

Φ = =

Φ = Φ

= Φ =

∑
                                  (A82) 

If we observe that [ ] [ ]
0

1 1ln( )A sI A sI I ds− −

−∞

= − − −∫ , this algorithm could be used also to compute ln( )s s AA e=  

such as 
1

2A .  This Souriau algorithm to solve ( ) ( )d t A t
dt
Φ

= Φ  by computation of exponential ( ) tAt eΦ =

could be extended to solve 
2

2

( ) ( ) ( ) 0d t d tL M N t
dt dt
Φ Φ

+ + Φ =  by substituting 

( ) ( )2

L M N Q P Iλ λ λ λ + + = 
to [ ] ( ) ( )I A Q P Iλ λ λ− =  through the following algebraic relations: 

( ) ( ) ( )2 2 2

detL M N adj L M N L M N Iλ λ λ λ λ λ+ + + + = + +                                  (A83) 

( ) ( )2
2

2

0
det

n
n i

i
i

P L M N kλ λ λ λ −

=

= + + = ∑ , ( ) ( )2
2 2

2 2

0

n
n i

i
i

Q adj L M N Bλ λ λ λ
−

− −

=

= + + = ∑               (A84)    

Examples of Souriau exponential map algorithm 

We can illustrate Souriau algorithm with: 
0 1
1 0

J
− 

=  
 

 and cos( ) sin( )
cos( ) sin( ) (2)

sin( ) cos( )
tJ t t

e t I t J SO
t t

− 
= + = ∈ 

 
                   (A85)  

( ) ( )
( ) ( )

( )

0 0

1 0 0 1 0

2
1 2

2 1

2

2

  and  1
  and  0

1 0 1 0 0 0
0 1 0 1 0 02 2

1
2

B I k
B B J tr B J I J k tr B J

tr Jtr B J
B B J I J I

tr J
k

= =

= − = = − =

−     
= − = − = + =     −     

= − =

                             (A86) 

[ ]
2

2

(1)

( )  on 0,   such that  0
( ) sin( )

with   (0) 0   and   (0) 1

d th
t tdt

γγ γ
γ

γ γ


+ = ⇒ =

 = =

                      (A87) 

[ ]0 1
( )( ) ( ) cos( ) sin( )   on  0,

( )

d tt B t B t I t J h
dt

d J t
dt

γ γΦ = + = +
 Φ = Φ


                         (A88) 

Another example is given by harmonic oscillator: 
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20 1
  with  

1 0
p q p pd J J I
q p q qdt

− −        
= = = = −        

        
                                  (A89)                                

then cos sin
sin cos

tJ p t t p
e

q t t q
−    

=    
    

, rotation in p
q

 
 
 

-plane.                                   (A90) 

Next example, is given for skew-symmetric matrix, corresponding to exponential map for (3)so , the Lie 

Algebra of Lie group { }1(3) / TSO R R R−= = : 

( )
3 2

3
3 1 1 1 2 2 3 3 1 2 3

2 1

0
0 (3) and  , ,

0
L L L

ω ω
ω ω ω ω ω ω ω ω ω ω

ω ω
×

− 
 = − = + + ∈ = ∈ 
 − 

so                   (A91) 

The generators of (3)so  correspond to the derivatives of rotation around the each of the standard axes, 

evaluated at identity. The exponential map that takes skew symmetric matrices to rotation matrices is simply 
the matrix exponential over a linear combination of the generators. We compute this exponential map by 
Souriau algorithm: 

(2) (1)
0 1 2e B B Bω γ γ γ× = + +                                                               (A92) 

Souriau algorithm provides: 

0 0  and  1B I k= =                                                                        

( ) ( )
1 1

.
.   and  0

1 1
Tr I Tr I

B I I k
ω ω

ω ω× ×
× ×= − = = − =                                         (A93) 

( ) ( )2 2
2 1 2

. .
. .   and  

2 2
Tr Tr

B B I I k
ω ω ω ω

ω ω ω ω ω× × × ×
× × ×= − = + = − =                          (A94) 

We can observe that 2
2 . TB Iω ω ω ω ω× ×= + = ⊗  and 3 0k = , and we obtain: 

(2) (1) Te Iω γ γ ω γω ω×
×= + + ⊗                                                            (A95) 

The function ( )tγ  should verify: 

(3) (2) (1)
0 1 2 3( ) ( ) ( ) ( ) 0k t k t k t k tγ γ γ γ+ + + =  with  2

0 1 2 31,  0,  , =0 k k k kω= = =                   (A96) 

2(3) (1) (2) (1)( ) ( ) 0  with  (0) 1, (0) 0, (0) 0t tγ ω γ γ γ γ+ = = = =                                   (A97) 

We can then deduce that: 

( ) ( )( )(1)
2

1 1( ) sin   and  ( ) 1 cost t t tγ ω γ ω
ω ω

= = −                                       (A98) 

We can then deduce the exponential map of (3)so : 

( ) ( ) ( ).
2

1 cos1cos sint Tt
e t I tω ω

ω ω ω ω ω
ω ω

×
×

−
= + + ⊗                                   (A99) 

But using the relation 2.T Iω ω ω ω ω× ×⊗ = + , we recover Rodrigues formula: 

( ) ( ). 2
2

1 cos1 sint t
e I tω ω

ω ω ω
ω ω

×
× ×

−
= + +                                              (A100) 
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The exponential map from (3)se to 3(3) / , (3),
0 1
R t

SE C C R SO t R
  

= = ∈ ∈  
  

 is the matrix exponential on 

a linear combination of the generators: 

( ) ( )

1 1 2 2 3 3 1 4 2 5 3 6

6

0 0

(3)  and  T

u
u G u G u G G G G

u u R

ω
δ ω ω ω

δ ω ω

× 
= = + + + + + 

 

= ∈ ∈se

                                     (A101) 

( )21 1exp  with  
0 0 2! 3!0 1

u e Vu
e V I

ω
δ ω

ω ω
×

×
× ×

  
= = = + + +  

   
                              (A102) 

By using the identity, ( ) ( ) 23 .Tω ω ω ω ω ω× × ×= − = − : 

( ) ( )
( )
( )

( )
( )

2 22 1 2 2
2

0 0 0

1 1
2 2 ! 2 3 ! 2 2 ! 2 3 !

i ii ii i

i i i
V I I

i i i i
θ θω ω ω ω

+ +∞ ∞ ∞
× ×

× ×
= = =

     − −
= + + = + +        + + + +     

∑ ∑ ∑                      (A103) 

( ) ( ) 2
2 3

1 cos sin
V I

ω ω ω
ω ω

ω ω
× ×

   − −
= +   +  

   
   

                                           (A104) 

We can apply Souriau formula for exponential map of (2)su , the Lie Algebra of Lie group (2)SU through a 

linear combination of the generators given by the Pauli spin matrices:

( ) ( ) 4. . . .   with  , , ,x y z

a id b ic
a I i c b d a b c d R

b ic a di
σ σ σ

+ + 
+ + + = ∈ − + − 

                          (A105)                                 

Last example deals with “Geodesic Shooting” for multivariate Gaussian densities ( ),m Rℵ . Information 

Geometry provides an invariant Koszul-Fisher metric and geodesic by Euler-Lagrange equations: 

                                                                  

(A106)                                                                               
Using Souriau theorem of moment map (geometrization of Noether theorem): 

1 1

1

TR R R mm B cste
R m b cste

− −

−

 + = =⇒ 
= =

 


                                                            

(A107)                                                                                                           
This moment map could be computed if we consider the following Lie group action in case of Gaussian densities: 

          (A108)                                

With 1/2R , square root of R, is given by Cholesky decomposition of .  is the Lie group of triangular 
matrix with positive elements on the diagonal. Euler-Poincaré equations, reduced equations from Euler-
Lagrange equations, are then given by: 

                       (A109)                                                                                                                                     

Geodesic shooting is obtained by using equations established by Eriksen for “exponential map” using the 
following change of variables [75-76]: 
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( )
1

1
1

(0)( ) ( )
1    with   

( ) ( ) ( ) (0)
(0) , (0) 0

T

T

p

B bm
Bt R t

B b
t R t m t b

I

δ δ δ δ
δ δ

δ

−
−

−

∆ = − ∆ +
  ∆ = −∆ =  ⇒ = − + + ∆  

= =   ∆ = =







                        

(A110)                                                                                  
The method based on geodesic shooting consists in iteratively approaching the solution by geodesic shooting 
in direction , using Souriau exponential map: 

( )
0

( )( ) exp
!

0
with   0

0

n
T T

n T

T T

tAt tA
n

B b
A b b

b B

δ
δ ε γ

γ

∞

=

∆ Φ 
 Λ = = =  
 Φ Γ 

− 
 = − 
 − 

∑
                                               

(A111)                                                                                  
2 2

2

2

0
0 2

0

T T

T T T T T

T T

B b B bb Bb bb
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