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1. STATEMENT OF THE PROBLEM

IN many problems one is dealing with a collection of
(positively or negatively) charged particles which can
move relatively freely between their neighbors. Such
systems are the collection of electrons and ions in
discharge tubes (plasma), the ionosphere (Heaviside
layer), and the so-called free electrons in metals
(electron gas).

Contemporary theories of such systems are based
upon the analogy with a normal gas of neutral particles,
i.e., they assume that the motion of each charged parti-
cle is essentially an inertial motion except for short
times when the particles approach one another (colli-
sions). This is, for instance, the classical picture of
the electron gas. When considering various processes
in a plasma this is the picture one starts with in the
theory of the propagation of radiowaves in the iono-
sphere (Larmor, Foersterling, Lassen, etc.). A con-
sistent adoption of such a point of view must be based
upon the integral equation from kinetic theory where
one would think one includes the necessary elements
determining the properties of the gas studied:

1) inertia, 2) interaction forces between the particles,
3) external forces. From the point of view of the
kinetic equation one can only specialize to a system
under consideration by fixing the law of interaction be-
tween the particles, which in the case considered of
charged particles means the Coulomb law. Landaul®]
was the first to give such a discussion.

*Reprinted from Zh. Eksp. Teor. Fiz. 8, 291 (1938). Original sub-
mitted October 1, 1937.

However, the kinetic equation scheme and our con-
concept of a gas connected with it are a well-defined
approximation of the many-body problem, based upon
taking the interaction into account in a special way.
One considers only binary interactions between parti-
cles - interactions through collisions. The applicability
of such an approximation is not always justified. If the
forces are such that it is possible to introduce a
‘‘sphere of action,’’ i.e., to neglect changes in the dis-
tribution function due to distant transits (compared to
the radius of the ‘‘sphere of action’’), and if for the
system of particles considered the mean distance be-
tween the particles is large compared to the radius of
the ‘‘sphere of action,’’ the kinetic equation scheme is
sufficient. In the opposite case it is not sufficient to
consider merely binary interactions. Each particle in-
teracts simultaneously with a number of others, and
the many-body problem can in this case no longer be
reduced to the usual kinetic equation scheme.

In the case of Coulomb interactions we are dealing
with forces which decrease relatively slowly with dis-
tance. We see already, for instance, the insufficiency
of taking solely binary interactions into account from
the fact that a change in the relative density of positive
and negative particles at some place will be connected
with the appearance of a space charge which will act
upon the motion of the charged particles at consider-
ably larger distances than the average distance between
the particles. Taking only binary interactions into ac-
count is in this case clearly insufficient. An essential
role must be played by the interaction forces at dis-
tances larger than the mean interparticle distance (we
shall henceforth call these ‘‘long-range forces’’), the

Copyright © by American Institute of Physics 1968
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action of which can not be taken into account by the
usual kinetic equation scheme. This fact also emerges,
for instance, from the fact that it is, strictly speaking,
impossible to introduce a ‘“sphere of action’’ for the
Coulomb interaction since scattering by a Coulomb
center leads to a diverging expression for the total
cross-section which is just due to taking into account
the action of forces at large distances. The physical
cause of the diverging integrals lies in the fact that
although distant transits change the trajectory little,
the probability for such transits because of the in-
crease of the cross section increases faster so that as
a result the magnitude of the ‘“sphere of action’’ be-
comes infinite and connected with this the integrals in
the kinetic equation are also divergent.

The facts such as those given here compel us to
make the statement that for a system of charged parti-
cles the kinetic equation method which considers only
binary interactions - interactions through collisions -
is an approximation which is strictly speaking inade-
quate, so that in the theory of such systems an essen-
tial role must be played by the interaction forces,
particularly at large distances and, hence, a system of
charged particles is, in essence, not a gas but a dis-
tinctive system coupled by long-range forces.

Taking ‘‘long-range forces’’ into account leads to
properties which do not occur in a normal gaseous
medium, the properties of which are confined to those
following from the usual kinetic equation scheme.
Among those we must reckon the peculiar vibrational
properties of an electron plasma which were briefly
mentioned by Rayleigh{?} in 1906 in connection with the
special problem of the behavior of a system of elec-
trons in the old Thomson model of the atom and which
were studied in a similar way in 1929 by Langmuir and
Tonks®) for a gaseous plasma. Their consideration
was basically intended to show only the fact that vibra-
tions were possible and to find their frequency. The
presence of vibrations was obtained at once from the
following elementary considerations: Let an inhomo-
geneity of the electron density be created in a homo-
geneous plasma (N.e. = N_e-); the problem arises
how it changes with time.

Assuming the ions to be immovable (which is possi-
ble because of the high vibrational frequency) and that
the deviations from the stationary state (in which we
have u=0, E =0, p = po = mN for the macroscopic
values of the velocity, field and electron charge) are
small, we have the following set of equations for the
first approximation (the equation of continuity, the
equation of motion, and the field equation):

F;1+Podivui=0v ]
90;11 =00 % E., (A)
divE,:4n91%. J

Eliminating E; and u; we get an oscillator equation

for p,
2 2
26:)21 Py = 0,

i.e., the change in the density does not relax, as in a
normal gas, but oscillates with a well-defined frequency
characteristic for a plasma. It is at once clear already
in this discussion that in the presence of vibrations it
is essential to introduce ‘‘long-range forces’’ because

o =4nNe/m,

the motions of the charges (set (A)) are connected over
long distances via the field E and an essential role is
thus played by interactions over distances larger than
the mean interparticle distance. The inclusion of
‘‘long-range forces’’ is necessary for the presence of
vibrations; the fact of their existence can not therefore
be obtained from the usual kinetic equation scheme.

However, the discussion given has no pretence at
completeness and, strictly speaking, is only a rational
hint in the proper direction. For instance, it is not at
all clear what are the conditions on the temperature
and density of the electron gas for which the occurrence
of vibrations is possible, what is the role of the tem-
perature of the electron gas which does not appear in
the equations given here, what is the role of the inter-
actions at large distances, why do these oscillations
not propagate, and so on. A more detailed derivation is
necessary.

The aim of the present paper is to determine by
means of the setting up of a rational mathematical ap-
paratus, which includes ‘‘long range’’ (as well as
“‘short-range’’) forces, those properties which are
caused by those forces, and especially to give basically
an explanation, as complete as possible, of the vibra-
tional properties of an electron gas as a basic conse-
quence of taking ‘‘long-range forces’’ into account.

2. INITIAL EQUATIONS AND THEIR SIMP LIFICATION

In this section we wish to formulate the initial equa-
tions for a gaseous plasma (a system of electrons,
ions, and neutral particles), although their applicability
will have a large degree of generality (see Sec. 5). The
state of a gaseous plasma is determined by the values
of three distribution functions: for electrons -
fl(x: Y, 2, g: 7, g} t)9 for ions - fz(X, y, z, §, 1, §7 t),
and for neutral particles - fs(x,y, 2, &, 7, &, t). A
change in the number of particles of each kind within a
volume element in phase space dxdydzdédndg, due to
the translation of particles or to the action of external
forces, will be taken into account in the usual way.
Since the interaction of the electron and ions with the
neutral particles can be described by introducing a
‘‘sphere of action,’’ i.e., has the character of a
‘‘collision,’® we can also treat changes in the distribu-
tion functions due to this cause by using the usual
kinetic equation scheme. Of greatest importance for a
plasma is allowance for the interactions between
charged particles. Since, according to what we have
discussed earlier, it is strictly speaking impossible to
describe this interaction through a ‘‘collision’’ {without
ignoring ‘‘long-range forces’’), we divide its considera-
tion into two parts: first the interaction at close dis-
tances which are less than the mean interparticle dis-
tance, and second interactions at ‘‘far’’ distances,
larger than this distance.

The interaction at close distances can be taken into
account in an artificial manner - by cutting off the
Coulomb interaction, for instance, at half the mean
interparticle distance; thanks to such a cut-off it be-
comes possible to retain the concept of interactions
through collisions, i.e., one can take that part of the
interaction into account also in the kinetic equation
scheme. For the vibrational properties of a plasma
which we are investigating the long-range forces are



THE VIBRATIONAL PROPERTIES OF AN ELECTRON GAS

the determining ones. We shall take the interaction at
large distances macroscopically into account, i.e., as
follows. We assume that in the stationary state for the
plasma the density of the positive charges N.e. is
equal to the density of the negatives N-e-, and also
that for the currents j. = e.N.u. =0 and j- = e-N-u-
=0 so that the macroscopic values of the fields E = 0
and H = 0. Any deviation from a stationary distribution
connected with the occurrence of charges and currents
and also through a field influences the way the distribu-
tion function changes. Thus, through the fields E and
H the values of the distribution functions, generally
speaking, at any distances are mutually connected. To
take this connection into account we shall have, on the
one hand, the Maxwell equations where the connection
between E and H and the distribution functions will be
established through charges and currents, while on the
other hand, to take the inverse influence of the fields
present on the distribution functions into account it is
sufficient to introduce them into the kinetic equation
for the charged particles.

For the initial system of equations we shall thus
have

a .
L divevs, -

21

o (E -+ 1vH]) grad, f, =
=[G L L L)
ot dive Vo (B ooy VHD ) grady 7, —
=Ll L L )

s [T (21215 |

1 JE 4 .
T T
1 H

otk = —o5

divE == 4mp, rotH=

divH =0,

+o +o0

p=e | fidtdndite; | fodbdnd,
+oo -i;‘oo

j—e | vidgdnds e { vidzdndg

—o0 )

—o0

The set (I) allows us to state the problem: if at
t=0 we give f]_(X, Yy, 2, g, U2 §, 0): fZ(X) Yy, Z, g, 1, g; 0)’
and fs(x, y, 2, & 71, £, 0) for all values of the variables
and also the boundary conditions, what will be the
values of fi, {2, f3 for any t? We must assume that the
given system characterizes the plasma sufficiently
completely and therefore can be used as a basis to
consider the different processes in it, It must include
the vibrational properties in which we are interested.

We analyze the role of the terms [ of; /ot St,

[ef./0t] ¥, ... which contain the interactions through
collisions. Since the presence of inertia is essential
for the existence of vibrational properties, it is neces-
sary that the concentration of charged particles and of
the neutral gas be such that the vibrational frequency
be larger than the frequency of collisions between
charged particles and the neutral gas. It is clear that
this may be important, but is not a matter of principle.
In the following we shall assume that the vibrational
frequency is appreciably larger than the collision fre-
quency so that we can neglect collisions between elec-
trons and the neutral gas. The principal problem is

*IvH] =v X H
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the interaction through ‘‘collisions’’ between charged
particles.

The magnitude of this interaction can be estimated
if we cut off the impact parameter at some maximum
value. If we restrict our considerations to only close
transits and just those which are connected with turn-
ing through an angle larger than 7/2, we can easily
estimate the role of the terms [9f/6t|St,... . In this
case the dependence of the impact parameter b on the
angle 6 through which the relative velocity v is turned
differs little from the one occurring when elastic
spheres collide and as a result the terms [af/at]®
take in these two cases the same form so that from
this comparison one sees easily what role is played by
the “‘sphere of action’’ for the Coulomb interaction.

For the interaction through collisions between elec-
trons we have (see, e.g.,t*))

ot +oe o 21:1:
Lor 5= § S on—rryvbavdo, e,
—o 0 0
where b is the impact parameter and v the magnitude
of the relative velocity.

The integration is over all velocities &, m, &, and
over all values of the collision parameters b and €.
The post-collision variables &', 0, &', &, ni, &i are
functions of &, 7, &, &1, M, &1, 6, € which are deter-
mined by the conservation laws. The law of the inter-
action between the particles, however, determines the
dependence of the impact parameter on the angle of
turning 6 and the angle €. Hence, the character of the
interaction law between the particles enters (1) only
through b =b (8, €). For a collision between elastic

spheres
b=o0cos(6/2), (
(2] = { (711 1'£) vo2 cos (812) sin (8/2) do/2 de. 1

For the Coulomb interaction
2 etg g (2)

my? 2

b=

For scattering angles 0 (6 - an obtuse angle) lying in
the interval from #/2 to 7, the behavior of cos(8/2)
and of cot(6/2) and.wf their first derivatives are rela-
tively little different. For 6/2 = 7/2 the terms
cos(6/2) sin(6/2) and cot(6/2)/sin?(6/2) are the
same, and the second one is larger than the first one by
a factor ~ 1.08 when, §/2 = 80°, by ~1.7 for 60°, and
by ~ 3 for 45°. The formulae show for these two cases
therefore an analogous behavior, provided we take in
the case of the Coulomb interaction instead of the con-
stant diameter o the variable quantity 2e¥mv® If we
understand by v the constant average speed of the
particles (which is allowable for estimates of orders
of magnitude) the integrals are in fact practically
identical if we make the diameters equal. Thus, the
formula

0% = 4 (e¥/mv?)? (3)
must determine the order of magnitude of the ‘‘sphere
of action’’ for large scattering angles, where we must
understand by v the average particle velocity.

For angles less than #/2 there is no longer an
analogy with the elastic-sphere case and we must esti-
mate the role of [ 9f/6t]S! differently.

L. Landaul'] has taken into account just the distant
transits (0 < 8 < 7/2) in the framework of the usual
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kinetic equation scheme. For the mean free path
Landau gives the formula
(kT2
1 WD (4)
whence we get for the cross-section a?

1 1 e? \2
PRI SR B B
cI_nllvgn(kT) L,

or, as 3kT/2 = mv?/2:
o ()L, ©

o \ m2

which differs from Eq. (4) only through the logarithmic
term L = Ilnbz/b, where b, and b are the minimum
and maximum values of the impact parameter, Taking
only close or only distant transits into account leads
thus, apart from a logarithmic term, to the same ex-
pressions for the ‘‘sphere of action.”” For the minimum
distance we must assume that it corresponds to 6 = n/ 2,
i.e.,

by == 2e%/mv2,

The maximum value b, must lie between b, and
half the mean interparticle distance.* Putting b,
= Y,N¥3, we have for L
L=In —413{"/73 -
Depending on the relation between density and tem-
perature, L can belarger or less than unity, and in
accordance with that the magnitude of the ‘‘sphere of
action” can essentially be defined both by distant
(b > b,) (5) and by close (b <b,) (3) transits. The
order of magnitude of the sphere of action (taking both
““close’ and ‘“distant’’ transits into account) can thus
be estimated from the equation

o2 =a (e?/mv?)?, (6)
where a ~ 10.

In the conditions of the ionosphere N ~ 10° el/cm?,
we take T = 300°K, and we get the following values for
the ‘“‘sphere of action’’ o, the mean free path /, and the
collision frequency vgt:

6 =~V 3a 10 Cm,

S SN ST, T,
== 5m 108 =~ 10¢cm,

v = v/l 10® Hz,

For the eigenfrequency vo of the vibrations of the
electron plasma with the same concentration we have,
on the other hand,

1 4niNe?
vo o /N o 4.3.10° Ha

Hence, as v, > vgt we can completely neglect the in-
teraction through collisions between the electrons.
For an electron plasma in a discharge tube, putting
N = 10® el/cm®, T = 10*°K, we have ¢ = V(27a) 107°
~ 10 " em, I ~ 10° cm, vgt ~ 10* Hz, v, ~ 10° Hz. One
sees easily that for the interaction through collisions
between electrons and ions the expression for the
diameter o has the same form as (6) provided we take
for m the effective mass of these particles so that the

*To take for b, the Debye distance is not fully legitimate since it
can also be larger than the mean interparticle distance, and since in
that case there will be several particles in the sphere of action of one
particle, the concept of a “collision” loses already its meaning and with
it also the original usual kinetic equation scheme.

A. A, VLASOV

estimate for g, [, and vgt remains practically unal-
tered also for that case,

Thus, the problem of the vibrational properties
allows us to simplify the problem: we can neglect all
interactions through ‘‘collisions.”

The class of problems considered which are con-
nected with high frequencies allow us still one more
simplification in the initial equations: because of the
large mass of the ions as compared to that of the elec-
trons we can neglect their displacements i.e., we can
practically assume the ions to be immovable. Under
all those conditions the set of initial equations takes
the form

L+ divev/ 4= (E+ VH] ) grad, /=0, ]
o0

divE:4ne( \) fd‘g'dndc_N)’
e (m
1 9E | 4 o
rouH = - 57+ | vidEdnd,
divH=0, rotE— 2

where f is the electron distribution function. In the
problem considered we are thus led to a set of equa-
tions describing the behavior of only one electron gas.

The role of the positive ions enters only in the ex-
pression for the total charge density, i.e., it is merely
reduced to the compensating part of the electron
density, corresponding to a stationary state. The set
of equations obtained is non-linear. The non-linearity
enters when we take the term

elm (L+% [VH]) grady f,

into account, as E and H themselves depend on f. In
the present paper we restrict ourselves to a study of
the linearized system. In the stationary state there is
a Maxwellian distribution, as follows in the usual way
from the set of Eqs. (I). We assume that the deviations
from the stationary state

Do (&, M =N (2'1_’"]&)3/2 e~ m(E L)/ 2RT 7

are small
g 2 &0 G =0y & 1, D4+ 42 &0, 5 0. (8)

Substituting (8) into the set (II) and dropping all
terms quadratic in ¢ we obtain the initial set of
linearized equations in the form*

O . PO 3
5%)‘-|- dive VlP+7ne— (h -+~ [vH] ) grady @y =0,
Foo

divE =- 4me S @ dEdn de,

- (1m)
1 9E | dne
rotH——2-55 -+ | vedidndg,
divH=0, rotE———~%"

3. SOLUTION OF THE LINEARIZED EQUATIONS

A characteristic peculiarity of the first approxima-
tion (the linearized set (II)) is that the solutions for

*It is not necessary to neglect the Lorentz force: when solving the
linearized system of Egs. (I} its action vanishes automatically (see
Sec. 3).
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the fields which can exist in the plasma divide into two
independent kinds: irrotational and rotational fields
(longitudinal and transverse waves). The general solu-
tion is constructed additively from the solutions for the
rotational and irrotational fields, taken separately. To
show this and to find the equations which describe
separately both parts we write - as is always possible
- the vectors occurring in the set (III) as a sum of two
vectors, a rotational and an irrotational one:

E— E(l) 4+ E(t)
where

rot E? =0 and divE® =0, H—H"Y,

since according to (III) div H = 0. Analogously we also
divide the vector of the macroscopic velocity:

v = v fy®;

since v = f:': v dédndg this last division will be

possible if the distribution function itself is in the form
of two parts

P =90+,

for which
'],w -«]:m
Vi 3 vodEdnds, v = \ vt dE dn di.

To obtain the equations which separately describe
the two parts, we consider two particular solutions of
the set (III):

1. Let there only be an irrozational field in the
plasma, i.e., E( £0, E(t) =HWY =0; moreover v({t)
=0, v() # 0, which is possible, if ¢ =0, () # 0.

2. There is only a rotational field present: E(l) =0,
EW £0,HO £0; v =0, v £ 0, 1.e., o) =,

For the irrotational part (longitudinal waves) we get
a set of equations by substituting in the set (III) the con-
ditions formulated sub 1):

Pyl
54 | v+ £ B grad, @, ~0,

+oo
AivEY —dme { g0 aganaz,
sEWD "

- = 4re S v dE dn di,

;
[ ()

—o0

with the condition curl E(l) =0.
For the rotational part we get, substituting in the
set (III) the conditions formulated sub 2)

ap (D . 1
Kt dive v + 2 (E(" + 4 VHO]) grad, @, =0,

® -
rot HY — %% e S vt dE dn dz,

OH (t)

w_ 1
rot E%Y — P el

divA® =0, divE® 0.

;
! (m(®)
|

The sum of the solutions of the set (II{Y)) and (1m(t)
will because of the linearity of the equations also be a
solution of the initial set (III). Moreover, the sum of
solutions of the separate equations can be chosen such
that it satisfies any arbitrary initial conditions (as well
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as the set (IM)) and given conditions at infinity, i.e., it
will thus be the general solution of the set (Ill). Indeed,
the initial conditions for the field in the plasma can in
the general case for the set (IlI) be split into a rota-
tional and an irrotational part, i.e., it can without
limitations be written additively as the sum of the
initial conditions for (II1{(?)) and (111(t)); hence, it is
sufficient to solve the separate systems also to satisfy
any initial conditions together with the set (IIT).

Thus, in the approximation considered the possible
motions in the electron gas are split into mutually
independent rotational and irrotational motions; the
properties of the electron gas must essentially be de-
termined by the peculiar properties of these two kinds
of independent motions and be included in the set of
Egs. (11(2)) and (1m()).

We consider the set of Egs. (II{)). A peculiarity of
this set is that the number of equations is larger than
the number of unknowns. Indeed, combining (1) and (2),
or (1) and (3) from set (II{?)) we have in both cases a
pair of equations which is sufficient to determine the
unknown distribution function ¢(x, y, z, &, , &, t).
However, comparing the solutions of those two pairs of
different equations shows that the solutions are identi-
cal. We find first of all an exact solution of the first
pair and then of the second pair and show that these
solutions are identical. The fact that Eqs. (2) and (3)
(of (III)) are equivalent expresses a particular fact:
in the problem considered taking into account the
Coulomb law (Eq. (2)) is equivalent to taking into ac-
count the longitudinal displacement current (Eq. (3).

Let us find the solution of the first pair of equations.
They allow separation of variables (separation of the
t-dependence). Putting

oz, 5,2 500 0=T0) ¢ (x, v,z &, L)
E® (2, 9,2, 1) =T (1) E (z, y, 2),

9)

and substituting this into the equations studied, we find
AT/dt div, vq;f)”—}—% Ef)l) grad, @

7 =const =iw.

of?
Here w is an as yet undetermined quantity.
The time dependence is determined at once:

T =T (0) etot, (10

To determine <p((,l) (x,, 2, & 7, £) we have a set of
equations

o 4 dive vl —{—% EY grad, @, =0,
teo (11)
divE® = 4ne g o dE dy dt.

—o0

Since by definition curl E(l) =0, we shall look for a
solution in the form of an expansion in plane longitudinal
waves. Because of the linearity of the equations each
separate plane wave must be a solution.

For each separate plane wave we have

PP (z, ¥, 2, &, m, §) =P (E, 1, L) e=ikr,

EP (z, y, 2) = kaze—ikr,

(12)

where Ky is a unit vector in the direction of propaga-
tion. Substituting into (11) we get a set of equations to
determine the amplitude
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ilo—(kE+kn+-ELIegD E . §

e 90, aquo amo
2 (e B,

.
1
) ey e (13)
+o0
_i[k]aksfmeg &b (& m, 0y dEdn dt, '

J

or, writing 8®,/0£ = 8%,/8€- 8e/8L = 8%,/0¢ - mé,
8®, /87 = 8d,/9€ - m7, ddo/0L = 8%,/8€ - m¢, where
€=m/2(& + 17 + ¢

ilo— kw1 g0 (& m, §) = — 7 (kv) S0y,
e (19
~i|klax=4ne | g (& n, L) dE dn g,

—oo

whence we have for the determination of gl((l) (& m,2)
the equation

+
o 6 1 O =5 e | B G dtamat. (19)

Formula (15) determines the dispersion law for
longitudinal waves and also determines the form of the
distribution function for any ¢, i.e., it gives a complete
solution of the problem.

Indeed, integrating on the left and on the right over
the velocities, we get

+o0
4re? (kv) 6®y/de o
e { G dxdndg 1, ()
i.e., the dispersion law for the waves considered.

Since the integral in Eq. (15) is independent of the
velocjties it follows that we have found the dependence
of g’ on the velocities:

e? (k
£ (&, D) = (k) Fir T (16)

The constant ¢ (k) can depend only on k.

Finally, by superposition of partial waves we get
the general solution:

+oe
(@ vz b L= | ei-tg (8 m, ) dEdndl
T e o dner (kv) ado/de )
. g eloi=ike e (k) Tt AT dk.

—oo

The form of c(k) is determined by the initial condition
for the distribution function
o0

C(@ bt 0 | e (& n, 1) dk
LT
_ S e—ikeg (k) |/me|: (k(;’{)va‘:bo/f78 dk.

—oo

Integrating on the right and on the left over the veloci-
ties and using (IV):

oo rad

{ o0 (z, y, 2 &, 5, 0)dEdn dt = S e—ire (k) dk,

—oo —oo

p(z, ¥, 2, 0) ==

where p(x, y, z, 0) is the initial value of the change in
the electron density, so that ¢ (k) is determined as the
Fourier component:
+o0
c(k)= & p(z, y, 2z, 0) et dr. (VD

Thus, Egs. (IV), (V), and (VI) form the solution of the
problem.

Let us now go over to solvmg the other pair of equa-
tions of the same set (II() (Egs. (1) and (3)):

dq) + div, (p“)—.——E(l) grady, @, =0,

oo (17
(1) !

M?lft—;4ne R v d& dn dT.

Proceeding analogously for the previous and for this
pair we separate the time dependence; and also here we
get

o0 (2, y, 2, E 0 L) =T () oV (2, y, 2, § M, L)y

EY (2, g, 2, )= T(OE (2, y, 2). (18)
Substituting into (17), we find for T(t)
T (t) =T (0) eiot, (19)

where w must be determined by the subsequent equa-
tions.
To determine ¢{!) (x,y, z, £ 0, £) we have the set

i) +dive vl — % Ef,” grady @y ==0,
oo (20)
— i0EWY = 4ne S vod (z, ¥, 2, & . §) dEdndt.

We write the solution here also as a superposition of
longitudinal waves:

o0 (2, 5, 7, &, ) =gl (& M, ) emike, (21)
EP (2, y, 2) =

To determine the amplitude we substitute into the set
(20)

kjage—ikr,

tHo—&)lgl E N D= — IkI (kv) ay 6@,/ 0¢,
- (22)
—iokiax=4me | vg{) &, u, D) dEdndg.
Taking the scalar product of the second equation of this
set with k and substituting into the first equation we
find

(23)

oo
2 k g
g E =t 2‘(&‘;&\ (kv) g (€, 7, £) dE d dC.

Equation (23), similar to (15), gives the complete
solution of the problem. To obtain the dispersion
formula, we multiply (23) by (k-v) on the right and
on the left and integrate over all values of the velocities;
we get the dispersion law in the form

avia))

+
4re? g (kv)2 9D,/ 0 4 dn dt -1

o[k kv)—o

We now show that Eqgs. (IV) and av(2) are identical,
and thus also that the solutions given by (15) and (23)
are identical. We choogse k along the x-axis so that in
order that (IV) and (Iv{a)) are identical it is necessary

that
%S gzag(])o/ae d§d dC__

—c —co

+&‘w £0O, /63
0%

T d& dndg,

or, multiplying and dividing by (k¢ + w):

+o0 e
1 2 (k IDo/0 k 0Dg/d
L 00000 gy gy L[ S0 0000 g g gy,

We need of the function ®,( &, 7, ¢{) only the fact
that it is even in the velocities, so that the integrals of
odd powers vanish and on the right and the left remain
identical terms so that we have verified that the dis-
persion formulae (IV) and (IV(3)) are identical. As a
consequence we get also the identity of the solutions.
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To see that we integrate (23) over &, 7, £, and get

+oo +g°
[ g0 Ddzands—- { kv g 5, D didndt
4me? e

NG \

B EDo% gt anag}
which gives the identity of (15) and (23), if we use
(1v{a)) and (1v).

We shall now solve the equations for the transverse
waves: the set (III{V).

As in the case of the longitudinal waves the set of
equations allows us also here to separate the variables
- we can split off the time-dependence. We get

o0 (@, y. 255 L )=TH ¢ (2 y. 2,81, D), )
E® (2,2, 5) =T () E{V (2, 1, 2), i
HO(z, y, 2, ) =T () HP (2, y, 2)- )

(24)

Substituting into (II{t)) we get for T(t)
T (t) =T (0) eiot,

where w must be determined from the dispersion law
for transverse waves. To determine <p(()t), E(()t), and
H((,t) we get the set
i)+ div, vod + -5 ( By (6) + [VH]) grady @ =0,
; R
rot H = 2 B+ 220 ve(d dE dn dt,

o

(25)

rot E® — 71:1113& divE® - 0, divHO 0. )

We look also here for a solution for E(Y, 2V, and
(p(()t in the form of a plane wave:

E® (z, y, 2) = exbgeikr, 1
H® (2, y, 2) = heege™ T,

o0 @y 2 BN D g E o, Dei )

(26)

Because
div E® = — i (key) =0, divH{® = —i(khy)=0

the waves are transverse: ek L k, hy 1 k.
The mutual relation between the vectors ek, hk, and
k is given by the equation

rot E(Y = —iw/c-HW,

which also connects the amplitudes by and ck. We
have

[kex] bk = hgexo/c, (27)

whence
b= [kew] T (28)

and
b :TF](T Cie (29)
We use the third equation of the set (25):
i Aste e -

— ki o= euby =420 vg & . Dazanag. (30)

Using (27) to eliminate from (29) the amplitude ck we
express by through gl((t); we have
oo

e ve & m, Ddtandt,

—o0

— i [k [kex]) by = i - exdi +-

but
k
[k 2

1
k|2

“{LP [k [keg]] = o (key) — ey (KK) o = — €4

(30) becomes
4o
. c2k2— @2
1

4
o e == | g 8o, D dEdndt,

—

(31)

or, multiplying on the right and on the left by ek, we
have

oo
b= e -2\ (ewv) g (8 M, D) dEdndl. (32)

Thus the amplitudes of the fields E and H{D are
expressed through Eqs. (27) and (32) in terms of the
amplitude of the distribution function. To determine it
we use the first equation of the set (25). Using

grad, @y = 0Dy ( %

. o ., 08 oD,
(it itak)

=mv—/*
de

we get by substituting (26)

i lo— (kW) g0 (& 1, )= —e {(ex¥) bt (Ivhul V) e } T2
As [v Xhg]-v =0 the action of the Lorentz force
(e/c){v x K] automatically drops out of the calcula-
tions. Expressing on the right-hand side by in terms
of the unknown amplitude g%{t) through (32), we get

Ho0
\ (o) g0 (& m, L) ddnds
S (33)
(cf. the analogous expression (23) for longitudinal
waves).

We obtain the dispersion law for the transverse
waves by multiplying (33) by (ek-v) and integrating
over all values of the velocities §, 7, &:

® (e V) dDy/de
gV & o =4 G i —o

o T (emamyoe

2
4ne @2—c2k2 |} kv)—o

dEdndl=1 (VID
(compare (1v), (Iv(a))).,

We aobtain the general solution in the same way as
for the longitudinal waves, viz.; noting that the integral
in Eq. (33) is independent of the velocities

¢ ), (34)

(e, ) 6Dy 5

0 6, [ limet gy SR
to obtain the general solution we must superpose
partial waves with the amplitude found from (34):

oo

g gimlﬂkrgi&t) (€. 1, Ddk-—-

—x

W (z, y, 2. &, . L, 1)

oo

— \ eiwl- ikrp (k) 4rte?

) (ey V) aWy/de
R ey ak. (VIID)

The form of c(k) is determined by the initial con-
ditions for the distribution function

-0

v, » N S © (e v) oy /oe
9.y, 2,8n,§0) \ emtre (k) dmet = o

dk, (35)
whereas in the case of longitudinal waves c (k) was
expressed in terms of the initial distribution of the
electron density p(x, y, z, 0) (Eg. (VI)); in the case
considered where only transverse waves are present
p(x,y,2,0) =0 and c(k) is now expressed in terms
of the initial current distribution. Indeed, multiplying
(35) by the velocity vector v and integrating over all
values of the velocities we get on the left
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+oo
j@ y 2 0=\ vz y, 2§ 0§ 0)dEdndl.

—oo

On the right we write the multiplying vector out in its
components

v == (exv) ex + (kyv) ky -+ (hyv) hy.

The following integrals occur
1 (e v)2omy/oe

{ o dEdndt,

+oo

§ (e v) (kyv) dy/0e

o dEdndt,

—o

+§0 (€} (hy,v) 00,/de

kv)—w

dE dndt.

—00

The first integral is the same as the integral in the
dispersion formula (VII) and is determined by it. The
last two are exactly zero; for the second one, for in-
stance, we have, choosing x ll k and y Il ek

oo Fo0 +oo
e 0y /o u &Ed .
i ﬂkg—_"(f)—s dgdndi— | ké_gm S 1 9®y/de dn df =0

— —co —o

because 8®,/9¢ is even in the velocities. Similarly for
the third one. Hence, we have finally

~+oo +oa
i@y 0= {vo@ y 2808 0)dednds= | e (k) d,

- B (Ix)

so that c(k) is determined as a Fourier component.

Equation (VID), (VII), and (IX) give us the solution
of the problem for the case considered (transverse
waves).

4. DISPERSION OF LONGITUDINAL WAVES

We consider the dispersion relation for longitudinal
waves (IV). Without loss of generality we choose a
system of coordinates with the x axis along k. The
dispersion relation then has the form*

+
4re? )

& omy0e ]
) Tmoe dEdndt—t

(36)

The distribution function ®,(£, %, £) occurring in
the dispersion relation is the distribution function for
the stationary state. In the present section we consider
an electron gas which is characterized in the stationary
state by a Maxwell distribution function

Dy (6) = N (e ) emet, (37)

where € = Yom( &%+ % + £?). Introducing (37) into (36)
and integrating over 7 and { we get

4ne2V n
TR ]/ 2a

e ,—mEL/2hT
(kT)3 SE

o dE— L. (38)

It is convenient to introduce dimensionless quantities.

*In the paper “On the Vibrations of an Electron Plasma” (J. Phys.
USSR 10, 25 (1946)) L. D. Landau has shown that when the problem
is solved more rigorously by the Laplace transform method, it is nec-
essary to go around the singularity in the integrand in (36) in the com-
plex plane. He then found a new effect of a specific damping of the
waves due to their interaction with resonance electrons (“Landau
damping”). (Note by editor to Usp. Fiz. Nauk).

A. A. VLASOV

As unit of frequency we choose the eigenfrequency of
the electron gas

o= )/ 4nNe*/m,

as unit of wave number the inverse of the Debye dis-
tance D:

D=1/x, w=1V"4neN*/kT.

The unit of velocity is then

wo/% = V kT im.

In these units w* = w/wo, k* = K/ Kk, £* = &/ wo
= ¢V{m/kT) = x. Introducing all this into (38) we get
the dispersion relation in the form

e 2 gy
5 T—o*/k*

The fact that in the formula obtained the quantities,
e, m, N, and T which determine the electron plasma do
not occur explicitly but only through the chosen units of
measurement shows that for the system considered the
time interval defined by the frequency w, and the
spatial interval defined by the Debye distance are the
natural dimensions characteristic for the system con-
sidered.

This is also indicated by the fact that the Debye
formula for the static polarization is automatically in-
cluded in the dispersion relation obtained and is a
particular case of it. Indeed, putting in (39) w =0, we
get k*2= —1, i.e.,

— — YV Zak*. (39)

Hence, the spatial dependence of the solutions (12) will
in that case be determined by the terms e**T which
are identical with the Debye ones.

We are interested in how an inhomogeneity created
in the electron gas is dissipated; we shall thus assume
that k is given in the dispersion relation.

We restrict our considerations to the physically
most interesting case where the macroscopic inhomo-
geneity created in the electron plasma is large com-
pared with the Debye distance, i.e.,

| k*| =] k/n| =2z | D/A| < 1.

In that case the integrand can be written as a power
series in k

o= — b [ () b (2R ] D)

o*

which converges and uniformly converges in the inter-
val |x|< w*/k*. Substituting (41) into (39) and for the
present restricting ourselves to the first non-vanishing
term, we have

or for w* we get
(42)

whence it follows that we get a constant value for the
angular frequency

— (ko) = — VY Sm ke,

O*2 = 1' (43)
Thus, in the approximation considered the disper-
sion relation is such that the angular frequency w is
independent of the wave number and equal to the con-



THE VIBRATIONAL PROPERTIES OF AN ELECTRON GAS 729

stant wo which characterizes the plasma. This indi-
cates an anomalously strong dispersion, namely such
a one that the magnitude of the group velocity for such
a dispersion law vanishes, i.e., in this approximation
there is no propagation; a macroscopic inhomogeneity
once produced does not relax as in the usual case
neither does it propagate, and it vibrates with a large:
frequency.

The dispersion law determines the way the solutions
given by (V) depend on the time. For the change of the
electron density p(x, y, z, t) we have from (V)

+oo
(@ 12, 1) = ( glat~ikeg (k) dk, (44)
where the amplitudes c(k) are determined by the
initial condition for p

oo
oz, y, 2 0)= S e—ikee (k) dk. (45)
Using (43) we have thus from (44) and (45)
(46)

p @y, 2, )=p(z, y, 2, 0) e,
which is the same as the formula obtained from ele-
mentary considerations {see Sec. 1).

We now turn to the next approximation - taking the
first two non-vanishing terms in the expansion (41) into
account; we have

1 2 ¥ I ——‘—x S
_ {(%)2 Q z% 27 dz+( k ) x % 2 E{dac}» = —VZnk*

w*

Also here we can extend the integration to infinity
without appreciable error. We get

(RN Y Ot (k%) 3 ) Zny = — V 2m ke, (47)

Hence, to determine w as function of k we have the
equation

1/w*2 + 3k*? /¥ = k*2,
or
oF _ @*2 _ 3k*2 Q. (48)

Since the initial Eq. (47) is true only when |k| <1
(in second order) it is necessary to write the solution
of Eq. (48) as a series in k and to restrict ourselves
to the first two non-vanishing terms. Thus, we have

o =1/2 + 1/2 (1 4 1246212 = 1/2 + 1/2 (1 4 6k*%).
For the root with the positive sign we have
o =11 3k, (49)

i.e., a further refinement of Eq. {(42) or, changing to the
usual units,

e 2. 2
o 34T ke 347 (21 0

The root with the negative sign does not agree with the

original assumption w*/k* > 1 and can thus be dropped.

In the case when the given wavenumber is real and
as usual larger than the Debye one, Eq. (49) shows that
in contradistinction to the first approximation a given
macroscopic inhomogeneity oscillates but with a fre-
quency which now depends on the magnitude of the
macroscopic inhomogeneity A.

The magnitude of this correction to the frequency is
determined by the temperature and the density of the

electron gas.*
In the case when the frequency is given it is con-
venient to write Eq. (50) in the form

k2= (@ —ol)/vt, v*=3kT/m. (X)

Equation (X) is to a fair approximation also the
dispersion relation for longitudinal waves. It is simi-
lar to the well-known dispersion relation for the
propagation of transverse electromagnetic waves in the
ionosphere (and also the dispersion relation for the
free motion wave function in quantum mechanics) dif-
fering essentially by the fact that the role of the light
velocity c? is here played by the thermal velocity
vZ = 3kT/m.

We note some consequences of the dispersion rela-
tion:

1. If w > wy, k will be real, i.e., we have propaga-
tion in this case - the presence of longitudinal waves.
However, in the case w < wy, k is imaginary and
there is no propagation; the spatial dependence of the
solution is in that case similar to that of the static
polarization.

2. For the group velocity of the longitudinal waves
we have from (50)

Vg = do/dk = 3kTIm - klw;

and the connection between the phase and the group
velocities will thus be

VgrVph™ v?, v*=3kT/m. (51)

To find the values of the quantities Vgr and Vph
themselves, restricting ourselves to the first non-
vanishing terms (considering as before an inhomo-
geneity larger than the Debye one: |k/k | =v/wo|k]|
<1), we have from (50)

L? P 3kT

- BT o~ 20— 1/ hetNim L
o Vi Uph== — - = ‘//mezN/m?, (52)

since, by definition, |k|v/we < 1, the group velocity is
always less and the phase velocity always larger than
the thermal velocity of the electrons.

Due to the small mass of the electrons the veloci-
ties (52) are nevertheless relatively large. For the
ionosphere, for instance (see Sec. 2), for a train with
wavelength 1 m, vy ~ 10° cm/s and for 1 cm a hun-
dred times larger (the Debye distance for the iono-
sphere is ~ 1 mm).

3. The dispersion law determines the change with
the time and coordinates of the electron density as is

Ve =

*We must bear in mind that since this correction is by definition
less than the oscillation frequency, allowance for collisions will influ-
ence it more strongly. In the case when the collision frequency wst
(see Sec. 2) is larger than this correction its influence is swamped by
collisions. Its presence shows up most purely if

Aw/o S =5 /3 Di/Az ~ 105T5/2/ 31232 5 1,

For this case, to which strictly speaking our calculation in second
approximation refers one can completely neglect collisions and this is
always allowed for sufficiently high temperatures.

When, e.g., ¥ =10% elfem®, N =108 eifem’®, N =101 eljem® lwhenk:m? it

7=10%°K, T==10%°K, 7=106°K j —r 10,

i.e., under those conditions we can neglect collisions even up to meter
waves (the Debye distance for these cases ranges from 1 to 0.1 mm).
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clear from the general solution (44) for p(x, y, z, t).
Restricting ourselves also here to considering the
case where the dimensions of the macroscopic inhomo-

geneity are large compared with the Debye distance,
we can find the general character of the change with
time of the electron density. Substituting thus into Eq.
(44) the expression for w(k)

o (k) =V @ UK o 0y -+ 1/2 v¥fook?, (53)
we have

-
22 pagtike

p(z Y 2, t) = eloot S e @ ¢ (k) di: = etoolf (z, y, z, t), (54)
where c (k) is determined by the initial density distri-
bution. The integral in (54) has the same form as the
one occurring in the well-known problem in wave
mechanics of the spreading out of wave packets in free
motion, which is also clear from the fact that the func-
tion f(x, y, z, t) is the general solution of the equation

20y j_i_ (5 5)

Vif= <
which is similar to the wave equation for free motion
with only m/h instead of wo/v% We need thus not per-
form any calculations but can at once use the well-
known formula for the speed of the spreading out,
changing in our problem m/f to wo/v2 We shall thus
have for the effective width of the inhomogeneity in the
electron distribution at time t

87— B2+ (v*/Bywq)? 22, (56)

where 0§, is the linear dimension of the inhomogeneity
at the initial moment.

It thus follows that a given density inhomogeneity in
the electron distribution oscillates with frequency w,
and additionally spreads out. The speed of the spread-
ing can be characterized by the time in which the
dimensions are increased by a factor two; for this time
7 we shall have

(57)

[oF 4neimN
w38 80— VESET

since by definition, we consider an inhomogeneity
larger than the Debye one, automatically the time of
dissipation 7 is larger than the oscillation period T,
because the last requirement is equivalent to the
first one:

1 2 o} 1 8¢ \2

Tz e %= ()
Thus, a given inhomogeneity in the electron density
oscillates and slowly (compared with the oscillation
period) dissipates.

5. DISPERSION OF LONGITUDINAL WAVES IN AN
ELECTRON GAS WITH A FERMI DISTRIBUTION
FUNCTION

In the present section we wish to show that the
presence of oscillationary properties also occurs for
an electron gas in a state which is close to the degen-
erate one with characteristics which are different from
the previous case of the Maxwell distribution.

When the conditions under which the original Eqs.
(II1) are valid are satisfied the specialization to the
case of a Fermi gas consists merely in the specializa-
tion in the original equations for the distribution func-

tion for the stationary state ®,( &, n, £). For the case
considered we must take for it the Fermi distribution.

To fix our ideas we shall consider the electron gas
in metals, and especially such metals (mainly alkali
metals) for which the free electron hypothesis is a fair
approximation. The conditions necessary for the exist-
ence of vibrations (the condition for the applicability
of Egs. (ITN), see Sec. 2) consist in the conditions pre-
serving the manifestation of inertia of the charged
particles during the period of their oscillations. For
this it is necessary that the collision frequency of the
charged particles with the neutral particles and with
one another be less than the oscillation frequency. In
the opposite case an inhomogeneity produced in the
electron plasma will aperiodically relax without oscilla-
tions.

The frequency in a metal of collisions of the elec~
trons with the crystal lattice will be

vt~ p/l,

where ! is the mean free path and v the mean velocity.
We can estimate this quantity from the empirical

value of the electrical conductivity u:

N I s N 1

il = ’

m v m P

for silver, e.g., i = 5:10"", N = 5.9-10%% and hence
vSt = 2.9-10'* Hz, Expecting for the oscillation fre-
quency the same value as in the classical case,

! l/4::Ne2
Vo=3x V =

we have, for instance, for silver v, = 2.10'° Hz.

The oscillation frequency is larger than the collision
frequency by about a factor one hundred. Because of
this we can practically neglect for the problem con-
sidered the interaction of the electrons with the lattice.

The presence of a high density of the electron gas in
metals makes the question of the role of interactions
through ‘‘collisions’’ between the electrons themselves
important for the problem considered. For the total
scattering cross-section we have (see Sec. 2)

o =a (e*/mv?)?,

where v is as to order of magnitude equal to the mean
electron velocity and @ ~ 10. The mean free path is

! = (no?N)1.
Hence we have for the collision frequency
Vil = v/l 2 am (¢2/m)? N/v?, (58)
When the degeneracy is complete
28qy | 3/2 3413/2 B3 3N
o () - (3) (59

where €, is the mean kinetic energy of the electrons
in the case of complete degeneracy. Substituting (59)
into (58) we get
()" B (5 ~ 8100 H,

which is independent of the density. This particular
fact is caused by the fact itself that there is degeneracy.

Whereas VS{ is independent of the density, the os-
cillation frequency v, is essentially determined by it.
Because of this there can also be for sufficiently high
density realizable conditions for which the vibrational
properties must occur in their purest form.
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For silver v, ~ Vgt. Thus, it is possible to talk
about the vibrational properties also for the electron
gas inside metals.

We consider the dispersion relation for longitudinal
waves applied to the case considered. We use (IV) and
(36), where we do not yet make a special choice for the
form of the distribution function ®¢(&, 1, £); for the
case considered we must take for it the Fermi function.

It is convenient to introduce also here dimensionless
quantities. For the unit of frequency we choose also
here the eigenfrequency of an electron plasma
wo = V4nNe7 m. In the case of classical statistics we
took for the unit of length the Debye distance

D ', wherex =V 4aNet/iT.

In the case where there is degeneracy the role of «
must be played by the quantity
/it (60)
2/,( .
i.e., the role of kT is played by 2/3 times the maxi-
mum energy € of the Fermi-distribution. Indeed, we
define the quantity k for the static case. To do this we
put w = 0 in the dispersion relation. For the case of
complete degeneracy —d8%,/9¢ has the character of a
6-function which is non-vanishing only on the boundary
of the Fermi distribution:

Lo 2 (o), (61)
where € is the maximum energy of the Fermi distribu-
tion. Substituting (61) into (36), putting w =0, and in-
tegrating:

3t

EY
4

. -

Ged [ 2m3y ° - 4a ‘/28

— () | de—agt Y e
e

4ae? - iy e -
= \ 7(1/5(17](1@,,

e

(41)2 52(2,”)3/2 ~l (62)
Tt T R T )
or, using the expression for the maximum energy
Fya LM BV (63)
(2m)?2 83
we have
_7:7 gty
< ke
whence we get

i.e., Eq. (60).
For the unit of wave number we take thus the quan-
tity (60). The unit of velocity will be

o/ ko 7]/2/‘35'"1.
In these units

w £

oy

ke

*
W’ = — .
fg 7 2 e

2

Introducing this all into (36) we get the dispersion re-
lation in the form
4o

g‘ E* o@q/oe*

§*7 (1)*/1’)'*

(64)

dE* dn* di* =2 13 j*2,
where all quantities occurring, including ®., are
dimensionless.

We are also here interested in how a density inhomo-
geneity created in the electron gas dissipates; we shall
therefore assume that k is given in the dispersion re-
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lation. Since |ko| is very large, for silver, e.g.,

N = 5.9:10%, € =8.5-10"2erg, |ko|® = 3-10* cm? and
hence Ao(27/Xo = ko) is of the order of magnitude of
107 cm so that the case of physical interest to us is
the one where the macroscopic inhomogeneity is large
compared with that distance. We assume therefore that

[h* )= kiko| == Aolh € 1,

and we can expand the integrand in (64) in a power
series in k*:

E* ¥ k* -

e E

QY

(65)

As 8®,/9€* is even in the velocities the integrals
with odd powers of £* vanish. Restricting ourselves
to the first two non-vanishing terms we have

() e ()

0 ey d —
x (et anr g} 2a /3 ke,

ik*+(%)k*2—+...).

(66)

Because of the spherical symmetry of 8®,/8¢€ in
the velocities we put

2. 2,2 _ »% &
E2-1/3¢2-- T
or

E*2 - 1/3e*.
In dimensionless quantities we have also

de* dn* dgr . Anme*? dv* - 2n Y e dex.

Substituting into (66) we get

k% 2 g 0D INESAY 5 OO 0 T g

() e e (L) (e G aer ) 31D . (67)
The integrals occurring here are the same as some

well-known integrals in Fermi statistics. For the case

of complete degeneracy

ady

“ae

*
- &

[y
— g*3/2
} e

3 128 (e* —3) de* = 3Y3,
|
Id . 0 a . —_ 68
—\ e I dex | X0 (er —B) der - 3)/3. j (68)
Restricting ourselves to the first term in the ex-
pansion we have

w* 1,

(69)

or, in the usual units

@ 0l 47e*N/m.

(70)

We obtain the same result as in the classical case.
Hence, the vibrational properties also occur in the

degenerate gas. The frequency of the eigenvibrations

is the same as in the case of the Maxwell distribution.
Taking the first two terms into account, we have

(/1'*/(1]*)2 _ (k*/(ﬂ*)""— f*2,

Proceeding as before (see Sec. 4), we get

*2 1 f*2, (71)
or, changing to the usual units,
© -0 %lﬁ:mﬁi %-I—i—lﬂ (72)
or
K == (@F — @) V%, (73)

i.e., we find that the dispersion law also in Fermi
statistics is the same as in the Maxwellian case; the
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difference lies in the velocity v, the role of the thermal
velocity vV3kT/m is here played by two thirds of the
limiting (T-independent) velocity of the Fermi distri-
bution.

The change in frequency occurring in the second
approximation,

1 & ;0
Am:?mwo k

must be taken into account only under such conditions
when it will not be completely swamped by the electron
collisions. Of principal importance are here the
collisions of the electrons with one another. To take
this change into account it is at least necessary that
Aw is comparable to wSt of (58); since the latter is
independent of frequency, while Aw is determined by
it, in principle the required condition can be satisfied
for sufficiently high density. However, for the elec-
tron gas inside a metal the frequency of collisions
between electrons is already comparable with w, and
hence always exceeds the small change Aw, if we re-
strict ourselves as before to inhomogeneities large
compared with the distance (60) which here plays the
role of the Debye one. Hence we can only make a
statement about the presence of vibrations and in prac-
tice it is now impossible to talk about their propagation
in an electron gas inside a metal.

If we do not restrict ourselves to the case of com-
plete degeneracy, then we can in the general case ex-
press the integrals occurring in (67) in terms of the
number of particles (first integral) and the energy
(second integral) per unit volume as follows

- owasy 0Do gow 1 _2 .
— S BT ¥ de* == a2 const- NV,
£ x5, 0@ 1 5
*3 /, ¢ * i) .
- Sa ? or 08" = ey - const E,
3
const = —}i—T- .
4 (2m)*/

Substitution into (67) gives

k*\2 3 1 B \4 I
(F) -?const-N—?T—}—(F) .9 const E——Eﬁ/z-_k ,
whence, as before, w* is determined by the equation
w3 t-N—l——0—5con5t'E—i—k"‘2
o*? = 5-cons =7 wh

or, in the usual units

3 @} const- £ 1
2 __ N2 . —
©*= - const N = +2 S1h

Using for simplicity
/2 ==3/,const-N and E,=3/;eN,

where E, is the energy per unit volume in the case of
-complete degeneracy, we get
2 ¢ E e

2
e (74)
We have thus for the critical frequency the old depend-
ence. For the velocity v occurring in the dispersion
relation (73) we have
v = E E.. i
3 m Ey°

Equation (74) determines the dispersion relation for
longitudinal waves in Fermi statistics - in the general
case of an arbitrary state of the Fermi gas. In that
sense it is general. In the case of complete degeneracy
the equations obtained go over into the previous ones.
When there is a small departure from the degenerate

state

o2
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E=Boiyr, y=2B2 N
£
We have for the velocity v
9 = oy 1 n2k2
v2:-g—:t—(1+aT2), e

6. DISPERSION OF TRANSVERSE WAVES

In conclusion we consider in this section the dis-
persion relation (VII) for transverse waves. In the
usual elementary theory which does not use the kinetic
equation scheme including long-range forces those
simplifications which lie at the basis of the derivation
do not have an entirely clear character. It is therefore
desirable to analyze within the framework of the con-
siderations given here the dispersion relation (VII).

Considering dispersion does not lead to a result
differing from what is known. To a good approximation
the dispersion relation for transverse waves reduces
to the well-known Larmor formula for the ionosphere.
The influence of the temperature of the electron gas
on the way dispersion occurs appears only in the
second order in the ratic v/c, where v is the thermal
velocity of the electrons.

We consider a linearly polarized wave: ex il y,

k Il x. The dispersion relation (VII) takes the form

(75)

+oo
I, Hy=bner oo\ D000 gx gy ge g

T ) ko

—o0

For a Maxwell distribution

Dy _ 1 (DD:_LN( m )3/2e

m(E2+n2-+{2)
0 - SRT
de kT kT 2nkT

For the integral in I(w, k) we have hence

+oo r ot +o
—tr (i) | it | eemnman | e
Ze e oo
since
+oo o

S 12e=mN/2T gy ( _k”;_ )3/2 Vi,

—0

| et g = (L2 )" Vex,

we get

e—mgz/sz dg'* B

I ((1)7 k) _ 4ne?N/m 1 m S 1. (76)

Wr—c2[k|2 /5 ¥ BT ) T A—Ek/o
c2k|2 y/2x R &k/

We introduce here also dimensionless quantities.
For the unit of frequency we take here also the eigen-
frequency of the electron plasma. The unit of wave-
number will be the quantity

ko ==V 4nNe2/me®,

which will be clear from a comparison of the formulae
obtained with the earlier ones (49) for the case of
longitudinal waves. In these units

L

o* = /vy,

k*=k/k,y.

Introducing this into the dispersion relation (76) we
get

1 7 —éﬂd

K2 ok _e - er

e Ve AT (77)
e o* ¢

where v is the electron thermal velocity, v = VKT/m.

Assuming that v/¢ € 1 we can write the integrand
in a power series similar to the case of the longitudinal
waves:
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—er =t () ()

(78)
o* ¢
In the case of longitudinal waves the validity of a
similar expansion was limited by the value |k*| <1,
In the case considered, however, because of the factor
v/c which occurs the applicability of the expansion is
wider. It is only necessary that

St o
or, in the usual units
ofk > v. (80)

In the final Eq. (83).
(0/F)® = ¢® 4 (wy/ k)2,

Substituting (78) into (77) and restricting ourselves

to the first two terms, we have
1
1 - kF py2 A

The integration can here only be taken up to |x |
< (w*/k*)(c/v) but because of (79) one can extend the
limits of integration to infinity for the calculations
without appreciable error.

Under those conditions, if we also restrict ourselves
to the first term in the expansion we get

1
©* = k*2 Sx"-e”?xz dzx. (81)

@*2 =1 + f*2, (82)
or, changing to the usual units
k2= (0* —ol)/c?, (83)

i.e., the Larmor formula.

The second term in the expansion is of order (v/c)?
and must be taken into account by a relativistic calcu-
lation when it is required.

7. SUMMARY AND CONCLUSION

1. Taking ‘‘long-range forces’’ into account leads
to the possibility that longitudinal waves {(connected
with a change in the electron density) can propagate in
an electron plasma with a large dispersion.

2. We have investigated the conditions as to temper-
ature and density under which they can occur.

3. We determined the dispersion law for longitudi-
nal waves for an electron gas with a Maxwell distribu-
tion. The dispersion law leads to the fact that if the
relation between the temperature and the density is
such that the macroscopic inhomogeneity is appreciably
larger than the Debye distance, in first approximation
in these relations a given macroscopic inhomogeneity
vibrates with frequency wo, without changing its shape.
In second approximation there occurs in addition dis-
sipation, the behavior of which is governed by the tem-
perature and the density.

The dispersion law is such that for frequencies less
than the oscillation frequency wo longitudinal waves do
not propagate; for larger frequencies propagation oc-
curs. The velocity of propagation depends on the tem-
perature and density of the electron gas.

4. We found a solution of the linearized equations
for the distribution function of the electrons both for
the case of longitudinal and for the case of transverse
waves.

5. In first approximation (restricting ourselves to
the linearized equations) the presence of longitudinal
waves is not connected with radiation (longitudinal and
transverse waves superpose in this approximation).

6. We determined the conditions for the existence of
vibrational properties for a degenerate Fermi gas. We
found also for this case the dispersion law for longi-
tudinal waves.

7. In Sec. 6 we found the dispersion relation for
transverse waves.

In conclusion we must note that since there is an
appreciable change in the dispersion of longitudinal
waves and the dispersion includes the basic character-
istics of an electron plasma, the possibility of observ-
ing longitudinal waves experimentally is clearly of
well-defined interest from the point of view of a possi-
ble method of analyzing the properties of a plasma.
Allowance for the damping of longitudinal waves should
also be included in the considerations, and also the
processes of interaction through ‘‘collisions’’ between
charged particles and between charged particles and
the neutral gas.

In our considerations we have restricted ourselves
to an analysis of the linearized equations. In this case
the presence of longitudinal waves is not connected
with the transverse ones, and vice versa. Since the
original equations are non-linear, interaction between
them must occur already in the next approximation.
The presence of the one kind must cause that of the
other. This fact indicates the limit of applicability of
the contemporary theory of the propagation of radio-
waves in the ionosphere which does not assume that
longitudinal waves are present. Such a consideration
is possible only in the framework of the linearized
equations. Among these circumstances one must
clearly also view the nature of non-linear effects which
occur in the practice of radiotelegraphy and which ap-
parently appear as the result of the interaction of
transverse waves with longitudinal ones which must
arise under the influence of the transverse waves and
also of the transverse waves with one another. The
solution of this problem must be included in the next
approximation of the initial non-linear set (II). This
remark refers also to the optics of metals (mainly the
alkali metals) in the ultraviolet where electron inertia
occurs and where one constructs a theory similar to
the one for the ionosphere.
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