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 Annals of Mathematics, 135 (1992), 411-468

 The existence of noncollision
 singularities in newtonian systems

 By ZHIHONG XIA*

 Introduction

 In this paper we solve a long-standing problem in celestial mechanics

 proposed by Painleve and Poincare in the last century. The problem, which

 concerns the nature of the singularities in the n-body problem, asks whether

 there exists a noncollision singularity in the newtonian n-body problem? Here

 we give an affirmative answer to this problem by proving the existence of

 noncollision singularities in the 5-body problem.

 We consider n point-masses moving in a euclidean space W3. Let the mass

 of the ith particle be mi > 0, let its position be qj E R3 and let 4i E ]3 be its
 velocity. According to Newton's law,

 (0.1) mmAm = E3j 3(qi- qj) =au

 where the double dot denotes the second derivative with respect to time and

 U is the negative newtonian potential energy or the self-potential

 U E mjmj
 jqj q- qj I

 The basic problem in celestial mechanics is to describe the solutions of system

 (0.1).
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 412 Z. XIA

 A solution of a system of differential equations is said to experience a

 singularity at time a < x0 if the solution cannot be analytically extended

 beyond a. The equations of motion (0.1) are real analytic everywhere, except

 where two or more of the particles occupy the same point in the physical space.

 More precisely let

 Aij ={q = (ql, q2,*, qn) C (1R3)n qi=qj},

 A- UAij.
 i<j

 The self-potential U is a real-analytic function on (R3)n\A. The standard

 existence and uniqueness theory of ordinary differential equations yields the

 following result:

 THEOREM 0.1. Given q(0) E (R3)n\A and 4(0) E (R3)n, there exists a
 unique solution q(t) defined for all 0 < t < a, where a is maximal.

 Definition 0.1. If a < x0, then the solution q(t) is said to experience a
 singularity at a.

 In other words, a solution experiences a singularity at ax if the standard

 existence and uniqueness theory of ordinary differential equations no longer

 extends the solution. One sees that the singularities of the solution must be

 related to the singularities of the potential function U. In fact, a classical

 theorem states that the minimum distance between all pairs of particles must

 approach zero at a singularity.

 THEOREM 0.2 (Painleve, 1895). If q(t) experiences a singularity at a,
 then

 q(t)-A ast >ca.

 A proof of this theorem can be found in the book by Siegel and Moser

 [20].
 It is natural to ask whether q(t) must approach a definite point on A as

 t -- a? A priori q(t) might oscillate wildly while approaching A, or it might
 become unbounded as the distance to A goes to zero. If q(t) does approach

 a point q* as t -- a, then each of the particles has some limiting position at
 time a.. Since q* E A, at least two of these limiting positions must coincide,

 which means that these particles must collide as t -? a. Therefore we have
 the following definition:

 Definition 0.2. Suppose that q(t) has a singularity at a; this singularity

 is called a collision singularity if there exists a q E A such that q(t) -q* as
 t --c a. Otherwise the singularity is called a noncollision singularity.
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 NONCOLLISION SINGULARITIES IN NEWTONIAN SYSTEMS 413

 A full understanding of the nature of singularities in the n-body prob-

 lem of classical celestial mechanics has eluded mathematicians to this day.

 While the existence of collision singularities is more or less trivial, the ques-

 tion whether there exist noncollision singularities has been open since the time

 of Painleve a century ago. The following theorem concerning the 3-body prob-

 lem is due to Painleve:

 THEOREM 0.3. For n = 3, all singularities are collision singularities.

 What remains, then, is to establish whether there exist noncollision sin-

 gularities for n > 4.

 In this paper we will solve Painleve's problem by affirming that there

 exists a noncollision singularity. We prove its existence in a 5-body problem.

 A modification of our approach shows that such behavior exists in the n-body

 system for n > 5.

 First, however, we give a brief historical survey of this problem.

 An important step toward providing an answer to Painleve's question was

 taken by von Zeipel [25] in 1908. He showed that if the positions of all the

 particles remain bounded as t -> a, then the singularities must be due to

 a collision. In other words, a noncollision singularity can occur only if the

 system of particles becomes unbounded in finite time.

 To be precise let

 I = E mjqj i2,
 i=1

 where I is the moment of inertia that measures the size the system. Differen-

 tiating I twice, we have the Lagrange-Jacobi equation

 1= U+2h.

 Observe as q - L A that U -> oc, and thus that I x . The following
 proposition can be easily proved by this fact and Theorem 0.2 of Painleve.

 PROPOSITION 0.1. Let a be a singularity (collision or noncollision); then

 limI < ox exists as t - or.

 Now we may state the theorem of von Zeipel [25].

 THEOREM 0.4 (von Zeipel). If a is a singularity, and lim I < x0 as t - ay
 then a- is a collision singularity. On the other hand, if a- is a noncollision

 singularity, then lim I = ox as t -? a.

 The first proof of this theorem can be found in [25]. For a historical survey

 related to this theorem and a modern version of the proof, see McGehee [9].
 In fact, this theorem was also proved by several others, e.g., Chazy in 1920
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 [2], Sperling in 1970 [24] and Saari in 1973 [16]. Saari essentially extended

 von Zeipel's result to show that a noncollision singularity cannot occur if

 the moment of inertia is "slowly varying." Recent interest in the subject

 of singularities in celestial mechanics is due largely to the work of Saari and

 Pollard in the early 1970s (see [131-[17]).
 Von Zeipel's theorem is a remarkable result; it says that the only way a

 noncollision singularity can occur is for the system of particles to explode to

 infinity in finite time. This makes the existence of noncollision singularities

 seemingly impossible, since a particle escaping to infinity in finite time would

 have to acquire an infinite amount of kinetic energy. However, since the poten-

 tial energy U is not bounded from below, there is no a priori upper bound on

 the kinetic energy of a particle. Indeed recent work of McGehee and Mather

 ([6]-[8]) make an affirmative answer to Painleve's question less doubtful than
 people originally thought. In fact, McGehee's techniques of blowing up the

 collision singularities will be our major tool in constructing the noncollision

 singularity.

 Observe that, by Theorem 0.2, if q(t) experiences a noncollision singular-

 ity at a, then q(t) -i as t -- a. This suggests that, in any neighborhood of
 a noncollision singularity in the physical space, there must be some collision

 singularities. The binary collisions are essentially algebraic branch points that

 can be regularized analytically or geometrically and thus treated as elastic

 bounces. Intuitively we seem to know that, in any neighborhood of a non-

 collision singularity, there must be some collision singularity with three or

 more colliding particles. Therefore fully understanding a collision singularity

 with three or more particles colliding is essential to the study of noncollision

 singularities.

 Collision singularities have been studied by Wintner [26], Siegal and Moser
 [20], Saari and Pollard [13]-[17] and others. They obtained some important
 results concerning the limiting behavior of colliding particles. In 1974, McGe-

 hee [7] introduced a remarkable new set of coordinates for the study of triple

 collisions. As we noticed earlier, U is not defined everywhere, and there are

 "holes" in the phase space where the vector fields are not defined. Certain

 orbits of the system reach this singularity in finite time, while others begin at

 the singularity. Moreover the local behavior of the system near these "holes"

 can be very complicated. However McGehee's coordinates allow us to read off

 the behavior of these solutions with relative ease.

 McGehee uses "polar coordinates" to blow up the singularity set and to

 replace it with an invariant boundary called the collision manifold. The dy-

 namical system extends smoothly (after a resealing of time) over this bound-
 ary. So we get a new flow on an augmented phase space. It turns out that

 this new flow, restricted to the boundary, is extremely simple to understand
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 NONCOLLISION SINGULARITIES IN NEWTONIAN SYSTEMS 415

 and usually is a "gradient-like" Morse-Smale flow. So on the boundary of

 a complicated dynamical system we find a simple system. And this fact en-

 ables us to understand so readily the behavior of solutions near the singular-

 ity.

 McGehee's coordinates have been used extensively in the study of triple

 collisions in the collinear 3-body problem (see [7],[6],[19]), the isosceles 3-body

 problem (see [3],[4]; [101,[11]), and the anisotropic Kepler problem (see [4]).

 A great many new results have come out of these works, and some classical

 results have been re-proved with relative ease as well. The most important

 feature of McGehee's coordinates is that collision singularities now correspond

 to some hyperbolic rest points in the collision manifold, and the orbits that

 reach collision in finite time now approach these rest points as the new rescaled

 time approaches infinity. Therefore one can use standard methods in general

 dynamical systems and find a rich orbit structure by studying the stable and

 unstable manifolds of these rest points. Erratic and chaotic solutions arise

 naturally.

 Among these new discoveries is a remarkable example of Mather and

 McGehee [6], which sheds some light on the final answer to Painleve's problem

 of the existence of noncollision singularities. Mather and McGehee constructed

 an unbounded solution in finite time in the collinear 4-body problem for a

 Cantor set of initial condition; i.e., they constructed the solutions such that

 I -- 00 as t -- a < ox for some a. However, as binary collisions in the
 collinear 4-body problem are inevitable, their solution contains an infinite

 number of binary collisions that are extended by elastic bounces. Based on

 their ideas, Anosov [1] suggested that the noncollision singularity might exist
 in the neighborhood of the example constructed by Mather and McGehee

 in the planar 4-body problem, but this approach has not been proved to be

 successful.

 By a different approach and after the original version of this paper (in

 thesis form) was given, Gerver [5] asserted the existence of a noncollision

 singularity in a planar 3N-body problem, where N is very large.

 In the following section we will state our main results and describe the

 noncollision-singularity solution of the 5-body problem. And we will also give

 some intuitive ideas as to why the motion should exist. The rest of the paper

 will be devoted to proving its existence.

 1. Main theorems and an outline of their proofs

 We consider five point-masses mi, M2, ..., M5, moving in a euclidean
 space R3. Let m1 = m2 and M4 = M5. Choose the initial conditions such that

 M3 always stays on the z axis, ml and M2 are always symmetric to one another
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 416 Z. XIA

 with respect to the z axis, and m4 and m5 are symmetric to one another with
 respect to the z axis. If we fix the center of masses at the origin, this defines

 a dynamical system with six degrees of freedom.

 This system admits the energy integral and the angular-momentum in-

 tegral. For our purpose we restrict ourselves to the zero angular-momentum

 hypersurface, an algebraic variety of dimension 11. Let Q be any energy hy-

 persurface of this manifold so that Q is 10 dimensional.

 It is well known that binary collisions can be regularized by either the

 analytic method or Easton's block regularization. Throughout this paper we

 shall speak of flow as though the orbits were extended through binary colli-

 sions. Our first construction for unbounded solutions in finite time involves

 the possibility of binary collisions. Only later will we prove that, among these

 unbounded solutions in finite time, there are orbits that do not go through

 any binary collision. In this way we establish the existence of a noncollision

 singularity.

 The triple collisions between m1, M2, M3 and M3, M4, M5 are of special

 importance to us. There are several different ways for ml, m2 and M3 to reach
 a triple collision. Classical results show that as particles approach a collision,

 they must approach special configurations called central configurations. In

 setting this special 5-body problem, we find that there are three central con-

 figurations for ml, m2 and m3: One is the collinear configuration with m3 in
 the middle of ml and M2, and the other two configurations are where ml, m2
 and m3 form equilateral triangles-one with m3 below ml and M2, denoted

 by E+, and the other one with m3 above ml and M2, denoted by E_. Let El
 be the subset of Q consisting of all the initial conditions such that the corre-

 sponding trajectories end in triple collisions of the 1st, 2nd and 3rd particles

 with the limiting configuration E+. We show that El is a codimension-2 im-
 mersed manifold. Similarly let 4 be the subset of Q consisting of the initial
 conditions such that the corresponding trajectories end in triple collisions of

 the 3rd, 4th and 5th particles, which have a limiting configuration similar to

 that of E_. Then 4 is also a codimension-2 immersed submanifold.
 The goal of this paper is to prove the following two theorems. We remind

 readers that the binary collisions are regularized.

 THEOREM 1.1. There exist positive masses ml = m2 nM3, m4 = M5 such
 that the following holds: For x* E El let t* be the time when the trajectory
 starting from x* ends. There exist choices of x* so that q4(X*, t*) = qs(x*, t*),
 i. e., for the trajectory starting from x*, when mil, Mi2, m3 collide at t*, then m4
 and ms also have a binary collision at t*. For some 3-dimensional hypersurface

 II in Q crossing E1 at x* there is an uncountable set A of points on II having

 the following property: Let x E A; there exist t,, > O t,, < ox, such that
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 NONCOLLISION SINGULARITIES IN NEWTONIAN SYSTEMS 417

 the trajectory with the initial condition x is defined for all 0 < t < too < 00

 (possibly with binary collisions) and satisfies

 Zi(t) = z2(t) x-+ o, Z4(t) = Z5(t) --+ - as t -+ to.

 While the above theorem gives the existence of an unbounded solution

 in finite time, the following theorem asserts the existence of a noncollision

 singularity:

 THEOREM 1.2. Let x*, H, A be that of Theorem 1.1. There exist x* E Ely
 H C Q such that the following holds: There is an uncountable subset AO of A
 such that, for all x E A0, qi(t) $& q2(t), q4(t) $& q5(t) for all 0 < t < too; i.e.,
 the solutions starting from A0 experience noncollision singularities.

 The proof of the above theorem is long and fairly complicated. Therefore,

 before giving the formal proofs of above two theorems, we shall outline, in an

 informal fashion, some of the basic ideas.

 As we mentioned earlier, the objective of this paper is to prove the exist-

 ence of the newtonian motion for the 5-body problem that is unbounded in

 physical space in finite time. Moreover we must show that this motion exists

 without the benefit of an accumulation of infinitely many binary collisions.

 The basic idea behind this dynamical behavior is fairly simple. Consider a

 5-body problem consisting of four particles in two pairs, the particles in each

 pair having the same masses. The four particles form two binaries. Each bi-

 nary is in a highly elliptical orbit with a plane of motion parallel to the x-y

 plane. What differs is that one binary is far above the x-y plane with a rota-

 tion in one direction, while the other binary is far below the x-y plane rotating

 in the opposite direction. This difference in rotation permits the total angular

 momentum of the system to be zero and also permits the two binaries to have

 arbitrarily small but nonzero angular momentum.

 Meanwhile the fifth particle is restricted to the z-axis. The oscillation

 of this fifth particle actually drives the system and creates this unbounded

 motion. To see the behavior of this system, imagine the following scenario:

 Suppose that the oscillating particle passes through the plane of motion defined
 by a binary just when the two particles in the binary are nearing their closest

 approach. Because the particles in the binary are almost at their closest point,

 they also are very close to the fifth particle. Simo [21] has analyzed the motion
 for such near-collision orbits (see also [3] and [10]) by using McGehee's collision
 manifold. The interesting point is that, for certain mass ratios (for example,
 if the fifth particle is significantly heavier then the masses of the binary), the
 above proximity among the particles imposes a considerable force on the fifth

 particle that is directed back toward the plane of motion of the binary. This
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 forces the fifth particle to return through the binary's plane of motion when

 the binary starts to separate. This separation effect reduces the retaining force

 on the fifth particle. In return, this permits the fifth particle to move, at a very

 fast rate, toward the other binary system. In due course, the action-reaction

 effect of this 3-body system causes the original binary to move further away

 from the x-y plane.

 The motion, then, is obtained by iteration of this scenario. Each time the

 fifth particle approaches one binary, the timing is such that the close approach

 of these particles provides the force to accelerate the fifth particle back toward

 the other binary. The difficulty is verifying that this scenario actually occurs.

 One interesting conclusion to be drawn is that this behavior occurs with a

 reasonably massive singleton.

 The timing sequence is accomplished with a symbolic dynamics argument.

 But before this argument can be used, several other elements about the dy-

 namics of interaction need to be established. In particular, if this motion is

 to become unbounded in finite time, then clearly the acceleration effects on

 the oscillating particle must become infinitely large. Consequently, the close

 approaches of each of the binaries must become infinitesimally small. But the

 only manner in which this can occur is as a by-product of 3-body interactions.

 Therefore we devote a major portion of this paper to developing a theory to

 explain the dynamics of this kind of 3-body interaction. This material is given

 in Sections 2 and 3. Actual triple collisions and the triple-collision manifold

 are considered in Section 2, while the emphasis in Section 3 is on near-collision

 orbits.

 The infinitesimally small, close approaches of the binaries create another

 worry. Do these binaries collide? They do not if the angular momentum of

 the binaries is nonzero for all time. To handle this we took a portion of the

 problem of avoiding collisions and embedded it into our symbolic dynamics

 argument. Thus symbolic dynamics needs to include information about the

 rate of expulsion of the singleton from the binaries and the (rotating and el-

 liptical) status of the binary. Furthermore it must connect the two "3-body"
 problems to show that the singleton can oscillate between the two binaries.

 As we discovered, the symbols turn out to be characterized by regions in

 the phase space. These regions, which are "wedges," are determined by the

 nearness of different orbits to a particular stable manifold (corresponding to

 a triple collision) and by their relationship to an unstable manifold. One
 can envision "wedges" for each close approach of the binaries, because the

 wedges need to correspond to when there is an appropriate near approach

 of a particular binary and the oscillating particle. These wedges are intro-

 duced in Section 4. In Section 5 the symbolic dynamics argument is car-

 ried out and the motion of unbounded solutions in finite time is established.
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 NONCOLLISION SINGULARITIES IN NEWTONIAN SYSTEMS 419

 Finally, in Section 6, we establish the existence of the noncollision singular-
 ity.

 In the following sections we will study the isosceles 3-body problem and

 especially the solutions that pass close to a triple collision.

 2. The isosceles 3-body problem-triple-collision manifolds

 In this section we restrict ourselves to looking at a special type of 3-body

 problem, the so-called isosceles 3-body problem. This problem concerns the

 motion of three particles in R3 with certain symmetries. Let ml = m2 = ml
 m3 = M3. Choose the initial conditions so that m3 remains on the z-axis for

 all time and so that the pair M1, m2 will always be symmetric to each other

 with respect to the z-axis. This is a mechanical system with three degrees of

 freedom when the center of mass is fixed at the origin.

 Let qi, q2, q3 and 41, q2, q3 be the position vectors and velocity vectors

 of ml, m2, m3, respectively. If ql = (x, y, z) E IRS, JIi = (X, y,) E ]R3, then by
 symmetry we have q2 = (-x, -y, z) E 1R3 and q2 = (-i,-y, z) E R3. Since
 the center of mass is at the origin, 2mz + m3z3 = 0 and 2mi + m3z3 = 0, where

 q3 = (0, 0, Z3) and q = (0, 0, i3). If T and U are the kinetic and self-potential
 of the system, then

 T = m(Fx2 + 2) + m(l + 2ac)42

 U = 2M [3a(x2 + y + 4(X2 + y2 + (1 + 2a)2Z2<1/2],

 where a = m/M3 is the mass ratio of ml (or m2) and M3.

 Let M be the 3 x 3 diagonal matrix diag[2m, 2m, 2m(1 + 2a)] and define

 =M112 (I q = Ml/2 y

 These new variables satisfy Hamilton's equation with the Hamiltonian function

 H =1 112 _ U()
 2

 where

 U(s) = 1M3/2M3 a W + 22) 1/2 + 4(62 + 622 + (l + 2a) 2) 1/2

 And the equations of motion then read:

 OH . _ tH
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 Our objective in this section is to develop the necessary tools for under-

 standing the motion close to a triple collision. For this it is convenient to

 introduce McGehee's variables [8]. Let r = 161, s = r-l(, z = r1/2r7 and change
 the time variable t to T by dt = r3/2dr. The resulting equations of motion are

 r= (s z)r,

 (2.2) Si Z Z-(S * Z)S,
 Z= VU(S) + 2 (S * Z)Z.

 Here the ""' denotes the differential with respect to the new time variable r.

 By definition, Isl = 1. This suggests that we use spherical coordinates. Let

 S = (81, 82, S3) = (Cos 0 cos 4, sin 0 cos , sinq5).

 Now the vectors

 U1 = S,

 as
 (2.3) U2 = = (-sin cosqcosOcosq$,0),

 &s

 U3 = (-cos 0 sin ,-sin 0 sin 0, cosq),

 form an orthogonal (but not orthonormal) basis for R3 when q +?ir/2. There-

 fore we may decompose z on this basis. Let Z = VU1 + W2U2 + W3U3 (where

 V = Z * U1 = Z * Si W2 = (Z * U2)/(U2 * U2), W3 = Z * U3) and use (2.2) to find the
 equations for the variables (r, 0, $, v, W2, W3). In this manner we obtain:

 r= vr,

 9' = W2,

 = W3,

 (2.4) v' = v2 + w2 Cos2 +3_U(4),

 1
 w2= - - VW2 + 2w2w3 tan4,

 W3 = U'(q) - -VW3 - W2 COS2qtanq$,

 where U(O) = M3/2m3 [a sec q + 4(1 + 2a sin2 0)-1/2].
 Notice that the potential energy U(q) is independent of 0 and that the

 right-hand side of (2.4) does not contain 0. This reflects both the invariance

 of U, with respect to the rotation of a configuration, and the resulting con-
 servation of angular momentum. The equation for W2 does not involve U, so
 one can easily verify that c = r1/2w2 cos2 b is a constant of motion. In fact
 c is the total angular momentum of the system. Therefore we can use this
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 NONCOLLISION SINGULARITIES IN NEWTONIAN SYSTEMS 421

 angular-momentum integral to eliminate w2 from the equation. Also we can

 safely ignore the equation for 0, because the vector field does not involve 0.

 (This is equivalent to projecting the phase space onto the r, u, v, w2, W3 space.)

 Finally we end up with a system with two degrees of freedom on each angular-

 momentum surface. But in doing so, because c has a troublesome factor r1/2,
 we find that the angular-momentum zero surface is a variety that consists of

 two components designated as r = 0 and w2 = 0 (when c $ 0, this surface is a
 manifold). This variety complicates our analysis of the motion for small values

 of c. Therefore we retain the equation for w2, but ignore 0. What remains is

 a system of differential equations of order five (r, q, v, W2, W3). Again we have

 an energy integral:

 - (V2 + W3 + W2 cos2 o )s-U(q) = rh.

 In our new system there is a singularity at $ = i7r/2 due to binary

 collisions of ml and m2. This singularity can be removed by a change of

 variables. Let W = W3 cos q, u = W2 cos2 0 and multiply the resulting vector
 field by cos q. Still, using the ' to denote differentiation with respect to this
 new independent variable, we have

 r' =vrcosq,

 4' = w
 WI ~ 1

 v' =U(q) cos q- v cos X + 2rh cosq$,
 2

 (2.5) w' =U'(q) Cos2 1- VW Cos 0
 2

 -(2U(O) + 2rh - v2) sin q cosq5,
 1

 u= -vucos b,
 2

 with the energy relation

 (v2 cos2q+w2 + u2) - U(q) COS2= rhcos2?.

 Now the vector field (2.5) is analytic everywhere, since the functions U(b) cos 0
 and U'(q) cos2 X are analytic for all X E [-7r/2, ir/2].

 From the equation for r: r' = rv cos 0 we see that r = 0 is an invariant
 manifold for the flow. Notice that the flow has been extended analytically

 to r = 0 and, replacing the triple-collision singularity, that it is an analytic

 manifold. The orbits that end up in a triple collision now tend to this manifold

 as r tends to infinity. The orbits ejected from a triple collision now tend

 to this triple-collision manifold as r tends to negative infinity. The motion

 on this manifold is, of course, fictitious, but the orbits that pass close to
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 this manifold must mimic the fictitious orbits on this manifold. Therefore

 understanding the flow on this manifold provides considerable information

 about near-collision orbits. Since the unbounded solution in finite time must

 pass repeatedly and very closely to the triple collision in our problem, we

 find it is of great importance to study the flow on this triple collision for our

 construction of a noncollision singularity.

 Let M denote this r = 0 manifold; we call it the "triple-collision manifold

 for a nonplanar, isosceles, 3-body problem." In the rest of this section we

 concentrate on the flow on M, especially on the rest points and their stable

 and unstable manifolds.

 For r = 0 equations (2.5) become

 = WI
 12

 v = U(O) cos b - _V cos A,
 2

 (2.6) WI = U'(q) cos2o - 1vw cos - (2U( ) -v2) sin 0 cos ,
 / 1
 --=vu Cosq$ u = -2

 and the energy relation is then

 1 v2 cos2 + W2 + U2) - U(g) Cos2 X = 0.

 Therefore, for any energy h, M is determined by this same equation, and

 the flow on M is determined by (2.6).

 Topologically M is a 3-sphere minus four points.

 From equations (2.6), when u = 0, we have u' = 0; so it follows that u = 0
 is an invariant submanifold of M. Denote this manifold by Mo. (Recall that u

 is the variable measuring rotation in the x-y plane.) Now MO is given by the
 equation

 1 (V2Cos20+ W2) - U(q)coS2% = 0.

 The flow on MO is defined by

 4,I

 12 (2.7) V = U(O) cos0- -v2 cosq$,
 2

 W/ = U'(0) Cos - -vw cos b - (2U(q) - v2) sin q cos 0.

 In fact MO is the triple-collision manifold for the planar, isosceles, 3-body
 problem for a plane containing the z-axis. Usually one obtains this manifold

This content downloaded from 128.196.130.121 on Thu, 14 May 2020 19:55:02 UTC
All use subject to https://about.jstor.org/terms



 NONCOLLISION SINGULARITIES IN NEWTONIAN SYSTEMS 423

 C.

 C

 FIGURE 1. The triple-collision manifold

 by first setting the angular momentum to zero and then blowing up the triple-

 collision singularity. The flow on this manifold has been explored extensively

 by Devaney [3],[4], Moeckel [10],[11] and others.

 Topologically MO is a 2-sphere minus four points. Figure 1 represents its
 graph. There are six rest points for the flow on Mo. The flow is gradient-like
 with respect to v; i.e., v is strictly increasing on every orbit of Mo except on
 these six rest points. (Recall that v' > 0 from equations (2.7) and the energy

 relation.)

 Three central configurations correspond to the isosceles 3-body problem:

 two equilateral triangles (one with Z3 positive and one with Z3 negative) and

 one collinear central configuration with m3 in the middle of ml and m2. Here

 E+, E+, E*, E_ correspond to the two equilateral central configurations and
 C, C* correspond to the collinear central configuration. The stable manifolds

 of E+, E_ and C are those, orbits ending up in a triple collision, and the
 unstable manifolds of E+, E* and C* are those orbits beginning with a triple

 collision.

 On Mo, E+, E_, E+ and E* there are saddle points; C is a source and
 C* is a sink. In our problem we are particularly interested in the stable and
 unstable manifolds for E+ and E_ because of the important roles they play

 later on.

 Note that there are three major possibilities for the unstable manifolds of

 E+ and E_. Since v must increase along these orbits, a typical branch of the

 unstable manifold may run up the left or right "arm" of the triple-collision

 manifold Mo, or else it may end up in the sink. A degenerate possibility is
 that the unstable manifold might match up exactly with the stable manifold

 of one of the saddles.
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 FIGURE 2. The unstable manifold of E+ in MO

 Let -y+ be the branch of the unstable manifold of E+ in MO with a positive
 w-coordinate near E+ and let -y- be the other branch of the unstable manifold

 of E+. Figure 2 shows the typical behavior of -y+ and -y-. We will call a set of
 masses allowable if -y and -y- run up the arms of the manifold with 0 = r/2
 and 0 = -r/2, respectively. There is a large open set of masses which is

 allowable (see Devaney [3], Simo [21]).

 One last observation about MO is that, by symmetry, the unstable man-
 ifold for E_ and the stable manifolds for E+, E* are completely determined

 by y+ and y-.
 From now on assume that all sets of masses we discuss are allowable.

 Let us now turn our attention to M, which is a 3-dimensional manifold

 embedded in a 4-dimensional space 1R4 with MO as an invariant submanifold.
 It is difficult to depict M in iR3 in a manner one can visualize. However, since

 we are only interested in the part of M that is close to MO, we can divide M
 into two symmetric parts, one with u > 0 and the other with u < 0; both parts
 are invariant under the flow and MO is their common boundary. Now regard
 each part as the solid in 1R3 enclosed by Mo. On this solid, u is determined by
 the energy relation:

 u= ?-/2U($) COS2 $ - (V2 COS2 $ + W2).

 Next consider the flow on M. We easily see that u must be zero at the rest

 points. Therefore the original six rest points in Mo remain the only rest points
 of M. Again the flow on M is gradient-like with respect to v. To understand

 the local structure of these rest points in M we linearize the vector fields at
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 the rest points. Let (0, v, u, w) = (X*, v*, 0, 0) be the values at each rest point.
 Then by equations (2.6),

 /6X/) / 0 0 0 1 6X
 6v' 0 0 0 0 6v

 bu'I 0 0 O-v*cos* 0 bu6u
 k6w'J UI"() cos- 2 0o 0 _ *Cosq b6w

 where (6X, 6v, bu, 6w) E TMI(7*v*,oo), and the tangent space at the rest points

 is spanned by 6q, bu and 6w. Note that 6v = 0 on TMI(0*v*o~o).
 The eigenvalues of this linearized equation at each rest point are easy to

 find. At C and C*, U"(q) < 0, again we see that C is a source and C* is a

 sink. As for E+, E_, E+ and E*, they are still saddle points. For E+, besides
 having one stable and one unstable direction in MO, we have another repelling
 direction in M. This new unstable direction is in the direction of bu. From

 the matrix it follows that the new eigenvalue is weaker than the original one in

 Mo. The stable-manifold theorem leads to E+ having a 1-dimensional stable
 manifold and a 2-dimensional unstable manifold in M.

 By symmetry, the local structure of E_, E+, E* follows from that of E+.
 For instance, the local structure of E_ and E+ exactly reflects that of E+

 through the v-axis and the v = 0-plane, respectively.

 Now let Un(E+) be the 2-dimensional unstable manifold of E+. Then ny+
 and y- are on this manifold. Since -y+ and y- end up in the two arms of Mo
 with 0 = -7r/2 and 0 = r/2, respectively, some small neighborhood of by+ and
 by will also end up in the two arms.

 For any orbit that dies in one of the two arms, as r -) x0, we have

 v _ 00x, u -) 0, w -O 0 and 0 -- 2r/2. Physically this corresponds to
 where m3 separates from the binary ml and M2; this leads to two fictitious

 2-body problems. One is the binary ml and M2, and the other is m3 rela-

 tive to the center of the masses of m1 and M2. The variables v, u, w and

 X define only the second 2-body problem in the limiting position. There-

 fore some new variables are needed to define the limiting position for the
 first binary, i.e., ml and M2. There is an obvious choice: since the limit-

 ing position is an elliptic orbit, we may use the major axis of the ellipse and

 the eccentricity of the ellipse. The ignored 0 variable reflects the rotational

 symmetry about the z-axis of the system; so we only need to define a vari-

 able that gives the eccentricity of the elliptical orbit. Toward this end let

 W12 = lh12cl2lcl2, where h12 and c12 are the energy and the angular momen-
 tum of the binary ml and M2, respectively. It may seem that this is not well

 defined on M, where r = 0, as h12 is not well defined for r = 0. However

 W12 can be extended to r = 0; i.e., w12 is a well-defined function on M. This

 is because w12 is independent of r even though h12 and c12 both involve r.
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 In fact,

 W12= -(vcos + ?wtan q)2 + usec2 -m3/2secq| Iutu. 2 2

 There still remains a singularity at 0 = ?7r/2 due to binary collision. But
 this singularity can be removed by the use of the energy integral in standard

 fashion.

 Since u = 0 is an invariant submanifold in M: we observe that if u is ever

 positive, then it remains positive for all time, but that u approaches zero as

 Tr - 00. The following lemma shows that this does not happen to w12:

 LEMMA 2.1. Consider any orbit -y in M such that -y runs up one of the
 two arms of M. If W12(-y(To)) = 0 for some To, then W12(-y(T)) $ 0 for all r.

 Furthermore the limit limw2(Qy(r)), as T -* ox, exists and

 w'(-y) = lim W12(Y(T)) $& 0.
 1--*00

 Proof. The direct way to prove this lemma is to start from the equation

 and to estimate the changes of w12(r) along the orbit for large values of r. We
 use a different approach, however, based on one of the features of McGehee's

 transformation; i.e., namely the r variable can be separated from the rest of

 the coordinates. (We will explore this relationship further in the next section.)
 The vector field on M is defined by equations (2.5) when we set r = 0 and

 ignore the first equation. However, if h = 0 and we ignore the equation for r,

 notice that we have exactly the same system of differential equations. To be

 precise let 4o, wo, vo and uo be the initial values with uo 7& 0 that satisfy

 1 (V2 cos2 + W2 + U2) _ U(q) COS2 X = 0.

 Then vector field (2.6) determines a unique orbit on M. Now, by adding an

 arbitrary initial value r = ro and solving equations (2.5), we have the same

 solution for 0, w, v and u. Thus the solution given by (2.6) is an orbit for the
 isosceles 3-body problem with h = 0 and c 7& 0 (uo #& 0 and c = rl/2u = r1/2uO).
 This means that, for fixed ro #& 0, there is a one-to-one correspondence between
 orbits for h = 0 and orbits on M. Any orbit with h = 0 that ends up in one

 of the arms of M represents an orbit of hyperbolic-elliptic type, where the

 eccentricity of the limiting elliptic orbit of the binary ml and m2 is strictly

 less than 1 (i.e., w' 7& 0) should c 7& 0. This is because c12 = C 7& 0 remains
 fixed, and from [2] it is known that h12 approaches a negative constant. Hence

 W12 = lhl2c12lCl2 has a nonzero limit. Therefore the corresponding orbit in M
 has the same property. This proves the lemma. O
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 We remark that the limiting value of h12 above continuously depends on

 the initial value. Therefore w'(x) is a continuous function.

 We also emphasize that, although the flow on M does not admit a physical

 interpretation, the one-to-one correspondence between the flow on M and

 that of the h = 0-energy hypersurface enables us to visualize the flow on M.

 Conversely the information obtained from the collision manifold enriches our

 understanding of the motion on the zero-energy hypersurface.

 Now we return to the unstable manifold of E+, Un(E+). First, we need

 to introduce a local coordinate for Un(E+) near y+ (or 'y-). The intersection
 of Un(E+) with the v = 0-plane is a smooth closed curve, and each orbit

 intersects with the v = 0-plane exactly once. (This is because v' > 0.) Let

 ,b E [0, 2iX) be a parameter on this closed curve with +(y) = 0 and -/{) = a.

 We use b to identify each orbit on Un(E+).
 Observe that, as r -x 00, the orbit near -y+ (or -y-) eventually must run

 up one of the arms. By Lemma 2.1, the limit of w12 for the points on Un(E+)
 near -y+ (or -y-) will have a nonzero value and, furthermore, from the remark
 at the end of the proof of Lemma 2.1, w' is a continuous function. For Vp
 away from 0 or ir, the value of the function w' is not clear. However there

 is an open set of 4 such that its corresponding orbits die in the sink C*, for

 which w' equals zero.

 We conclude this section by pointing out that, for any set of allow-

 able masses, there exist a w1*2 > 0, and two intervals of V), [-V/*, V)*] and
 [7r - V)*, Xr + V)*] with 0* > 0, 4'* > 0, such that IwI I assumes the value w12 at
 both ends of both intervals and wi'(V)I < w*2 for all V) E [-v/4, v/4] n [r -2
 ir + ? ].

 3. The isosceles 3-body problem-near-collision orbits

 The purpose of studying the triple-collision manifold is to understand

 the dynamical behavior of those solutions that pass close to triple collisions.

 In doing so, in the last section, we exploited the one-to-one correspondence

 between the motion on M and the motion of the h = 0 manifold. Here we

 continue to use this correspondence to obtain sharper results and to study

 some general solutions.

 One very nice and important feature of McGehee's transformation, among

 others, is that the variable r, the scale of the system, can be separated from

 the rest of the variables. This provides a simple way to reduce by one the

 dimension of the total system via the energy integral. By rewriting the last

 four equations of (2.5), where the energy relationship was substituted for the
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 terms r and h, we obtain:

 12 V= U(q) Cos q$- v2 Cos q
 2

 (3.1) + 1 (v2 cos2 X +Vw2 + u2 - 2U(q) COS2 a),

 W= U'(q) Cos2 -2 VW cosq - (2U(q) - V2) sin X cos A,
 2

 1
 u = --vucosq.

 2

 These equations are defined on I3 X (-ir/2, ir/2) and do not involve either r

 or h. The orbits of this vector field are the projections of the orbits of our

 original system and vice versa. In other words, any orbit of our original system

 can be obtained simply by the use of the energy integral, if h 5# 0, or by the
 integration of the first equation of (2.5),

 r' =vrcos0,

 if h = 0.

 One may see that, again, there is a singularity for the vector field (3.1) at

 = +ir/2, due to the binary collision of ml and m2. This is not a singularity
 for equations (2.5), because they were regularized by the energy relation. Note

 that, with the projection, it re-appears. However, since this is not an essential

 singularity, we can remove it by using Easton's method of block regularization.

 We do this so that, near the singular set, the orbits of the new vector field

 are still the projections of the orbits of the vector field defined by (2.5). Once

 this is done, denote this new regularized system by N, where, for simplicity
 of notation, N is also used to denote its underlying manifold. Equations (3.1)
 still define this vector field with the simple assumption that, at q = ?7r/2, the
 vector field is used in the sense of a regularized system. We remark that the

 entire procedure of regularization depends only on equations (3.1). It does not
 depend on any specific value of h or r.

 From the original energy relation we have

 (3.2) 2 (V2 CO52X+ W2+U2)_U(4)COS2qX=0

 being an invariant submanifold in N. Because this is the equation for the

 triple-collision manifold M, we still denote this manifold as M. However it is

 important to emphasize that, in the present setting, M is not only the triple-

 collision manifold, but also the h = 0-invariant manifold, and that the flow

 on this manifold corresponds to the projections of the original system. Thus,

 with this dual identification, the pre-image of this new M contains not only
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 FIGURE 3. Flow on No

 the triple-collision manifold M with r = 0, but also orbits with h = 0 and
 r > 0. Identifying the invariant manifold of r = 0 with that of h = 0 is due to

 the fact that only the product of r and h appears in the energy relation.

 The flow on M has been discussed in the last section. To see the flow

 on N, first let us define a submanifold No by letting u be zero on N. This
 invariant submanifold can be identified with solutions that do not rotate about

 the z-axis (u = 0). Here No is a 3-dimensional manifold, and we may think
 of No as 1R2 X (-7r/2, 7r/2) with two lines attached to it, where the two lines
 correspond to the binary collisions. The flow on No is shown in Figure 3.

 Let MO = No n M. Then MO is an invariant submanifold of No and, of
 course, the flow on MO is interpreted differently from that of the triple-collision
 manifold MO of the last section. Here MO divides the space into two disjoint

 segments. "Inside" of MO, i.e., the set given by

 (3.3) - (c2 cos2 0 + w2) -U(4') cos2 ? < 0,

 corresponds to the projection of the original system with h < 0; and similarly

 the "outside" of MO is identified with the set of orbits that are the projections
 of the original system with h > 0. Both the flows outside and on MO are
 gradient-like with respect to v. However the flow inside MO does not possess
 this nice property; this corresponds to the well-known complications in the

 study of the 3-body problem with h < 0.

 There are several straight-line orbits in No-the lines joining E+E+,
 E* E_ and C*C-that correspond to homothetic solutions. In terms of [26], a
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 homothetic solution is a solution that begins with and ends at a total collision

 and whose configuration stays at a central configuration.

 Returning to the analysis of N, we encounter the problem that the energy
 integral and angular-momentum integrals are not well defined, because both

 integrals involve r. To resolve this difficulty we combine these two constants

 of motion to obtain an integral for N. Let e = Ihclc; i.e.,

 I (v COS2 0 + W2 + U2) _ U(q) cos2 q (3.4) e=u u co2q

 The value e is independent of r. Being well defined on No and the product of
 two integrals, it is a constant of motion for equations (3.1).

 It is interesting to note that, besides the six rest points of MO, there is
 a new pair of rest points for N. These two rest points correspond to where

 m3 stays at the origin and ml and m2 move in a circular orbit with different
 rotational directions.

 Now consider the rest point E+ in N (and similarly for E_, E+, E* }. One
 checks easily that En is a saddle point with a 2-dimensional stable manifold

 and a 2-dimensional unstable manifold. Both of the unstable directions are in

 M, as shown in the last section. The 2-dimensional stable directions are in
 No, and they are shown in Figure 3. The stable and unstable manifolds of E+
 lie in the invariant variety defined by e = 0.

 We now are prepared to discuss the near-collision orbit. Let x* E St(E+).

 That is, this is an orbit that ends up in a triple collision. And St(E+), the
 stable manifold of E+, is a codimension-2 manifold. Consider a 2-dimensional

 cross section r, which is transverse to St(E+) at x*.

 Notice that the hyperplane u = 0 intersects with r in a line nearby x*.

 This line corresponds to the coplanar problem, and x* must lie in this line.

 Now think of r as a set of initial conditions and consider the orbits start-

 ing from r. In studying these orbits, we use the fact that an orbit starting

 sufficiently close to the stable manifold of a rest point will follow the unstable

 manifold of that point arbitrarily far. Therefore, on r, an orbit starting close

 to x* will follow one of the orbits on the unstable manifold of E+, Un(E+).
 Of course, which specific orbit on the unstable manifold will be shadowed de-

 pends on the position of the starting point relative to x. In particular the

 orbit starting from the line u = 0 on one side of x* will closely follow ry+; if it
 starts on the other side of x*, it will closely follow y-.

 Let us trace the local structure of E back along the x*-orbit to r. Corre-

 sponding to each orbit in Un(E+), we have a curve in r ending at x* such that,

 for an-initial condition along this curve that is close to x, the orbit approaches

 the corresponding orbit in Un(E+).
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 FIGURE 4. The wedge formed by c+ and c-

 To understand these orbits we need the variable w12, which was defined

 on the triple-collision manifold M (see ?2). The definition of w12 extends to

 N, and the continuity of w12 and w' is easily established.

 We are especially interested in those curves on r that correspond to the

 orbits of Un(E+) with EL = ?+0*, where the 0/* are defined at the end of the
 last section. As x approaches x* along these curves, an x-orbit (i.e., the orbit

 that starts with x) will approach the corresponding orbits of Un(E+) with

 = ?+0*. Therefore w'(x) will approach hw1*2 as x approaches x* along
 these curves.

 Recall for an orbit on the u = 0 submanifold that w' (x) = 0. This is

 because the system is coplanar when u = 0, and thus w12 0.
 Let w+ be a positive number such that wj+ < w*2. Using the above

 arguments, we see that there are two curves c+, c- in r such that

 (1) each curve starts from x*, and u > 0 on c+, u < 0 on c-; and

 (2) for all x E c+, w(x) = w+, and for all x E c-, wj'(x) = -wj+. (See
 Figure 4 above.)

 We remark that, by the above construction of the curves, for x in the

 region formed by c+, c and c, where c is a curve close to x* connecting c+

 and c, the orbit of x will tend toward the arm of M with q = Ir/2.
 The wedge we constructed above can be very small. To study more closely

 the orbits that start from the wedge, we introduce a cross section to the

 manifold N.

 Let v+ be a large positive number, v+ > 0. Consider the section on N
 with v = v+; this section is 3-dimensional. We require that v+ > v(C*),
 where C* is the rest point of N with a collinear central configuration, and

 v(C*) > 0. Recall that the flow on No is gradient-like and that every orbit of
 No meets this section v = v+ exactly once, except those which end in C* and
 other rest points. Therefore -y+ intersects with this section v = v+ exactly

 once, and the intersection is transversal. Recall that -y+ is the orbit of the

 unstable manifold of E+, which is in No and ends up in the arm of No with
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 = 7r/2. Since Un(E+) is a 2-dimensional manifold in N, the orbits of Un(E+)
 nearby -y+ also have to intersect the section v = v+. Thus the intersection of

 v = v+ with Un(E+) locally nearby -y+ is a smooth curve, and the intersection

 is transversal.

 From the energy integral we have

 2 ( cos2 2)
 The left side of the above equation has a factor of r, so it is no longer a valid

 integral in N. However the right side is a well-defined function in N (recall

 that N is the manifold after regularization). We denote this function by g;

 i.e., let

 =(v2+ W 2u2)_U(q)

 We must emphasize that g is a continuous function defined on N and that

 the equation g = 0 defines an invariant set, which is exactly No. Here No
 separates the manifold N into two pieces: one with g > 0 corresponds to the

 system with positive energy and the other one with g < 0 corresponds to the

 system with negative energy. When the energy of the system h is given and

 is nonzero, the value of g can be used to obtain r. This fact will be used later

 to get some estimates on the values of r.

 Let To C {v = v+} be a small compact neighborhood of the intersection
 of -y+ with the section v = v+. The intersection of Un(E+) with To is a small
 smooth curve if To is small. By choosing w+ > 0 small, where w+ is the
 number given at the end of the last section, we may assume that To is cylinder

 shaped such that, on top of To, designated as S+, we have w' = w+ and, on

 the bottom of To, denoted by S-, we have w' = -w+ and 1w0 I < w+ for all
 points in To. Also, for fixed go > 0 small, we may assume, for all points of
 To, that 1g9 < go. The following lemma can be easily proved, and we omit the
 proof.

 LEMMA 3.1. Let To be the solid cylinder, defined above. There exists
 M > 0 such that whenever v(T) > M, then 1W12(X, T)I < 4w+ for all x E To

 and 2w+ < IW12(X,T)I I 4w+ for all x E S+ U S-.

 From now on we assume that, in the definition of To, we have chosen
 v+ > M. Hence the following is always true:

 4
 1W12(X, T)j < -w+, for all x E To and T > 0;

 -3

 2W I1(~rl<- for allx ES U S- andTr> 0. W3 3W2X,) ?
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 From the definition of g(x), for any fixed c > 0 and fixed go, observe that
 v+ can be made large enough such that, for all x E To and r > 0 we have

 o < 1r/2 - q(r) < e and q(r) -1 ir/2, as r -x oc. This is possible, because for
 the trajectory starting from To, the corresponding solutions are of the elliptic-
 hyperbolic type. Thus for the orbits starting from To, we know that m3 is far

 away from ml and m2 for all the time that r > 0. Therefore, for all x E To,
 the 3-body system can be well approximated by a couple of 2-body problems:

 one with ml and m2 and the other with m3 and the center of mass of ml and
 m2.

 We now return to the surface r. With the aid of the solid cylinder To, the
 wedge in Figure 4 now can be better understood. Let x* E St(E+) n r. Then

 the orbits starting close to x* will follow the orbits on the unstable manifold of

 E+; in particular some orbits will follow -y+ and its nearby unstable manifold
 of E+. Therefore the image of F, {F(T) I T > 0}, under the flow will intersect
 with To. And, since both S+ n Un(E+) and S- n Un(E+) are nonempty sets,
 we have nonempty intersections r(T) n S+ and r(T) n S-. The curves c+ and

 c in Figure 4 are exactly the pre-images on r of those intersections.

 In the next section we will consider the 5-body problem and construct

 unbounded solutions in finite time, which pass through the solid cylinder To
 infinitely many times.

 4. The 5-body problem

 In this section we consider a special 5-body problem. For this problem

 we will construct a noncollision singularity or, as the first step, an unbounded
 solution in finite time. The main result of this section is Theorem 4.4.

 Let ml, m2, ,m5 be five point-masses moving in a euclidean space R3

 and let qi, qi E ]R3 be the positions and velocity vectors for mi, i = 1, 2,. .., 5.
 Further let ml = m2 and m4 = M5. Then choose an initial condition such
 that the following symmetries are preserved under the subsequent motion:

 qi = (xi, yl, Zi),

 q2 = (-X y,-ylZl),

 (4.1) q3 = (OOZ3),
 q4 = (X4, y4, Z4),

 q5 = (-X4, - Y4, Z4).

 In other words, for all time, m5 will be on the z-axis. Both particles
 ml and m4 are, respectively, symmetric to m2 and m5 with respect to the

 z-axis (see Figure 5). Fix the center of the masses at the origin, and then the

This content downloaded from 128.196.130.121 on Thu, 14 May 2020 19:55:02 UTC
All use subject to https://about.jstor.org/terms



 434 Z. XIA

 * m5

 M*4 Z

 m3 0

 Ml * M2

 FIGURE 5. The 5-body problem

 following equation holds:

 (4.2) 2mlzl + 2m4z4 + m3Z3 - 0.

 The resulting system has six degrees of freedom and it is uniquely deter-

 mined by qi = (xl, yi, zl), q4 = (X4, y4, Z4) and their derivatives.
 Let T and U be the kinetic and potential energy, respectively. With these

 variables the functions are:

 T =ml (X~2 + 0l + i2) 2 4X + y42 + i2

 1 (2mll 2m4?4)2
 + -m3 +
 2 M3 M3

 U= 1+2 1 2

 2(x + Y )2 2(X4 + Y2)

 (4.3) 2mlm4
 [(Xl - X4)2 + (Y- Y4)2 + (Z1 z4)] 2

 + 2mlm4 1 + 2mlm3
 [(Xl + X4 )2 + (y, + y4)2 + (Z, - Z4 )2] 2 [X1 + Y1 + (Z1-Z3 )2] 2

 + 2m4m3

 [XM +y8 + (z4 - Z3)2]2

 Note that Z3 appears in the equation for U. However Z3 is a function of

 z1 and Z4 given by equation (4.2). The Hamiltonian function for this system
 uses the variables

 Px1 = 2ml.l,, PX4 = 2m4IX4, Py1 = 2mll, Py4 = 2m4,4

 Pz1 = 2mll + 2ml (2mIi + 2m4i4)
 m3 m3

 P4= 2M4i4 + 2M4 (2mlil + 2M4z4) PZ4~m, M3 M,
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 Once the kinetic energy T is expressed as a function of Px1 I Pyi ,PZ1 (i = 1, 3),

 then xi, yI, zi, pIiI pi, PZi (i = 1, 3) satisfy Hamilton's equation with the
 Hamiltonian function

 H(p, q) = T(p) - U(q).

 Besides the energy integral H(p, q) = h, this system also admits the

 angular-momentum integral c12 + C45 = c, where c12 and C45 are the angular

 momentum possessed by ml, m2 and m4, M5, respectively:

 (4.4) C12 = 2ml(xil~ - yil.) = x1py - YlPX1,
 C45 = 2m4(x4J4 - y4x4) = X4Py4 - Y4Px4

 Observe that c12, C45 are not constants of motion. Nonetheless their sum,
 the total angular momentum, is conserved under the motion. We are only

 interested in the subsystem with zero total angular momentum. From now on

 assume that c = 0; i.e., that

 C12 + C45 = 0.

 In the subsequent analysis we consider the system as having three com-

 ponents whenever the three particles ml, M2 and M3 are close to one another

 relative to the distance of these three particles to M4 and m5:

 (A) the isosceles 3-body system m1, m2, m3;

 (B) the 2-body system M4 and m5; and
 (C) the 2-body system composed of the center of m1, M2, M3 and the

 center of M4, Im5.
 When M3, M4, m5 are close together, we use a similar decomposition.
 Our first objective is to show that the triple-collision manifold M of

 Section 2 persists under the presence of m4 and m5. To do this we need

 to change some variables. Let z- = (2mizl + M3Z3)/(2mr + M3). Then (0, 0, z)
 is the center of the masses of ml, M2 and M3. Let xi = x, Yi = y, z = zi-z
 and Z = -Z-. Following the transformations of Section 2, we obtain a

 system of equations that is similar to equations (2.2). In particular we ob-
 tain

 r= (s z)r,

 s= z - (s z)s,

 1 ~~20U2 (rs, q4)
 (4.5) Z= V Ul (s) + (s .z)z + r ()

 q4 =r/HP4 (r) s, z, P4 q4))

 p4= -r32Hq4(r) s, z, p4, q4),
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 where the Ul are the terms of U, which contains only ql and q3, and where
 U2=U-U1. That is,

 1 3/2

 Ui (S) = -inM1 M 3

 (m (S2 + 82)1/2/M3 + 4(sl2 + s2 + (1 + 2m1/m3)s 2)1/2

 Again ' denotes differentiation with respect to T, and dr/dt = r-3/2.

 If Z4 = 0, Hp4, then Hq4 and U2 are smooth functions even at r = 0, except
 when M4 and M5 experience binary collisions. When the simultaneous triple
 and binary collisions occur, the situation becomes more complicated (this case
 will be discussed later). However we remark here that all the binary-collision

 orbits can be continuously extended through collisions and that, on {r = 011
 the equations for r, s and z are independent of the variables associated with

 the binary M4 and M5 .

 For a moment let us assume that m4 and m5 are not at a binary collision
 when r = 0. Then the flow extends to {r = 0}, where we obtain a flow on a
 manifold; for simplicity of notation this is

 M x Sl x R5 xR\1011

 given by

 s= Z - (s z)s,

 (4.6) Z = V Ui(s) + 2(S *z)z,

 (4-6) 2~4-?

 P4 0.

 The above flow is a product of the identity flow on R5 X {'R\{0}} with a flow
 on M x S1. Here S1 gives the 0 coordinate, which was eliminated when we
 were deriving the triple-collision manifold M in Section 2. The flow on M is

 exactly the flow studied in that section; i.e., the effect of M4 and M5 disappears
 in the limit as one approaches triple collision among the particles ml, M2 and
 mi3.

 Vector field (4.6) still has singularities due to the binary collision between
 Ml,M2 and m4,m5. It is a known fact that orbits can be extended through
 these binary collisions either by some transformation or by modification of
 the vector field in a neighborhood of these singularities, known as Easton's
 regularization. We do not carry out this regularization procedure here, but we
 shall speak of the flow as though the orbits are extended through binary col-
 lisions. There is another kind of singularity in this problem: the simultaneous
 binary collisions of ml and M2 and of M4 and M5. For these collisions, Saari

This content downloaded from 128.196.130.121 on Thu, 14 May 2020 19:55:02 UTC
All use subject to https://about.jstor.org/terms



 NONCOLLISION SINGULARITIES IN NEWTONIAN SYSTEMS 437

 [18] showed that these singularities are algebraic branch points and hence that

 they are not essential singularities. Recently Simo and Lacomba [22] showed

 that they also can be C0-block regularized, in the sense of Easton. In fact, as

 we shall see, the solutions constructed here can be made far away from the

 simultaneous binary collisions. Consequently we are not concerned with the

 smoothness and the "regularizability" of the simultaneous binary collisions.

 Let El be the collection of all orbits that end in a triple collision with
 the equilateral central configuration E+. The manifold structure of El follows
 from the computations in Section 2. In fact, El is exactly the stable manifold
 of the invariant set

 {E+} x S1 x 5 X {IR\{0}}.

 In Sections 2 and 3, we showed that E+ has two attracting and two
 repelling directions. Therefore Z1 is of codimension 2 (9 dimensional).

 It is worth noting that there are several invariant submanifolds for this

 5-body system for which C12 0 C45; i.e., both binaries ml, m2 and m4, m5
 are restricted to moving in fixed planes containing the z-axis. The two planes

 that ml, m2 and m4, m5 move in must be parallel or perpendicular to one
 another. This is because, by computation, we have

 C12 C45 2m1m4(x1Y4 - X4l) (r14N -

 For c12 0 (or C45 0) either x1y4 - y4x1 0 or r14 r15.
 From now on we require that the masses ml = m2, m3 be allowable, in

 the sense of Section 2. We also reqliire that the choice of masses m4 = m5, m3
 be allowable. These are our only requirements for the masses.

 Our next step is to show that some of the properties of the 3-body prob-

 lem, described in the last two sections, persist in this 5-body problem. What
 we have now is a perturbation problem. We want to show that, under certain

 conditions, the solutions with initial values at To still have similar properties
 to those described in the last section. First, we want to analyze the local

 structure of the invariant set {E+} x S1 x R5 x {R\{0}}.
 Let p E Sl x R5 x R- and consider the rest point {E+} x {p}. The

 point p describes the limiting position of m4 and m5 (]R5 x R-) as well as the
 limiting orientation (S1) of the particles ml, m2 and m3 in the triple collision.
 Note that here by R- we mean that Z4 < 0. The case where Z4 > 0 can

 be discussed similarly. One can obtain the local properties of the flow near

 {E+} x {p} by equations (4.5). Direct computation shows that we have two
 attracting directions and two repelling directions; all other directions are on

 the invariant set {E+} x Sl x R5 X {IR\{0}}, where every point is a rest point,
 and hence they are neutral directions. Therefore we have a 2-dimensional

 stable manifold at {E+} x {p} and a 2-dimensional unstable manifold at each
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 point {E+} x {p}, for any p E S1 x x5 X R-. This is exactly what we had for
 the 3-body problem.

 Next we study these stable and unstable manifolds and the solutions

 nearby.

 The unstable manifold of {E+} x {p} lies in the invariant manifold, defined
 by r = 0. The flow on this invariant manifold is given by equations (4.6). As

 we pointed out earlier, the flow on r = 0 is the product of the identity flow and

 a flow on M x S1, where M is exactly the triple-collision manifold of the last

 two sections. Therefore we may say that the unstable manifold of {E+} x {p}
 is exactly the unstable manifold of {E+} in M. Hence Lemma 2.1 holds and
 the analysis at the end of Section 2 applies here.

 Now we go back to the cylinder To, defined in the last section. First,
 we define a function ir, which projects any point in the phase space into the

 subspace spanned by the q, u, v, w coordinates. Define a set T by

 (4.7) T = {x E i-G1(To) I Iz31 < A; Z4 < -B; z4 <-B},

 where A > 0 is a positive number and will remain fixed throughout, and B > 0

 is chosen sufficiently large such that, whenever I-Z31 < A, we have Z3 > 0. This
 is always possible, because the center of mass is fixed at the origin. Recall

 that Z3 = Z3 - Z-.

 Similarly, corresponding to the boundaries S+ and S- of To, we define the
 boundaries of T. Without confusion we can use the same notation to denote

 these new sets.

 Consider the solutions starting from T. For this, only the first three

 equations of (4.5) are needed:

 r'= (s . z)r,

 S/ = z - (s. z)s,

 Z = V Ui(s) + -(s * z)z+r2 0U2
 2 O(rs)'

 Without the presence of the term r20U2/O(rs), this system is exactly the 3-
 body problem already discussed. The perturbation term of m4 and m5 on

 the triple ml, m2 and M3 depends on the distance between m4 and the triple
 ml, m2 and M3. One easily computes that

 IaU2 Cl
 a(rs) - 1Z412

 for Iz41 > B, and cl constant depending on B.
 Before going further, we need to take certain precautions about w' (x),

 which was defined on a subset of N in the last section. Note that w' (x) is
 not a continuous function in the 5-body problem. This situation is due to
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 the perturbation of m4 and m5. When r becomes large, either m3 may come

 back to ml and m2, or the binary ml and m2 may come close to m4 and

 in5. In both cases, the function W12 may vary erratically, and this may occur
 infinitely often. However, as long as r is small and m4 and M5 far away, the

 perturbation of M4 and m5 is very small. This difficulty can be overcome by
 the use of w12(x(t)) for some t instead of t = 00. For this purpose let t1 be

 the time when Z-3 first reaches -A; i.e., let

 ti(x) = inf{t > 0 I - = -A,x E T}.

 We use the convention that t1(x) = ox when - first reaches A before reaching

 -A.

 LEMMA 4.1. Let T be the above-defined set. Then there exists B1 > 0

 such that if IZ41 > B1 for all 0 < t < ti(x) and if ti(x) < 1, then for all
 x E S+ U S-

 -W+ < W12(X,tl)l ' 2W+

 Proof. From the definition of S+ and S-, for any x E S+ U S-, we have

 2W+ < 1W12(X)i < 4W12K
 33

 Furthermore, if B1 = oo, then

 W_ ?IW12(X,t)I< !w+, for all t > 0.
 33

 For a point in S+ and S-, as pointed out earlier, m3 is far away from ml
 and m2, compared to the distance between ml and m2. The triple ml, m2

 and m3 is much like a couple of 2-body systems: one with m1 and m2 and

 the other with m3 and the center of masses of ml and m2. The particle m3
 moves away from m1 and m2 with a velocity proportional to v+r-1/2, while the
 change in w12(x, t) is due to the perturbation of m3 as well as m4 and m5. The
 perturbation of m3 is of the limited amount (w+/3), and the influence of m4

 and m5 is of order At/(Bi)2 < 1/(Bl)2. Therefore, by choosing B1 sufficiently
 large, we have lw+ < Iw12(x)l < 3w+. This proves the lemma. O

 Observe that, in Lemma 4.1, the only restriction on r is 1z3 - -j < A. In
 fact r may be arbitrarily small.

 From now on we assume in the definition of T that B > B1. Let

 t(x) = sup{t < 0 1 Zi(Xt) = Z3(X,t),X E T}.

 Observe that t(x) is defined for the orbit of y+ n T and, by the choosing of
 w+ small, it is also defined for all x e Un(E+) n T. Thus i(x) is defined for all
 x E T, provided that T is sufficiently small. Let us assume that this is true.
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 LEMMA 4.2. Consider the orbits starting from T. Let ro be the initial

 value of r. There exists B2 > 0 such that if Z4 > B2 for all t < t < ti,
 then ItI < d1r3/2 and Itil < d2r1/2 for some constants d1 > 0 and d2 > 0. In
 particular t 0 and tL -- 0 as r -O 0.

 Proof. First observe for any x E T that 1z31 < A. Thus there exists a
 constant cl, depending only on A and the masses such that ro < cl. Let - < O

 be the corresponding time Tr for t. From dt = r3/2dr and r' = rv, we have
 r - fT r312dr and

 (4.8) r(r) = roexp (jTv(T)dT);

 therefore

 F=ro32 j exp ( j v(T)dr) dr.

 For any x E T and ro < cl there is B(x, ro) > 0 such that if B > B(x, ro),
 for allt < t < 0 then

 (4.9) j exp - (j v(T)dr) dT < di (x, ro)

 for some di(x, ro). From the compactness of To and 0 < ro < cl, we can find
 some B2 > 0 and d1 > 0 such that B2 > B(x,ro) and d1 > di(x,ro) for all

 x E R and 0 < ro < cl. Thus It! < diro2 and t O, as ro - 0.
 For the second part of the lemma notice at T that v = v+ and Z3 >

 c4ro /v+ for some C4 > 0. The motion of m3 is close to that of a 2-body
 problem with m3 and the center of the mass of m1 and m2. The distance

 between m3 and the center of the mass of ml and m2 is of order ro; thus the

 escaping velocity of m3 is of order rO 1/2 Therefore, if B2 is chosen sufficiently

 large, then t1 exists for all x E T and

 tl < l/A r1r2 A/c5 = d2r 1/2
 c5r0

 for some C5 > 0, d2 > 0. In particular t -O 0 as ro -O 0. This proves the
 lemma. ?

 Using the above argument, one can easily prove the following lemma:

 LEMMA 4.3. There is such a B3 > B2 > 0 that for all the orbits starting

 from T, if z4 > B for all t < tl, then there exist d3 and d4, 0 < d3 < d4, so
 that

 d3rjj1/2 < IZ"'(x, t1)I < rJ'1/2d4 for all x E T.
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 From now on let us assume that B > B3.

 We are ready to prove our first major theorem, which will serve as a

 crucial tool for constructing the noncollision singularity.

 Fix a point x* E El. There exists a point p E S' x R5 x R- such that
 x* E St({p} x {E+}), where St({p} x {E+}) is the stable manifold of the rest

 point {p} x {E+}. Let F be a 2-dimensional smooth surface that intersects El
 transversally at x*. Let t* > 0 be the time when the orbit, starting from x1,

 ends in a triple collision of ml, m2 and m3. Without loss of generality assume

 that Iz4(x*,t*)I > 2B. For all x E F let

 l (x) = inf{t > 0 1 z3(x,t) = (xt)

 ti(x) = inf{t > El(x) 1 z3(xt) =.-A},
 (4.10) ti(x) = inf{t > t1(x) Z Z3(X,t) = 0},

 t2(x) = inf{t > fl(X) I z3(x,t) = Z4(Xlt)ll

 while for the collision orbit x* let

 l (X*) = tl (x*) = El (x*) = t2(x*) = = t*.

 Then we have following theorem:

 THEOREM 4.4. Let r be the above-mentioned 2-dimensional surface. Con-

 sider the solutions starting from r. There is a wedge A with vertex at x* and

 with boundaries c+, c- and c such that the following hold:

 (1) For all x in the wedge, ti(x), ti(x), #ii(x) and i2(x) are well-defined
 and continuous functions. In particular tl (x), t1 (x), tl (x) and i2(x) approach
 t* as x in the wedge approaches x*. As a consequence i3(tl) and i3(tl) o-+ o
 as x -* x*.

 (2) For all x c c+, 4W+ < W12(X,i2) < 2w+, and for all x e c, 4W+ <
 -W12(XJt2) < 2w+.

 (3) There is K > 1, where K depends only on the masses such that for

 any 6 > 0, and for all x e A,

 z1(xJ2) > Kzl(x,ti) > 0,
 IZ4(X, t2) - Z4(X, ) I < 6

 Proof. First, observe for a small neighborhood of x* that il(x) exists and
 is a continuous function on the initial values. Without loss of generality assume

 that this is true for all x e r. Let

 AO = {x E r I x(t) E T, for some t > 0}

 and, for any x E AO, let to(x) be the time such that x(to) E T. As we
 showed earlier, AO is a nonempty set. Consider the value of r(x, to). Since the
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 unstable manifold of E+ is in the triple-collision manifold on which r = 0 and
 the orbits starting near x* tend to follow the unstable manifold of E+, we have

 r(x, to) -* 0 as x -* x* for x E Ao. Following Lemma 4.2, we find that there
 exists a smaller wedge A c D such that t1 exists for all x E A and t1 -* t* as

 x -x* , x E A. Now from Lemma 4.3, i3(X, tl) -x -oc as x -* x*. Therefore,
 for x sufficiently close to x*, eventually m3 reaches the z = 0-plane and then

 takes over m4 and m5. Thus t1 and t2 are defined for all x sufficiently close

 to x*, x E i\ and tl,t2 -* t* as x -* x*. By making A small, we may assume
 that the above is true for all x E A.

 For the second part of the theorem observe that, from Lemma 4.1, for all

 x E c+ and c-, where c+ and c- are the parts of the boundary of A such that

 C+ = {X E A j x(to) E S },

 C = {x E A j x(to) E S

 the following is true (we may make A smaller if necessary):

 _W+ I W12(X,tl)l < 2W+

 The rate of change for w12 depends on the distance of m1 and m2 from

 the rest of the particles and, for all t1 < t < t2, on Id(w12(x, t))/dtl < c3/A2
 for some C3 > 0. Since t2 - t1 can be made arbitrarily small, the wedge A

 can be made small enough such that for all x e A, and t1 < t < t2, we have

 w12(x, t) - w12(x, t) < 4W+.
 The third part of the theorem comes from conservation of momentum.

 We only need to take note of the following facts:

 (1) Let P123 be the momentum of the subsystem m1, m2, and m3:

 P123 = 2mlzl + m3Z3.

 There exist positive numbers M1 and M2 such that

 Pil23(xt)i < Ml1, IPA231 < M2

 for all t e [t1,E1] and x E A.

 (2) It follows from the first part of the theorem that t1 - - 0 as x x*,
 x E A. Therefore, for any E > 0, by making A small enough, we have

 IP123(X,t) - P123(Xit')I <? ,

 for all t,t' e t e [t1,t1] and x e A.

 Following from the above facts, for all x E A, is

 2mz1(x, t2) > 2mlzi(x,ti) = P123(x, ti) - m3Z3(X, t)

 = P123(X, tl) > P123(X, ti) -)E

 = (2ml + m3)Zl (X, tl) -E
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 Therefore

 Zl(XI J2) > + 2 3 zi(xI -2

 Let K be any number such that 1 < K < 1 + m3/(2m1). Then e can be made
 small enough that

 zi(XI2) Kzi(X,tIl) > 0

 for all x E A. The inequality IZ4(X, 2) - Z4(XItl) < 6 follows immediately
 from the first part of the theorem, thereby proving Theorem 4.4.

 Now we would like to make several remarks concerning this theorem.

 (1) The constant A is prefixed, and its value does not change. However

 the choice of A is quite arbitrary. In fact A can be chosen arbitrarily small

 and, in this way, one easily sees that B, whose value depends on A, can be
 made arbitrarily small.

 (2) The triple collisions considered so far are for the central configuration

 E+. In fact the triple collisions with the limited central configuration E_ can
 be treated equally the same.

 (3) All the above discussions apply just as well to the motion of m3, m4,

 and m5. With some appropriate changes of constants, one may assume that
 the lemmas and the theorem also apply to the triple m3, m4, and m5.

 In the next section we shall use the last theorem to set up symbolic

 dynamics to construct unbounded solutions in finite time.

 5. Unbounded solutions in finite time

 We first consider the initial values on the 2-dimensional wedge A of The-
 orem 4.4 of the last section. Later we shall consider the 3-dimensional wedge

 W described in Section 2.

 For all x E A let N(x) and n(x) be the number of maxima and minima

 that r12 has reached in the time interval [tl, t2]. Here N(x) and n(x) are the
 extended notions of the number of complete revolutions that ml and m2 have

 made in [tft2]. Because the value of w+ may be made arbitrarily small, we
 may assume that w+ < 1/10.

 LEMMA 5.1. N(x), n(x) are continuous for all x E A, except at those

 points x that r12 (x, t) reaches a maximum or minimum at either ii (x) or i2 (x).

 Proof. Suppose that rl2(x, t) reaches a minimum or maximum at t'. Then
 either i122(x, t') = 0 or r12(x, t') is undefined. For the latter case, a binary or
 triple collision must occur. Thus rl2(x, t') = 0. We want to show for all x E A
 and for all tl < t < t2 that all zeroes of i12(x, t) are nondegenerate; i.e., for
 all t', t' E [tlt2] such that whenever r12(Xt') = 0, we have fl2(x,t') =# 0.
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 Notice for the binary or triple collisions, r12(x, t') = 0, that t' is easily seen to
 be a nondegenerate local minimum for rl2(x, t). This means that all zeroes of
 r12(x, t) are either a nondegenerate maximum or a nondegenerate minimum
 of r12(x, t). From this we can deduce, by the continuity of r12(x, t), that N(x)-
 and n(x-) are continuous functions for all x E A, except at those points x of A

 such that r12 reaches a maximum or minimum at ti(x) and t2(x).
 We will prove this in the more general setting of a perturbed 2-body

 problem. Let

 (5.1) =-3 4 f,

 where f is a small perturbation term. Due to the f term, the energy h and

 angular momentum c of the system are not constants. Thus

 h 1 + 1 2_ 1

 is a function of time. We only consider the case where h < 0. In this case,

 c2jhj = c2 | 1 + 1c 2 2r2 r1

 If r= 0 for some t, then

 c2rhl = C2 C2 1
 2r2 r

 Let W12 = c2Ih ; when r = 0,

 W12 = C2 r2 C

 Solving this equation for c, we obtain either

 c2 r + (r2 - 2r2W12)1/2

 or

 c2 = - (r2 - 2r2w12)l/2.

 On the other hand, r2 =r r; thus rr = r r and ri + i2 =r + ri? ,
 where we write

 C2
 r r = r2 + r222 = r C2+

 r

 These equations together with the equation for motion yield

 (5.2) r r3 + r
 r r
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 Therefore, corresponding to the two solutions for c obtained above, we have

 either
 ..(1- 2W12}\1/2 +r

 r2 r
 or

 (1 - 2w12)1/2 r

 r2 r

 Thus i $ 0, provided that

 (5.3) Ifr2[ < (1 - 2Wl2)1/2.

 Now we go back to our original system. First consider the perturbation term

 f. In the 5-body problem, the perturbations on the binary ml and m2 are due
 to m3, m4 and Mi5. It is easy to show that there are some positive numbers

 M1 and M2 such that

 ml M2
 if I < M+ 2

 1fri21 < 2 + M~rl2
 1,3 r14

 Now we divide the interval [ti, t2 into two separate subintervals , tt) and
 [t*, t2J and then consider them separately. Recall that t* is the time when the

 orbit passes the cylinder T of the last section.

 We consider the interval [ti*, tJ first. By properly choosing the cylinder

 T (i.e., enlarging v+ if necessary), we can make r"2/r23 and r 2/r24 arbitrarily

 small for all t E [t, tQJ. Thus, by the above means, we may assume that

 Ifr2I< Mlrl2 + M2r 2 < 1
 12- r13 - 10'

 On the other hand, for all t E [tt, t2J, we have Iw121 < 2w+ < 2/10. Therefore

 Ifr2 1 < 1/10 < (6/10)1/2 < (1 - 2W12)1/2.

 Thus inequality (5.3) holds. Therefore, for all t E [t*, t2], all zeroes of r12(x, t)

 are nondegenerate critical points of r12 (x, t).
 For the interval [ti, tt), since m3 is now closely involved with the binary

 ml and m2, inequality (5.3) is harder to obtain. To do so, we use the properties
 of the triple-collision manifold. Recall that, for the orbit with an angular mo--

 mentum of zero, all the critical points of r12(x, t) are nondegenerate; therefore,

 on No, this same property holds. From continuity, for the orbits of N close
 enough to NO, this property also holds. Since T is defined in a small neigh-
 borhood of NO, and since To is compact, we can always make T small enough
 that, for all x such that x(t*) E T, the zeroes of r12(x, t) are nondegenerate for
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 all t E [ti, t). Here we used the fact that there is a positive number M3 > 0

 such that Tjr - 7riI < M3 for all x so that x(tt) E T, where Thi = r(t*) and
 I=T(tI).

 We have shown above that all the critical points of rl2(x, t) are non-
 degenerate for all x E i\ and t E [tl, t2]. Consequently the only discontinuities
 of N(x) and n(x) are when ti or t2 is a local minimum or maximum of r12(x, t).
 This proves Lemma 5.1. 0

 In the 2-body problem it is a well-known fact that, for an elliptic orbit

 with energy h < 0, the period of motion is V'F/(21hI3/2). We will need a similar
 estimate on the maximum time between two consecutive maxima or minima

 for what we do next.

 Again consider the perturbed 2-body problem

 r

 (5.4) r= 3_+
 where f = f(t) is a small perturbation term.

 LEMMA 5.2. Given c > 0, there exists a 6 > 0 such that if Ih-2f I < 6,
 with ho < 0 and IW12(X)I < 1/4, then

 (5 5) 7 /2/(2h12 -1 <

 where T12 is the time interval between the first two consecutive maxima or

 minima for t > 0.

 First let us remark that the important feature of the lemma is that we

 have a uniform 6 such that inequality (5.5) is satisfied for all ho < 0.

 Proof. Consider the initial conditions on the energy hypersurface ho =-1

 with Iw12(x)I < 1/4. The period for the unperturbed 2-body problem is V'r/2.
 To each point x in this set, the proof of Lemma 5.1 leads to the zeroes of

 r(x(t)) being continuous functions of x, provided that Ifr2I < (1 - 2w12)1/2.
 Note that r < 1/Ihj, ho(x) = -1, and IW12(x)l < 1/4, h(x,t) and w12(x,t)
 depend continuously on f. Therefore there is a 6(x) depending on x such that

 if If ? < 6(x), then

 (5.6) rl2(x)V/2 - 11 < e.

 By the compactness of the set {x ho = -1, IW12(x)I < 1/4} (in the reg-
 ularized 2-body problem) there is a uniform 6 independent of x such that if

 If I < 6, then inequality (5.6) is satisfied.
 We showed above that Lemma 5.1 is true for the energy hypersurface

 ho = -1. Now we want to show that the lemma is true for an initial value
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 with ho standing for any value of h < 0. In the 3-body problem, by using
 McGehee's coordinates, one may drop the r variable from the equations of

 motion and reduce the dimensions of the system by one. Thus the complete

 solutions of the original system can be obtained from the solutions of the re-

 duced system and integration of the liner equation for r. In other words, if the

 only difference between two initial values is in r for the McGehee coordinates,

 then the solutions only differ in r with a constant factor. The rest of the proof

 of the lemma is motivated by the above fact; instead of going full scale through

 McGehee's coordinate change, we use a simplified version of it.

 Consider a system of differential equations

 (5.7) x=v, =VU(x) + f, x E IRn v c ,n

 where U(x) is a homogeneous potential function of degree -1 and f is a per-
 turbation term. Let

 x = Iholx, v= Ihol-1/2v, t= I-ho3/2t

 where ho is an arbitrary constant. Then

 dx/dt = v, dv/dt = VU(_) + Iho l-2f

 Compare this system to the original (5.7). We have exactly the same set of

 equations, except that the perturbation term now has a factor of Iho -2. Apply
 this to the 2-body problem and let ho be the initial energy of the system. Then
 the initial energy for the new system is exactly ho/lhol = -1 for all ho < 0.
 Note that the time has been rescaled by a factor of 1hol3/2. Thus the lemma
 follows from what we have proved on the energy surface ho = -1. 0

 The next result shows the limit behavior of N(x) and n(x) as x approaches
 *

 LEMMA 5.3. N(x) -x oc and n(x) -* ox as x -* x E i.

 Proof. As x x*, it follows from Theorem 4.4 that i3(x, l) -* -oc.
 Thus there is a positive number c1 > 0 such that the kinetic energy for the

 subsystem mj, m2 and m3 is greater than C1 Z3 (x, t1) for x sufficiently close to
 x* and t E [tl, t2]. From conservation of energy there is a c2 > 0 such that

 Ih121 >_ C2z3(x tl)

 for x sufficiently close to x* and t E [ti, E2).

 One sees from Lemma 5.2 that there is a C3 > 0 such that

 T12(X) < C3Vjho1-3/2/2 < C4i3(X~i)

 for some C4 > 0, x sufficiently close to x* and t G (tl, t2).
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 On the other hand, there is a C5 > 0 such that

 (i2- fl) > c5B/I 3 (X, Tl).

 Thus N(x) > cz32(xtl) and n(x) > csz2(xti) therefore, as x E x*,

 N(x) -+ oc and n(x) -> 0o,

 which proves the lemma. LI

 Observe from Lemma 5.2 that N(x) and n(x) change values only when

 r12(x, t) reaches a local minimum or maximum at it or i2. As there is only
 a finite number of minima and maxima for r12(x, t) at t = tj, for any curve
 in A that ends at x* there is an infinite number of points on the curve such

 that r12(x, t2) is a local minimum. And similarly there is an infinite number
 of points on the curve such that r12(X, 12) is a local maximum.

 So far we have centered our discussion around the 2-dimensional wedge

 given by Theorem 4.4. In order to have more flexibility and a clearer global

 picture we introduce the 3-dimensional wedge. The main reason we extend

 the scope of this section by considering a 3-dimensional section is that the

 noncollision singularity we construct here is in the neighborhood of the set

 of orbits that lead to simultaneous binary and triple collisions, which is a
 codimension-3 smooth manifold.

 Just as in the triple-collision case we can also use McGehee's coordinates

 to blow up a simultaneous binary and triple collision. This time, however, we

 blow up the set given by R2 = r23 o2/4 r2 = 0- where a = (4/m4)1/3. 123 a 45-0 hr
 We use the coordinates r123 = R sin 3 and r45 = 2aR cos,3. In this way we
 also obtain a collision manifold. The flow on this collision manifold is more

 or less the product flow of the one over the binary-collision manifold and the

 one over the triple-collision manifold (with an appropriate resealing of the
 time variable). However the next step is a partial blowup of the simultaneous

 binary and triple collisions, in which we keep the time resealing used for the

 triple-collision manifold. In this way we may treat the binary collision and

 triple collision differently.

 Let us introduce the following McGehee-type of change variables for the

 binary m4 and m5:

 (OX4, ay4) = (rcosO, rsin9),

 = tan-1 r

 (cosG al X4
 sinG) aY4,I'

 _ =(04)_' ( Cos )

 ay4 I-~ sin j'
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 1/2 - sinG

 v - rl/2y.

 In the above coordinates the equations of motion (4.5) become

 r'= (s z)r,

 s = z - (s z)s,

 z = VUi(s)-+ (s-z)z+r2, 2(rsq4)
 2 &(rs)

 I 3/2H-- I = r3/2 HPz4 (r, s, Z, i4, q4),

 (5.8) 1Z4 = r3!2Hz4(r S.Z.p4,q4),
 = v sin ,3 cos/3 -v sin512 /3/ cos112 /,

 v -tan3/2 3 (1V2 + U2-1)- + 0(r3/2),

 9' - tan3/2 /u + 0(r3/2),

 _ - tan3/2/3(- UV) + 0(r3/2),

 where U1, as defined before, contains the terms of U, which contains only qi
 and q3. That is,

 Ui(s)= 1 3/2

 (ml (S8 + s2)1/2 /m3 + 4((S2 +?52 + (1 + 2mi/m3)s)l1/2).

 Again, ' denotes differentiation with respect to T, and dT/dt =- r-3/2. Note
 that the equations for ml, m2 and m3 are exactly the same as before in (4.5).

 In equations (5.8), r = 0 is an invariant manifold. It is the collision man-

 ifold for the simultaneous triple collision of m1, m2 and m3 and the binary

 collision of M4 and m5. We shall refer to it as the simultaneous collision mani-

 fold. Note that the single triple-collision and single binary collision correspond

 to / = 0 and / = wx/2, respectively. In formula (5.8) there is still a singu-

 larity at /3 = w/2 that corresponds to the single binary collision of M4 and

 M5. Standard methods can be used to regularize this singularity. Probably
 one could use the Levi-Civita coordinates for M4 and M5 and rescale the time

 to remove the singularity. However we note that one cannot use the usual

 time-rescaling factor r45, since here the time variable r is already rescaled by

 r3/2. One would have to use the factor cos /. Rescaling any more than cos/
 may put the binary collisions into rest points for the new time variable.
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 Here we choose Easton's block regularization to regularize the single bi-

 nary collision. The method is to join the collision orbit with an ejection orbit.

 It turns out that, after joining the two orbits, we find the resulting extended

 flow is smooth globally, after passing the collisions. Note the well-known fact

 that, for all r > 0 small, the singularity : = wx/2 can be regularized as a

 block. For r = 0, the motion of m4 and m5 is a 2-body problem, without any
 perturbation from other particles. Therefore the singularity: = wx/2 is also

 removable from the simultaneous collision manifold.

 Here and after we shall speak of the flow as the regularized one.

 We remark that, intentionally, we do not restrict our simultaneous col-

 lision manifold to the invariant sets given by the energy integral or energy

 relations. However various interesting fixed points lie in these invariant sets.

 Now let us concentrate on the flow on the collision manifold. For r = 0,

 the equation concerning the triple ml, m2 and m3 is exactly the same as

 discussed before. One easily sees that the rest points of the simultaneous

 collision manifold are either of the type

 = {P} x {u = 0 v = +v"-, tan-' ((vp/V1/)2), 0 E (0, w/2)}

 or

 {P}Ix {f = 0},

 where P is one of the rest points in the triple-collision manifold, vp is the

 value of v at P and the ? sign is the same as that of vp.

 We are particularly interested in the rest points with P = E+, where E+ is
 the rest point on the triple-collision manifold. We can easily compute that for

 the rest point E+, besides the two positive eigenvalues from the triple-collision
 manifold, there are two additional positive eigenvalues. However, since we

 are restricted to the invariant subspace with C12 + C45 = 0, we can use this

 relation to eliminate the variable u. Therefore the stable manifold of E+ has
 codimension 3. Similar arguments hold for E. We conclude that the set of

 points, whose orbits lead to simultaneous triple and double collisions, forms a

 smooth manifold with codimension 3.

 The 2-dimensional unstable manifold of E+ on the triple-collision manifold
 has been studied in the previous sections. Now we discuss the additional

 branch of unstable manifolds arising from the simultaneous collisions. The

 new unstable eigenvector is in the 6f3 direction. To see how the unstable

 manifold goes in this direction we fix u = 0, v = vE+ and v = -I. Then
 the equation for f only depends on : itself; i.e., this gives an invariant set
 for the flow. If the initial value of : is less than /* = tan-1(v2 /2), one
 sees that d/3/dr < 0 for all r > 0; therefore > 0 as r >-+ x. However, if

 the initial value of /3 is larger than 3*, one easily sees that do3/dr > 0 and
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 ) r~~0=

 he= Ha4* f=O

 FIGURE 6. E? on the simultaneous collision manifold

 3 >-+7r/2 as r approaches some finite value; i.e., the orbit experiences a binary
 collision between m4 and m5. By the regularization procedure, one joins this
 binary-collision orbit with a binary-ejection orbit, which is exactly the orbit

 with _ = v/2 and with 0 incremented by wr. After the orbit is rejected from
 the binary collision, we have df3/dr < O. Again, f3 -+ 0 as r >-+ o; i.e., this

 branch of unstable manifolds of E+ also ends up in the triple collision of ml,
 m2 and m3.

 The procedure of joining collision orbits with ejection orbits may seem

 artificial and unsmooth; however, we point out that if the nearby solutions are

 considered, this indeed regularizes the flow. See [4].

 Note that the rest points on the simultaneous collision manifold with

 3 = 0 and v < 0 are attracting in the 6f3 direction. Figure 6 illustrates various
 stable and unstable manifolds and their relative positions.

 Let x* be a point in the stable manifold of E+, i.e., the orbit starting at x*
 that ends up in the simultaneous triple collision of ml, m2 and m3 and double

 collision of m4 and M5. Let t* be the time when the solution of x* ends. Thus

 q4(x*, t*) = q5(x*, t*). The above blowup technique shows that the unstable
 manifold Un(E+) of E+ forms a codimension-3 smooth subinanifold. Let II be
 a 3-dimensional section that intersects transversally Un(E+) at x*. It is easily
 seen that II intersects the set El in a small curve near x* (see Figure 6). Let
 L be this curve; thus L E El. We remark that L may not be smooth at x*, due
 to the simultaneous collision.

 Let us assume additionally that HI intersects the set {x4(x, tl) = 0,
 y4(x, fl) = 0} transversally at x* and that the curve of the intersection of
 this set and H crosses the curve l at x*.

 From now on we shall focus on the solutions starting from H. We remark

 that the only conditions imposed on HI are the transversality conditions. It is

 obvious that such a hypersurface II exists.

 Once again we point out that, on the simultaneous collision manifold, the

 variables associated with the triple collision are independent of other variables.
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 Therefore the analysis of Theorem 4.4 extends to the point x* on the stable

 manifold of E+.

 From Theorem 4.4 and the transversality condition on H we know that

 there is a 3-dimensional wedge W with vertex at t such that the following are

 satisfied:

 (1) For all x E W, 4l(x), t1(x), fi(x) and t2(x) are well-defined and
 continuous functions on x and i3(tl) >-+ x, ?3(t1) -+ oo as x -+ L.

 (2) Let c+ and c be two pieces of the boundary of W that have l as their

 common boundary; then for all x E c+

 I+ < W122(X i2) < 2w+,
 4I

 and for all x e c,

 (5.9) -W+ < -Wl2(X, t2) < 2wv+.

 (3) There is a K > 1, where K depends only on the masses of ml, m2 and
 m3 such that, for any e > 0, if W is made small enough, then for all x E A

 zl(x, i2) > Kzl (x,It ) > 0

 1z4(x, t2) - Z4(Xtil)l < 6.

 (4) The sets L, cl and c2 do not intersect the set {X4(X, tl) = 0, Y4(X, l) =
 0}.

 The next two lemmas are essential for justifying our iteration process and

 the use of symbolic dynamics.

 LEMMA 5.4. For the wedge W defined above, W C H. There is a non-

 empty closed set Li E W containing x* such that r45(x, t2) = 0 for all x e LI.
 That is, the orbits starting from Li end at the triple collision of m3, m4 and m5
 at t2. Furthermore the set L is connected and contains more than one point.

 Proof. Let c be a small closed curve in the boundary of W around x*. By

 the transversality condition imposed on the section II, c does not intersect the

 set {X4(X, 41) = 0, Y4(X, 4l) = 0}. Moreover the following map h1 from c to S1
 is well defined and topologically nontrivial:

 hi(x) = ( x4(X,t) y4(X,4) )1) for all x E c.

 The map h1 is a degree-one map. Now we define the following map h2, also

 from c to Si:

 h2 (X) = (x2 Xx i2) Y4 (X '/2) for all x E c.
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 By the properties of the wedge W, we see that h2 is also a well-defined, topo-
 logically nontrivial, degree-one map.

 Now the lemma follows from a simple topological argument. Let S be
 a surface in W with c as its boundary. Then S must contain at least one

 point such that X4(X, i2) = 0 and y4(x, 2) = 0; otherwise the map h2 can be
 continuously extended to the set S, which is impossible. Let L' be the set of all
 points in W such that X4(X, i2) = 0 and y4(x, i2) = 0. Then Lj is a nonempty
 closed set and x* e Lj. Let Li be the connected component of t' containing x*.

 It is obvious that tl contains points other than x*, which proves the lemma. L

 The next result concerns the solutions starting from Li.

 LEMMA 5.5. Let Li E Z4 be the curve of Lemma 5.4. Then there are

 infinitely many points X1, X2, X3, ..., Xi e fl, i e N, xi -* as i -* oo such
 that ri2(xi, i2) = 0. That is, for the orbits starting from xi the solution ends
 at simultaneous double and triple collisions.

 Proof. It follows from Lemma 5.3 that n(x) -* xo as x -* x*, x E i.

 Recall that n(x) is a step function that changes values only when rl2(x, t)
 reaches a local minimum at ti or t2. As there is no local minimum of r12(x, t)
 for x E Li and t = ti if W is chosen small enough, the discontinuity of the func-
 tion n(x) occurs only if r12(x, t) has a local minimum at t = t2(x). Since Li is
 connected, for any positive integer i large enough, there exists a point xi E L
 such that n(x) is discontinuous at xi and n(xi) = i. (Otherwise the set Li
 would be disconnected and consist of two disjoint nonempty components with

 n(x) > i and n(x) < i, respectively.) Renumber these points as xi's and let xi,
 i = 1, 2,3,... be these points such that r12(xi, t) is the local minimum. Then
 12(xi,t2) = 0 or r12(xiJ2) = 0. It follows from conservation of angular mo-
 mentum, C12 + C45 = 0, that C12(Xi, i2) = -C45(Xi, i2) = 0, since C45(xi, i2) = 0.
 Therefore r12(xi, i2) < 0, and f12(xi, t2) = 0 can only give the local maximum.
 From this we conclude that r12(xi, i2) = 0, proving the lemma. L

 Now we summarize the results obtained thus far. Let xt E El be a point
 such that the orbit of x* ends up in a simultaneous triple collision of ml, m2,
 m3 and a binary collision of m4, m5; let H be a small, generic, 3-dimensional
 hypersurface in the phase space. The section II intersects E1 in a curve L

 having x* in its interior. Then there is a wedge W with vertex at L such

 that, for all the orbits starting from the wedge W, m3 shoots out from ml
 and m2 and catches up with m4 and m5 in a very short time. If we make W

 smaller, the time for m3 to catch up with m4 and m5 can be made arbitrarily
 small. Furthermore, inside the wedge W, there are infinitely many points

 X1, X2 ... , xi -* x* such that, for any i E N, the orbit starting from xi ends up

This content downloaded from 128.196.130.121 on Thu, 14 May 2020 19:55:02 UTC
All use subject to https://about.jstor.org/terms



 454 Z. XIA

 in a simultaneous triple collision of M3, m4, m5 and a binary collision of ml,
 m2.

 Now we are ready to prove one of our major results, Theorem 1.1.

 Proof of Theorem 1.1. We begin by repeating the above process of con-

 structing the wedge W and finding the points xi, X2, .... This time, in place
 of x*, we use xi, i E Z and Li; and in place of the triple collision of m1, m2,
 M3, we use the triple collision of M3, M4, iM5. For each xi we take a small
 neighborhood of xi, Hi C W C II, and consider solutions starting from the
 hypersurface Hi . We may assume that IIi satisfies the transversality condition
 similar to that imposed on H. This is true because transversality conditions

 are generic conditions; so we may make an arbitrary small change to H such

 that all the transversality conditions are satisfied. It follows from Theorem 4.4

 and Lemmas 5.4 and 5.5 that, again, a wedge Wi can be found, and Wi has its
 vertex at a subarc of Li having xi in its interior. Note that Wi has a property
 similar to that of W: for the orbits starting from Wi, M3 escapes from M4 and
 M5 with a large velocity and catches up with ml and m2 in a very short time.

 Let t3(x), x E Wi be the time when M3 reaches midpoint between m1 and M2.
 The difference t3 - t2 can be made arbitrarily small by the restriction of x to

 a smaller wedge in Wi.
 Again, for each i, we can find infinitely many points in the wedge Wi, xij,

 j = 1, 2,3, .. ., xij -* xi such that the orbit of xij ends in the simultaneous
 triple collisions of m1, M2, M3 and binary collisions of M4, m5. For all j E Z,

 xij has similar properties to those of xi. Continuing in this way, and given
 any infinite sequence of positive integers, ili2i3..., we can find a sequence of
 wedges:

 ...C Wili2i3 C Wili2 C Wi1 C W

 and define a sequence of time:

 il(X) < p2(X) < [3(X) <...

 for all points of

 W n Wil n Wili2 n Wili2i3 ....

 In addition ti+1 (x) - ti (x) can be arbitrarily small for any i E 2. Thus we may
 assume that

 tii+(x) - i(X) < 2-i

 whenever tii+(x) is defined.
 We conclude the proof of Theorem 1.1 by using symbolic dynamics. For

 the infinite sequence of positive integers ili2i3 ..., by the above construction
 we have a corresponding infinite sequence of wedges

 ... C Wili2i3 C Wi1i2i3 C Wili2 C WiVi2 C Wil C Wil C WV
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 where V is the closure of the set V. This nested sequence has a nonempty

 intersection. Let q* be a point in this intersection. Then

 q *E Wili2i3...

 and ti(q*) is defined for all i = 1, 2, 3, ... .

 jl(q*) < [2(q*) < t3(q*) < ....

 Since ti+j(q*) - ji(q*) < 2-i, the sequence has a limit too:
 00

 too = lim tii(q*) < il + 2 -' < xo.
 i=1

 Therefore, for the orbit starting from q*, the solution is defined for all t,
 0 < t < too < 0. To prove that

 (5.10) Z1 (t) = z2(t) -x 00 and z4(t) = z5(t) - 00

 as t -+ too, for the solution starting from q* we could use von Zeipel's theorem,
 given in the Introduction. Since now too < x is a singularity and, from the

 construction, too is not a collision singularity, therefore lim I -* 00 as t -* t,
 where I is the moment of inertia of the total system. (We must point out,

 however, that as the binary collisions have been regularized in our problem,

 von Zeipel's theorem cannot be directly applied here. But it is not hard to

 extend von Zeipel's theorem to allow a regularization of binary collisions and

 to treat solutions with binary collisions as regular solutions.) Here we choose

 to use some estimates that were derived previously to prove equation (5.10).
 From the third property of Theorem 4.4, for any sequence of positive numbers

 q1, 62, * * *, we may make W, Wi, Wili2, ... small enough such that the following
 are satisfied:

 z, (q*, i2) > Kzj (q*, tl),

 z (q*,j3) > zi(q ,t2) - C
 z (q*, J4) > Kzi(q*, t3),

 z (q*,t5) > Z(q ,t4) -62

 where K > 1 is a constant. For any 1 < Ko < K, one easily sees that if
 61 62, ... are small enough, then

 Zl(q*J i2.+2) > Kozi(q*, t2n) > Kon z(q*, t2)

 for all n > 0. Therefore

 z(q*,t)= z2(q*,t) - oo as t - too.
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 And likewise

 z4(q*,t) = z5(q*,t) - 00 as t -* too.

 Let A be the collection of all of such points; i.e., for any q* E A there is

 a corresponding infinite sequence of positive integers, i1, i2, .. ., such that

 00

 q E nWili2 ..in
 n=l

 The orbits starting from A are unbounded solutions in finite time.

 It is obvious that A is uncountable. This completes the proof of Theorem

 1.1. ?

 For later use, we state some of the properties of the unbounded solutions

 in finite time constructed here. Since we can always choose some smaller

 wedges in the construction of A if necessary, we may assume that the following

 properties hold for all x E A:

 (1) Ifn+l - 4I < 2-2n for all n > 0;
 (2) 14t~n)/z3(t~n+l) < 2-n for all n > 0;
 (3) h123(t) > 0 whenever Z3 > 0, and h345(t) > 0 whenever Z3 < 0.

 Therefore the gradient-like property holds when we consider the subsystem

 near triple collision.

 We finish the proof of Theorem 1.2 in the next section.

 6. Noncollision singularities

 In the last section we constructed uncountably many unbounded solutions

 in finite time on the 3-dimensional hypersurface HI. As we noticed, the binary

 collisions between m1 and m2 and m4 and m5 are all regularized. Therefore
 it is possible that our solutions involve binary collisions. The main purpose of

 this section is to show that, for some of the solutions constructed in the last

 section, there is indeed no binary collision involved.

 We prove our second main result, Theorem 1.2, by proving a series of

 lemmas. Lemma 6.1 states for the unbounded solution constructed in the last

 section that the eccentricities of both the binaries m1 and m2 and m4 and m5

 approach one. In other words, let q* E A and let too be the time when the

 solution ends. Then w12(q*(t)) -* 0 as t -* too. This means that the solutions
 of the binaries are closer to a collinear problem. Lemma 6.2 asserts that the

 elliptic axes of binaries ml, m2 and M4, M5 also have limits as t -* too. Finally
 in Lemma 6.3 we prove that if these two limit axes form an angle other than

 0, Ir/2, 3ir/2 or ir, then for all t sufficiently close to t00, the angular momentum
 for one pair, say m1 and M2, is positive and the angular momentum for the

 other pair, M4 and M5, is negative. That is, for t sufficiently close to t00, the
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 angular momentum assigned to any pair does not change sign. This guarantees

 that no binary collision is possible for t sufficiently close to to. Lemma 6.3 is

 the most important lemma of this section. Its proof can be intuited as follows:

 as t -* too, move ml, M2 and M4, M5 closer and closer to the respective limit
 axes, and this is true for a large percentage of the time. Thus the change in the

 angular momentum is mostly in one direction, either decreasing or increasing.

 So, in some sense, the angular momentum for either binary behaves more and

 more like a monotonic function so that it remains away from zero when t is

 sufficiently close to to. From these lemmas we will see that if we carefully

 choose our initial conditions, we will have the noncollision singularity.

 LEMMA 6.1. Let q*(t) be an unbounded solution in finite time, as con-

 structed in the last section. Then W12(q*(t)) -* 0 and w45(q*(t)) 0 as
 t -* to, where too < 0 is the time when solution q* (t) ends.

 Proof. We first prove that w12(q*(tn)) -* 0 as n -x oc, where t- is as
 defined in the last section. For later use, we will also show that

 IW12 (q* (tn)) I < 2-nMl

 for some positive constant M1, for all n = 1, 2,.
 By construction of q* (t),

 (6.1) w4s(q (t2n))I < 2w+

 and

 w45(q*(t2n))l = c45(t2n)h45(t45)1 ? ClC45|Z3(t2n)|

 for some c1 > 0. Hence

 (6.2) Cc (t2z) ?

 On the other hand, there is a c2 > 0 such that

 IW12(q*(t2n))1 = JCl2(t2n)hl2(t2n)j

 <2 c~l2( 201lz32(t nl)l < 2w+ 2, 1(i ))2 < -2

 Here we use the fact that C12 = -C45. Therefore

 |W12(q*(t2n))l < 2-2nM2

 for some M2 > 0.

 To show that
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 for some M3 > 0, notice that Zb12 < C3 for some C3 > 0 and for all t E [t2n-1, t2n]

 We may assume that 1t2n-t2n-11 < 2-2nc4 for some C4 > 0. Therefore

 (6.3) w12(q*(tn))I < 2 nMl

 for some M1 > 0 and for all n > 0. A similar result holds for the pair m4 and

 M5:

 (6.4) w45 (q* (t)) < 2 4Mj

 for some M4 > 0 and for all n > 0.

 Instead of continuing to prove Lemma 6.1, we will use these inequalities

 to prove our next lemma and then return to Lemma 6.1. A complete proof of

 Lemma 6.1 will be given later.

 Let us consider a 2-body problem, ml and m2 moving in R2 under New-

 ton's law, and let r12 be their mutual distance. The equation of motion is

 _____ _ Ml + m2 D
 rl2, r12 E 1K

 dt2 - 3

 Besides the usual energy and angular-momentum integral, this equation

 also admits another integral. One easily checks that

 P12 = + 1 (c12 x r12)
 (6.5) r12 ml + m2

 =1 (r2 x 12x r2

 r12 m1 +M2 \ dt )
 is a constant of motion. The value of p has some important physical meaning:

 if m1 and m2 move in some elliptic orbits, then the vector p points toward the

 perigee of elliptic orbit, and the magnitude of p is exactly the eccentricity of

 the ellipse. See Pollard [13] for a more detailed discussion.

 For the solutions constructed in the last section we note that, for most

 of the time, Mi1, m2 are far away from the rest of the particles M3, iM4 and
 m5. This suggests that we treat the motion of ml and m2 as a perturbation

 problem. Motivated by the integral p in the 2-body problem, we define a

 vector P12 similarly to p above. Let

 (6.6) P12 - (xi)Yi,0) + 4(c12 x
 (X2 + y2D1/2 Ml n12X 1,0)

 where

 C12 = (0, 0, xlyl - YlXl).

 At first glance, our definition for P12 depends on r. However, if we

 write P12 in McGehee's coordinates, then the r factor cancels out (r12 0(r),
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 r12 Q(r-1/2)). Therefore P12 is well defined even on the triple-collision man-
 ifold.

 LEMMA 6.2. Let q*(t) be an unbounded solution in finite time, as con-

 structed in the last section, and let too be the time when the solution q*(t)

 ends. Then the limits of p12(q*(t)) and p12(q*(t)) exist and, moreover, if

 lim(p12(q*(t))) = P12(q*) and lim(p12(q*(t))) = P12(q*) as t -*t,

 then IP12(q*)| = IP12(q*) = 1.

 Proof. An easy computation shows that

 (6.7) P12 =-C12 x r12 ( r13) O(z4-2).

 What we want to do next is estimate the change of P12 for the unbounded

 solutions constructed in the last section. Let AP12 = p12(too) - P12(0). Then

 LAP12 =- C12 x rl2 (mlm3 ri-3) dt + j IO(Iz-2I)dt

 The second integral on the right side converges, and the first integral is an

 improper integral, because inf(r13) -O 0 as t - too. What we prove next is
 that this improper integral also converges:

 C12 x rl2 (mimr-3) dt = j + J + J

 + (C12 x r12 ( 1 3)) dt

 = E I'cl2 xrl2 (4r3)d

 (6.8) (c12 x r12 ( r1) rd3 dt.
 n=O nl

 The second summation is convergent, since the integrand is bounded (note
 that r > A). Therefore we only need to show that E' ?o an is a convergent
 series, where

 (6.8) an = C12 x r12 ( l 3rB3) dt.

 Using the substitution of variables r = r(t) defined by dt = r3/2dT, and letting

 = T(tn) and Tn = T(tn), we have

 JT2n+1 ( i1m3 (0, 0,U) x (cos 5 cos 09 sin 0 sinO0)) 0 dT
 an = t ),;2 0)3/2 d T.
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 Therefore

 (6.9) lan_ < mm3ucos4IdT.

 Let T2?n+ E (72n, T2n+1) be the time such that v(4T'n+) = -vo < 0, where vo is
 any positive number such that -vo > v(E+). Recall that E+ is the rest point
 in the triple-collision manifold. It follows from the gradient-like property of
 N+ that T2n+1 is uniquely defined. Thus

 (6 10) l J < d2n+l mim3lucos T + mlm3ucOsPIdT
 Tn 20n+ 1 4

 We will consider the above two integrals separately. For the first integral,

 70 70
 T2n+1 MlM31UCOSO1 d 2r< 43 dT

 fT2n+1 mlm3IC12Id

 JXn 4rl/2 d

 (6.11) =m2n1 m3|c12 + C12 - C2ldT Tn

 < T.0 0mlm3Icl2 - +,2n+1 Ml M3 IC12 +C12?C21-
 (6-11 1/2 ~+ JdT,

 where c??< = c12 (t?121 dT
 Following from r = r/v, < <-vo for all t E [E2n, t?2f?1], we have

 r <-r-l40/2

 Therefore

 r(t) ? rO + vo(t~n+1 - )

 for all t C [t2n, t~rH11.

 From 1cl21 ? clr12r45rl4 for some c1 > 0 we may assume that

 1C12 - c}21 < -- n~l~?2n+1 -t)

 for some M1 > 0, t e [t2ri, t~n+1]; therefore

 2-l2 - <(t t)
 where c12( /2 + vo(tC122-n

 a-2n rE x t~2n1 1-J
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 and

 7.0~ ~m~12 o to -nlt-/

 (6.12) 4rl/2 ttn4

 < fI 2n

 for some M2 > 0 and for all n.
 For the first integral of (6.11) note that r' < -rvo for all T C [i2ni r&+l]

 We have

 r > rOexp(vo( r0+1-)).
 Therefore

 mlm3IlI K 01mrl3Z r'
 JT2 ~ 3 1 ]21 2n+1MM
 -n 4rl/2 -:2 4rl/2

 (6.13) < Ti m uo exp(-2vo(T2o+i-T))dT

 ? M3uo I

 for some M3 > 0. Later on, we will show that Iuol < 2-M9 for some Mg > 0.
 We now consider the second integral in (6.10). For this we need an esti-

 mate concerning u,

 u' =-vu + rf(t),
 2

 where f(t) is a function of t such that

 If (t) = ?12 |< Clrl2r45r5.

 Therefore

 u(T) = exp -| v(T)dT) (uo + J f(t) rexp (I 2v(d) d)

 where uo = u(Tr2n+i). Change variable r to t in one of the above integrals with

 f ~ ~ ~ ~ ( (011

 u (T) = exp (I v (r) dT)

 x (uo + f (t)r / exp (j 2V(T)dT) dt).

 From that r' = rv it follows that

 r = roexp 11 v(T)drI;
 +J1-I

This content downloaded from 128.196.130.121 on Thu, 14 May 2020 19:55:02 UTC
All use subject to https://about.jstor.org/terms



 462 Z. XIA

 therefore

 exp (] ? v(T)dT) = -)
 ~o 2 9 ro/

 Using the above equation, we obtain

 exp -V(T)dT dt -d 1/2t
 (6.14) o 2 J\)r / 2n+1 n+1 ~~~~~~J2n?1

 < max I-f Iro 1/2 t-to.
 It follows from the proof of Lemma 4.2 that there is a constant d5 such that

 rOI/2 It2n+1 - t2n+ l < d5

 for all n > 0. On the other hand, for all t E [t?2n+1, t2n+1] we may assume that

 max If(t)1 < c2rl2r45r1- < 2 4

 for some M4 > 0 and all n > 0. Therefore

 J 2n~l If M tVnm
 It 12dt < 2 M

 2n+1 ro

 for some M5 > 0 and all n. Thus we have the second integral of formula (6.10)
 JT2n+1 mlrn3|u COS d

 4 dr

 j r2n+1 rr1l 3 UI

 2n+1

 T~n+1 -2nM (6.15) ITO (uo + 2 5)eXp ( V(T)dT) dT

 < |Ul 2 M5)j4 exp (fT -22v(T)dT)d
 'ii '-'-2rt~~~'T2* (fT 1

 + (Uol + 2 V M5) J exp -2v(T)dTJ dT

 where T;n+l (x) is the value of T when the orbit of x reaches the solid cylinder
 T.

 We want to show that both of the above integrals are bounded. Similar

 to the argument used in proving Lemma 4.2, we see that

 (6.16) 1T l- T12n+1 ? M6,

 -2n-<
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 for all T E [T2n+i T2*+1], where M6 and M7 are positive constants.
 For the second integral in (6.15) we use the same argument as that used

 to obtain inequality (6.13). Note that

 1 (fTn+i
 exp --v(T)dT = exp - v(T)dTr
 0 2 J2

 2+ 1
 (6.18) T~~n?1 exp 11+ --v(T)dT)

 The first term above is bounded. For the second term, following from that

 v(T) > v+ for T > T2*n+l, we have

 Ir 1

 exp (] --v(T)dT < exp --V -r2n+l) 22

 Together with inequalities (6.15), (6.16) and (6.17) this yields

 (6.19) 42?X dr < (uo I + 2 2M5)M8

 for some M8 > 0 and all n > 0. Therefore it follows from inequalities (6.10),
 (6.11), (6.12) and (6.13) that

 (6.20) lanj < (luol + 2 2M5)M8 + 2 2M2 + M3IuoI
 = (M3 + M8)Iuoj + 2 2(M2 + M5M8)

 In order to show that E IanI is a convergent series, we only have to show that

 (6.21) luQ ? 2 2M9

 for some Mg > 0. For this we use inequality (6.3): Iw12(tn)l < 2-nM1. Recall
 from the definition that IW121 = IhI2C221; therefore

 (6.22) C2 ()h )I < 2nM1.

 Next we derive some estimates for c12(4n) in terms of uo. Again let t*
 t2n+1 E It2n, t2n+1] be the time such that the orbit reaches T, and let r(t2n+1) =

 r*. It follows from equation (6.14) that

 Ic12(t2n)I = Jr (t2n)U(t2n)1

 (6.23) = r n / (-n+1) I uO + S (t2n)
 > Mior*2 uo + S(i2n)I1

 where

 s(t) = J exp ( v(T)dT) f (t) r-1/2dt.
 2n+1 2+1
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 The inequality in (6.23) comes from

 r* exjn+l1 1v( )dr < M-2
 r (r~n +) exp 12 7l+1

 for all x such that x(t2n+1) E T and some M1o > 0. Here we used inequality
 (6.16). Note that it follows from equation (6.14) that

 1s(t)l<? 2 M5 for all t etn+11 2n+1]

 On the other hand, as in the proofs of Lemma 4.2 and 4.3, one can easily

 see that there are d7 > 0 and d8 > 0 such that, for r* sufficiently small,

 (6.24) d7 < ih12(?2n)j < d8
 hi(t*~D ?d

 for all x such that x(t2*n1) E T. Combining formulas (6.22), (6.23) and (6.24),
 we have

 2-(2n+ )Ml > Iw12(t2n)1 > d7Ih12(t2n+1)IM120r*Iuo + s(f2n)J.

 Therefore

 UO ? 8(f2n)I ?* t O ( 2n)1 - r*hl2( 2,+1)1

 To prove inequality (6.21), it follows from Is(t2n)I < 2 2M5 that we only need
 to show that

 lr*hl2(t2*n+l)l > M11

 for some M1l > 0 and for all x such that r(t?n+i) E T. Since To is a compact
 set, it suffices to show that, for any x E T,

 (6.25) lrhl2(x)1 & 0.

 Notice that rhl2(x) does not depend on the value of r and, in McGehee's
 coordinates, that

 trhi2 (x) l = |9-2 v sin25 Qw2 +2vwsin4 -m /2m3 (1 + 2a sin q)-1/2

 For x c M, where M is the triple-collision manifold, g(x) = 0. Similar

 to the argument used in proving Lemma 2.1, we see that rh12 (x) :7 0 for all
 x E M. By the continuity of rhl2(x) and the compactness of TonM, statement
 (6.25) is true provided that g is sufficiently small. Therefore Irhl2(x)l # 0, if
 To is made small enough. Since we can always choose To as small as desired,

 we may assume that this is true. Therefore inequality (6.21) holds; i.e., luol <
 2-2nM9 for some Mg > 0. Thus Ea an is a convergent series and, therefore, the
 limit of p12(q*(t)) exists as t -4 to.
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 From 1/2wl2 = (1 - IP1212)1/2 and w12(tn) -? 0 as n -? oc, we have
 P12(q*(tn))[ >- 1 as n -+ oc. Because the limit of p12(q*(t)) exists as t -to,
 then IP12 (q* (t)) I-? 1 as t -? to. This proves Lemma 6.2. D

 Observe that

 W12 = 2(1 - IP12 12)1/2 -+ o.

 Thus w12(q*(t)) -* 0 as t - too, which proves Lemma 6.1, as promised. L]

 Now we can state the following important lemma, which concludes proving

 the existence of the noncollision singularity.

 LEMMA 6.3. Let q*(t) be an unbounded solution in finite time, as con-
 structed in the last section. Also let P12, P45 be the same as those of Lemma
 6.2. If Pt2 . p45 # 0 and 2 #& ?P45, i. e., if Pt2 and P*5 are neither parallel
 nor perpendicular to each other, then there exists a ta < too such that, for
 all t E (ta, too) C12 #4 0. In other words, there is no binary collision between
 ml, m2 and m4, m5 in the time interval (ta, to).

 Proof. The proof of this lemma is easier than one might expect. First we
 compute that

 cl2 = 2mlm4(XlY4-x4yi ) (rK3 - 3).

 Let 0 be the angle between the two vectors r12 and r45,

 Cos 0 X1X4 + Y1Y4
 (Xi + yl )1/2 (X4 + y4) 1/2

 Then

 c12 =2MlM4rl2r45 sin 0 2rl2r45 cos 0 (Zl - Z4) 6

 (6.26) + O((Zl - Z4)9))

 = mim4rl2r45sin20((Z - Z4) ? O(( Z4) - )

 Let q* (t) be an unbounded solution, as constructed in the last section.

 It follows from Lemma 6.2 that p12(q*(t)) and p45(q*(t)) have limits P*12 and
 P45 as t -? too, where too is the time when the solution q* (t) ends. Let G* be
 the angle between P*12 and P*5. By the assumption of the lemma,

 sin 28 $& 0.

 Assuming that sin 20 > 0, we find that the case with sin 20 < 0 can be treated

 equally. Let w be the angle between p12(q*(t)) and p45(q*(t)). Then

 / (1) - * _* as I I- ,,
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 Let tb < too be the time such that, for all t E (tbt t),

 sin 2w(t) > 0

 and also

 (Z1 - Z4)-6 + ((Zi - > >0

 where the high-order term O((zi - Z4)-9) is from that of equation (6.26). This

 is possible since (zi - z4) -X oc as t - too.
 Now we have two cases:

 (a) If c12 7& 0 for all t E (tb, to), then we take tb = ta, thus proving the
 lemma.

 (b) If for some t = ta, ta E (tb,to,), there is c12(ta) = 0, then we shall
 show for all t E (ta, too) that c12(t) #& 0, and again the lemma is proved.

 However note that, by definition,

 P12 = rl2(ta) 4(C12 x ( 1, ?))
 ri2(ta) ml

 Since ci2 (ta) = 0, we have P12 (ta) = r2 (ta)rjl- (ta); therefore

 O(ta) = W(ta).

 Hence

 612(t)M= lmlm4rl2r45 sin(2w(ta)) ((Zi - Z4)-6 + h.o.t) > 0, 8

 provided that r12(ta) #& 0 and r45(ta) #& 0. Therefore, for r12(ta) #& 0 and

 r45(ta) #& 0, we have the following:

 (1) c12(t) < 0 for all t < ta, (ta - t) sufficiently small; and
 (2) c12(t) > 0 for all t > ta, (t - ta) sufficiently small.
 The above also holds for the case ri2(ta) = 0 and/or r45(ta) = 0. Now we

 will prove for all t E (ta, tc) that c12(t) > 0.
 We do this by contradiction. Suppose that this is not true. Then there

 exists t' E (ta, too) such that c12(t) > 0 for all t E (ta, tc) and c12(tc) 0 O. Since
 C12(tc) = 0, it follows from the above discussion (with ta replaced by tc), that

 C12(t) < 0 for t < tc and tc - t sufficiently small, which is a contradiction to

 our assumption.

 This proves Lemma 6.3.

 Finally, we are in a position to prove our main result: the existence of

 noncollision singularities.

 Proof of Theorem 1.2. From Theorem 1.1 and Lemma 6.3 we know that

 we only need to show that there is an uncountable subset Ao of A such that,
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 for all x E AO, p*12(x) and P45(x) are neither parallel nor perpendicular to each
 other.

 Let x* be the point in Theorem 1.1 such that

 sin(20(x*,t*)) #& 0,

 where 0 is the angle between P12 (x*, t* ) and P45 (X*, t*). The existence of such
 a point is obvious. The proof of Lemma 6.2 leads to the idea that, for any

 e > 0, we may select the wedges W, Wi, Wij, Wijk,... small enough such that,

 for all x e AO=w nwf nlwijfnWijknf....

 P122(X*, t*) - P12(x, t)I < E

 and

 1P45(X*, t*) - P45(X, t)I < E

 for all t such that t2 < t < to. Therefore we can make E > 0 small enough

 that

 sin 20(x, too) #& 0

 for all x E AO.
 Theorem 1.2 now follows from Lemma 6.3. D
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