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Abstract—A joint program involving the study and practical
performance of a foil-flyer electromagnetic accelerator has re-
cently been initiated by Atomic Weapons Establishment, Alder-
maston, and Loughborough University. As an initial phase of the
work, both 0-D and 2-D numerical models for the foil-flyer accel-
erator have been developed. The 0-D model, although very crude,
is capable of providing an insight into the accelerator phenomena
and is currently used for parametric design studies. The 2-D model
is based on the well-proven Loughborough filamentary modeling
technique and is capable of accurately calculating the 2-D distri-
bution of current, velocity, acceleration, and temperature of the
flyer, together with the complete distribution of the magnetic and
electric fields generated during a shot. The paper presents the
two models and compares typical theoretical predictions with the
corresponding experimental results.

Index Terms—Electromagnetic accelerators, electromagnetism,
filamentary modeling, pulsed power.

I. INTRODUCTION

A NUMBER of research programs have been recently
carried out which exploit the electromagnetic forces gen-

erated by the current flowing in a strip-line conductor geometry
[1]–[5]. These experiments have been developed to conduct
isentropic compression experiments (ICE) as well as small-
scale flyer plate impact shock-wave tests. The present paper
however is dedicated to a capacitor-based high current pulsed
power system designed and developed at Atomic Weapons
Establishment (AWE) to simulate the mechanical impulse im-
parted to a target by the exo-atmospheric deposition of cold
X-rays. The impulse is generated when a thin layer of the
target material is ablated outwards, and at the same time, an
inwardly directed shockwave is generated to conserve momen-
tum; this travels to the back surface of the target and can
cause mechanical damage including spalling or delamination.
The effect of the shockwave is of importance and a method
to recreate it without the need for X-rays has been developed.
In order to achieve a reliable and accurate simulation of this
effect in a planar target, it is necessary to create a planar
shockwave which can travel through the material.
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Fig. 1. AMPERE facility for accelerating flyer plates installed at AWE
Aldermaston.

The system developed at AWE is based on a series RLC
circuit which has a time varying resistance and inductance due
to both an exploding metallic fuse and the dynamics of a flyer.
A shot consists of charging the capacitor, with the circuit open,
followed by discharging it using a triggerable closing switch.
The system termed AMPERE (Fig. 1) is fully described in
[6], but for clarity the electromagnetic accelerator, part of a
parallel-plate transmission line (historically termed a “strip”
line), is presented in Fig. 2. The electromagnetic accelerator
has a simple configuration, consisting of three parts:

– a relatively thick and immovable metallic part, termed
the “stator,” that is mounted on top of a heavy support
(a table, shown in Fig. 1);

– a thin dielectric layer, mounted above the stator, which
can withstand the electric field developed between the
flyer and the stator during a shot; its thickness deter-
mines the initial (vertical) distance between the two
components which is of paramount importance for the
flyer dynamics;

– a thin metallic foil, termed the “flyer,” which is the
moving part and is mounted on top of the dielectric layer.

The flyer and the stator are electrically connected to the
transmission line, with the same current flowing in opposite di-
rections through the two components and generating magnetic
fields and repulsive forces. All accelerator parts are manufac-
tured to be as flat as possible to avoid any trapped air between
the parallel mounted components.

In what follows all the components are considered as incom-
pressible bodies, with both 0-D and 2-D models neglecting their
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Fig. 2. Electromagnetic accelerator embedded in the parallel-plate transmis-
sion line (strip line) of the AMPERE pulsed power system.

elastoplastic properties, together with the associated production
of shock waves. Naturally following from this, the variation
of the electrical conductivity of metals due to pressure is also
neglected.

II. 0-D MODEL

A. Generalities

The 0-D model is based on the main simplifying assumption
that the current flows homogeneously, through both the flyer
and the stator. This assumption has a series of consequences:

– the flyer is accelerated without changing its shape, i.e., it
remains flat at all times during a shot, and therefore only
one velocity has to be calculated;

– the Joule energy is uniformly deposited within the two
metallic components, i.e., during an experiment, there is
only one (bulk) temperature for the flyer and another one
for the stator.

B. Circuit Equations

The equivalent circuit for the system is shown in Fig. 3 and
can be described by the two first-order differential equations:

V0−
Q(t)
C

=
[
Rb+Rfuse(Wfuse)+Rflyer(Wflyer)+

dLacc

dt

]
I(t)

+ [Lb+Lacc(t)]
dI

dt
(1)

I(t)=
dQ

dt
(2)

where C is the bank capacitance initially charged to a voltage
V0. I(t) and Q(t) are the circuit current and the corresponding
charge injected into the circuit at time t, Rb and Lb are the
total circuit resistance and self-inductance, excepting the fuse
and flyer resistances (Rfuse and Rflyer) and the accelerator
self-inductance Lacc, a time-dependent variable. For simplicity,
both Rb and Lb are regarded as time invariant during a shot.

The Loughborough exploding metallic fuse model (Fig. 4),
provides the variation of its initial resistivity (and therefore its
resistance) during the explosion. It requires calculation of the
specific Joule energy Wfuse deposited during the shot, which is
obtained by integration of the following differential equation:

dWfuse

dt
=

I(t)2Rfuse

massfuse
(3)

where massfuse is the fuse mass and the fuse resistance is
a function of deposited energy, i.e., Rfuse = Rfuse(Wfuse).

Fig. 3. Equivalent electrical circuit of the AMPERE pulsed power system.

Fig. 4. Phenomenological model for exploding fuse, the normalized variation
of resistivity during an explosion is shown in the vertical scale as a number that
indicates how many times the initial value has increased for a specific Joule
energy deposited into the fuse.

A similar equation (i.e., the same model) is used firstly to
calculate the Joule energy deposited into the flyer (Wflyer) and
then to estimate its resistance (Rflyer).

The initial self-inductance of the accelerator is that of a
parallel plate transmission line (“strip line”) of length l, width
w, and plate separation d, for which the following simple
formula exists:

Lline = µ0
dl

w
K

(
d

w

)
. (4)

Although the transmission line has a very simple geometry,
the best estimate for the correction factor K (dependent on the
ratio between the separation distance d between the plates over
the plate width w) is given in literature only in the form of a
figure [7]. However, by using experimental results for parallel
plate capacitors (sic!) [8], an analytical form for the correction
factor can be derived, allowing the following accurate formula
for the accelerator self-inductance during acceleration to be
obtained:

Lacc(y) =




µ0l
π ln

(
8y2+w2

2wy

)
for y > 2w

µ0l
1

w
y +1.21−0.11 y

w +(1− y
2w )6 otherwise

(5)
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Fig. 5. Calculation of the magnetic field produced by the stator at a point
P (xp, yp) with current flowing along the Oz-axis; an elementary straight
conductor is highlighted, situated at a distance x from origin, having a width
dx, carrying a surface current density J = I/w and producing an elementary
magnetic field dB at the point P.

where y(t) is the time-varying flyer position, with y(t = 0) =
d being the initial distance between stator and flyer. The time
rate of change of the accelerator self-inductance can be easily
calculated at all times as

∂Lacc

∂t
=

∂Lacc

∂y

∂y

∂t
= vy(t)

∂Lacc

∂y
(6)

where vy(t) is the time-dependent flyer velocity.

C. Flyer Dynamics

For calculating forces, the 0-D model considers both the
stator and the flyer as infinitely thin plates, made from a large
collection of straight elementary conductors (parallel to Oz)
carrying the same surface current density J = I/w (see Fig. 5),
over their width dx. The magnetic field produced at a point
P (xp, yp) by an elementary conductor situated a distance x
from the origin (Fig. 5) is dB = (µ0J/2πr)dx, where r =√

(xp − x)2 + y2
p.

By integrating the magnetic fields produced by all elemen-
tary conductors, the components of the total magnetic flux
density produced at P by the stator are given by

Bx(xp, yp) = − µ0ypJ

2π

w∫
0

dx

(xp − x)2 + y2
p

=
µ0I

2πw

[
tan−1

(
xp − w

yp

)
− tan−1

(
xp

yp

)]
(7)

By(xp, yp) =
µ0J

2π

w∫
0

(xp − x)dx

(xp − x)2 + y2
p

=
µ0I

4πw
ln

[
x2

p + y2
p

y2
p + (xp − w)2

]
. (8)

Interaction of the magnetic field generated by the stator
with the current Jdx = Idx/w flowing through an elementary

Fig. 6. Calculation of the differential force acting on a flyer elementary
conductor.

conductor of width dx and length l of the flyer produces a
differential force having two components

dF =
Idx

w
(l × B) =

Idx

w

∣∣∣∣∣∣
kx ky kz

0 0 −l
Bx By 0

∣∣∣∣∣∣
=

Ildx

w
(Bykx − Bxky).

The first of these is perpendicular to the flyer surface (dFy in
Fig. 6)

dFy

∣∣∣
y=d

=− Il

w
Bx(x, d) dx

=−µ0I
2l

2πw2

[
tan−1

(
x − w

d

)
− tan−1

(x

d

)]
dx (9)

and is responsible for the vertical acceleration of the flyer.
The other is parallel to the flyer surface (dFx in Fig. 6) and
is attempting to change its shape. The action of this force is
not present in what follows, since the elastoplasticity of the
flyer is neglected and the total accelerating force Fy, acting on
the flyer when a distance y = d from the stator, is found by
integration as

Fy(d)=

w∫
0

dFy=
µ0I

2l

2πw2

[
2w tan−1

(w

d

)
− dln

(
d2 + w2

d2

)]
.

(10a)
This is a more accurate calculation of the accelerating force

than simply estimating it from the resultant magnetic pressure
produced by both the stator and the flyer

Fy =
(2B)2

2µ0
lw =

(
2µ0

I
2w

)2
2µ0

lw = µ0
I2l

2w
(10b)

as used in similar published 0-D modelling [9]. It is clear that
(10b), calculated using the magnetic flux density B produced
on the stator (or flyer) surface, provides a force that remains
constant during acceleration and is always larger than the force
calculated using (10a).

Apart from the electromagnetically produced force, the flyer
dynamics is influenced by (at least) three forces, all opposing
its initial phase of acceleration.

The first of these is caused by friction with the ambi-
ent gas (air in the present experiments), with the drag force
expressed as

Fdrag(v) =
1
2
ρgasv

2Cdraglw (11)
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TABLE I
FITTING COEFFICIENTS USED IN (13)

where ρgas is the gas density and v is the flyer velocity. The drag
coefficient for a plate is approximated as Cdrag ≈ 1.28. As will
be evident later, due to the low values of the flyer velocity, this
force is negligible in the present experimentation.

The second is simply the constant gravitational force

G = mflyerg (12)

where mflyer is the flyer mass and g is the gravitational constant.
The third force appears whenever a solid target plate is

initially mounted a distance dmax above and parallel to the flyer.
The target introduces extremely complex interaction phenom-
ena, for which a simplified model is presented below. During
a shot, two phases in the flyer dynamics can be distinguished
in the flyer dynamics, due to the effect of the target. These
are both related to the compression and decompression of two
gas volumes: the first located between the flyer and the target
and second between the flyer and the plastic insulator covering
the stator, with the flyer playing the role of a piston. During
the first phase, the pressure build-up eventually produces shock
waves, and their complex interactions with the target and flyer
eventually reverse the direction of the flyer velocity, which
is the second phase. Since the careful construction of the
initial setup eliminates initial air pockets between the flyer
and the insulator covering the stator, it can be assumed that
there is initially a vacuum formed behind the accelerating flyer
(a phenomenon used in the development of the technology for
reliable multi-MA transmission lines [10]), but this volume is
later filled with gas. The second phase of acceleration is much
more complicated to model as it involves not only the decom-
pression of the gas, but also the elastic and plastic properties
and thicknesses of both the flyer and target. For simplicity,
only adiabatic compression processes are assumed as suggested
in [11], and therefore the retarding force on the flyer can be
estimated as

Fflyer-target(y) = p0lw

(
dmax

dmax + d − y
Kflyer-target

i

)γ

(13a)

corresponding to the volume of gas compressed between the
flyer and target and

Fflyer-stator(y) = p0lw

(
dmax

y − d
Kflyer-stator

i

)γ

(13b)

corresponding to the gas compressed between the flyer and the
plastic covering the stator; p0 is the ambient gas pressure, the
adiabatic factor is approximated as γ ≈ 7/5 and the coefficients
Ki (i = 1, 2) given in Table I are determined such that the
theoretical calculations match the experimental data.

Fig. 7. System current during a shot, continuous line: experiment; dotted line:
0D model.

Taking into account all forces, the differential equations of
motion can be written as

dv

dt
=

1
mflyer

(
Fy + (−1)iFdrag − G − Fflyer-target

+ Fflyer-stator) (14)

dy

dt
= v (15)

The flyer begins to move from its initial position only when
Fy > G + Fflyer-target(y = d).

D. Theoretical Calculations Compared to Experimental Data

By integrating the system of first-order differential equations
(1)–(3), (14), and (15), using for example the MATHCAD
15 Runge-Kutta built-in subroutine, the solution can be easily
found.

In the example below, the main AMPERE parameters [6] are:
C = 129 µF, V0 = 21.5 kV, Rb = 8.8 mΩ, and Lb = 650 nH.
The exploding fuse is made from 50 µm thick aluminium foil,
85 mm wide and 300 mm long. The stator is made from 1 mm
thick copper sheet, 90 mm wide and 300 mm long, and the flyer
is made from 300 µm thick aluminium foil, 90 mm wide and
300 mm long. A complete run over 120 µs under Windows 7
on a laptop with an Intel Core i7 CPU @ 2.67 GHz with 4 GB
RAM takes just 2 seconds.

Figs. 7–11 show the wealth of information provided by the
theoretical calculations and compares these with corresponding
experimental data.

Analysis of calculations made with the 0-D model shows that
although the model is very crude, it can nevertheless be used
to provide a basic understanding of the phenomena involved.
It can also prove very useful in minimizing the calculation
time when detailed parameter studies are conducted during the
tedious design procedure for a novel accelerator.

III. 2-D MODEL

A. Generalities

The 2-D model is based on the well-proven Loughborough
filamentary modelling, which has been in use for many years.
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Fig. 8. Voltage across AMPERE transmission line, incorporating the
exploding metallic fuse and the electromagnetic accelerator, continuous line:
experiment; dotted line: 0D model.

Fig. 9. Time dependence of the flyer velocity; two phases of acceleration are
present, defined by the sign of velocity and corresponding to the following
time intervals (in µs): 0–40 (positive), 40–80 (negative), continuous line:
experimental data from heterodyne velocimetry technique [1] dotted line: 0D
model.

Fig. 10. Flyer dynamics inside the space between the insulation covering
the stator and the target; the initial axial separation between the flyer and the
stator is 1 mm with a target mounted at 2 mm above the flyer continuous line:
integrated experimental data of Fig. 7; dotted line: 0D model.

Fig. 11. Theoretical predictions of the various pressures acting on the flyer
during the different acceleration phases; note the logarithmic scale.

Fig. 12. Parallel-plate electromagnetic accelerator, (for simplicity, the stator
and flyer are shown identical).

A number of original features have recently been introduced
into the standard approach (also termed network mesh or mesh-
matrix method), mostly related to the fast dynamics of im-
ploding/exploding metallic structures. The technique has been
successfully applied by Loughborough along the years in a
very wide range of pulsed power applications, including pulsed
ultrahigh magnetic field coils [12], explosively driven flux-
compression generators [13], [14], single and multiturn elec-
tromagnetic launchers [15]–[17], electromagnetic launchers
[15]–[17], electromagnetic compression [18], and the design of
various types of high-voltage air core pulsed transformers [19].

The starting point in applying the technique to the present
task is to define Cartesian (rectangular) coordinates, with the
transmission line and therefore its current I along and posi-
tioned symmetrically about the Oz axis, and with the short-
circuited end in the Oxy plane as shown in Fig. 12. The method
is based on two fundamental hypotheses:

I) the current direction inside the metallic components is
known a priori, i.e., it flows only along the Oz axis;

II) the current density is uniformly distributed inside each
filament.
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Fig. 13. Filamentary representation of the electromagnetic accelerator. By
symmetry, only currents in one half have to be calculated, and, for simplicity,
the stator and flyer are shown as identical.

Implementation of the method requires:

I) the conductors to be “cut” or “divided” into parallel,
isolated filaments along the Oz axis (the best way is
to visualize the filamentary representation as conductors
comprising a large number of much thinner conductors
each coated with an infinitely thin insulating layer), such
that the filamentary currents flow uniquely along this
direction (Fig. 13). The cross section of the individual
filaments, clearly related to their total number N, must be
sufficiently small for the uniform current density hypoth-
esis to be valid.

II) the filaments form an electric circuit network for which
Kirchhoff-type equations can be written. The resulting
system of N algebraic equations is firstly solved for the
“i-dots” (i.e., the time rate of change of the filamentary
currents), and the resulting first-order differential equa-
tions are time integrated using the initial conditions and
(for example) a Runge-Kutta subroutine. The results, in
the form of filamentary time-dependent currents, provide
a wealth of information on the system, as shown later.

By inspection, symmetry allows both of the two conductors
forming the accelerator (i.e., the flyer F and the stator S) to
be represented by two segments (i.e., left side FL and right
side FR), through which the same current flows as shown in
Fig. 13. The technique therefore requires only calculation of
the filamentary currents flowing through only one segment of
each conductor, which enables the total number of filamentary
currents flowing to be doubled.

B. Filamentary Kirchhoff Equations

Consider the current in FR, representing half of the total
current I, decomposed into N identical parallel rectangular fila-
mentary currents. Each of these is homogeneously distributed
inside the rectangular cross-section area with width ∆xf =
w/2nx and height ∆yf = th/ny, where w and th are the flyer
width and thickness and ny and nx represent integers with
N = nynx. Numbering of the filamentary currents begins at
the lower right-hand side of FR, as in Fig. 13, to allow easy

implementation of the symmetry. The coordinates of the center
of the i-th filament are

xfi =
w

2
−
(

mod(i, nx) +
1
2

)
∆xf (16)

yfi =
d

2
+
(

floor

(
i

nx

)
+

1
2

)
∆yf (17)

where mod(i, n) and floor(x) are subroutines returning the
remainder of i when divided by n and the greatest integer ≤
x, respectively. An identical procedure is applied to find the
coordinates of the centers of the stator filaments. For reasons
related to limiting the computational time, it was decided to
divide the stator plate into the same number of filaments as the
flyer plate. It is important to note however that although the
currents flowing through the stator filaments are precisely those
flowing through the flyer filaments, the model allows the stator
filaments to have a different geometry. However, for simplicity,
both Figs. 12 and 13 show an accelerator with the flyer and the
stator being identical plates, but in many cases, the stator plate
is much thicker than the flyer plate and does not necessarily
have the same width. In such cases, the filamentary cross-
section sides for the rectangular stator filaments are larger than
that for the filaments in the flyer, i.e., ∆xs>∆xf ; ∆ys>∆yf .

By applying Kirchhoff’s current and voltage laws, the total
current I is obtained in terms of the filamentary currents Ii as

I = 2
N−1∑
i=0

Ii (18)

and the N first-order differential voltage equations for the
filamentary currents (i = 0 . . . N − 1) as:

V0−
Q

C
−2 [Rb+Rfuse(Wfuse)]

N−1∑
j=0

Ij−
[
(Rf )i+(Rs)i

]
Ii

−
N−1∑
j=0

[DMFRFRi,j +DMFRFLi,j−DMFRSRi,j

−DMFRSLi,j−DMSRFRi,j(1−δi,j)
−DMSRFLi,j ] Ij

=
N−1∑
j=0

[MFRFRi,j +MFRFLi,j +MSRSRi,j

+MSRSLi,j−MFRSRi,j−MFRSLi,j

−MSRFRi,j(1−δi,j)−MSRFLi,j

+ 2Lb]
(

dI

dt

)
j

(19)

with the time rate of change of the charge injected into the
circuit

dQ

dt
= 2

N−1∑
i=0

Ii (20)

where δi,j is the Kronecker delta function (i.e., δi,j = 1 if i =
j and δi,j = 0 if i �= j). The resistance (Rf)i of the i-th flyer
filament depends on its temperature, i.e., on the specific Joule
energy (Wf)i deposited into the filament during the shot

(Rf)i =
l

σ ((Wf)i) ∆yf∆xf
(21)
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where σ is the temperature-dependent electrical conductivity
of the flyer material and the time rate of change of the Joule
energy is (

dWf

dt

)
i

=
I2
i (Rf)i
massf

(22)

where the filamentary mass is simply massf = massflyer/2N .
Similar equations apply for the stator filaments.

In (19) MFRFRi,j represents the mutual inductance between
filaments i and j, both situated in the right-hand side of the
flyer, while MFRSLi,j is for the mutual inductance of a pair
of filaments situated in the flyer right-hand side and stator left-
hand side, etc. The time rate of change of the mutual inductance
between a pair of filaments i and j is written as DMFRFRi,j,
when the filaments are both situated in the flyer right-hand
side, and so on. Because the stator shape remains unchanged,
DMSRSRi,j = DMSRSLi,j = 0 for any i and j. Note also that
MSRFR and DMSRFR are the transpose of MFRSR and
DMFRSR.

C. Mutual Inductance of Two Rectangular Filaments

Implementation of simple formulae for the filamentary self-
and mutual inductances seems straightforward and using such
a technique [20] reported the successful modelling of transmis-
sion lines with parallel-plate geometry. Due to the simplicity
of their model, i.e., no Joule effects or forces were taken into
account, the authors were able to use a very large number
of filaments having a square cross section. When the same
technique was applied to the flyer plate accelerator, it failed,
i.e., the inverse of the inductance matrix could not be calculated
numerically. An analysis showed that because of their rather
low number, and because of the particular geometry of the
flyer (i.e., a thin and rather wide plate), the filaments have a
particular rectangular cross section with one side many tens
of times larger than the other (like a very thin plate), and in
such a case, the simple technique used in [20] for calculating
inductances is obviously invalid.

An exact formula is available [21] for calculating the mutual
inductance M between two parallel filaments i and j

Mi,j =
µ0l

2π


ln

l +
√

l2 + dist2i,j

disti,j
−

√
l2 + dist2i,j

l
+

disti,j
l




(24)

where disti,j is the geometrical mean distance (GMD) between
the two filaments and not simply the distance between their
cross-section centers as in [20]. The problem is that although
the GMDs of rectangular areas were calculated at the beginning
of the XXth century (see for example [22]), the published re-
sults are restricted only to symmetrically positioned rectangles.
Fortunately, Tasker has recently solved this complicated issue
and obtained the analytical formulae for GMDs between two
asymmetrically positioned parallel filaments having rectangular
cross sections. His work was related to modelling electromag-
netically driven ICE using parallel plate geometry, and the
filamentary technique was used to provide the initial current

Fig. 14. Rectangular cross sections of two asymmetrically positioned parallel
filaments. Filament i is in the right-hand side of the stator (SR) and filament j is
in the same side of the flyer (FR), with the currents in the two filaments flowing
in different directions. The parameters used in calculating the GMD are shown
as p, α and β. The distance di,j between their centers is also shown.

distribution to be used as initial data for complex magnetohy-
drodynamic codes, such as ALEGRA [23]. The formulae to
calculate GMDs presented below are taken from his work [24],
[25] and use the same notation and sign convention as used
in [22], [24], [25]: the origin is taken as the left-hand side of
the lower rectangle, −α represents the distance to the left, and
β to the right-hand side of the upper rectangle, and p is the
distance between the two rectangles. If the upper rectangle has
a width c and the lower has a width a, the distance between the
perpendiculars through their centers is 0.5(β−α−a).

As an example, the GMD of the two parallel filaments with
rectangular cross section defined in Fig. 14 is

disti,j = exp(G) (25)

where the function G is obtained from

G(∆xf,∆yf,∆xs,∆ys, p, α, β)

=−3
2

+
1

∆xf · ∆yf · ∆xs · ∆ys

×[f(β−∆xf, p+∆yf+∆ys)−f(β−∆xf, p+∆yf)

−f(β, p+∆yf+∆ys)+f(β, p+∆yf)

−f(α+∆xf, p+∆yf+∆ys)+f(α+∆xf, p+∆yf)

+f(α, p+∆yf+∆ys)−f(α, p+∆yf)

−f(β−∆xf, p+∆ys)+f(β−∆xf, p)

+f(β, p+∆ys)−f(β, p)+f(α+∆xf, p+∆ys)

−f(α+∆xf, p)−f(α, p+∆ys)+f(α, p)] (26)

with

p = |ys(i) − yf(j)| − ∆ys + ∆yf

2

α = −|xs(i) − xf(j)| + ∆xf − ∆xs

2

β = |xs(i) − xf(j)| + ∆xs + ∆xf

2
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Fig. 15. (Left) Forces acting on filamentary columns at t = 0, shown as arrows and numbered from right to left, (Right) Filamentary representation of 2D
conductor dynamics during the first moments of a shot.

and where the function f is given by

f(γ, ω) = γ2(γ2 − 6ω2)
(

1
48

ln(γ2 + ω2) − 7
288

)

+
ω4

48
ln(γ2 + ω2) − γω

6
(ω2 · f1 + γ2 · f2) (27)

with

f1=
{ π

2 if ω=0
tan−1

(
γ
ω

)
otherwise f2=

{ π
2 if γ=0

tan−1
(

ω
γ

)
otherwise.

The same technique can be applied for any pair of filaments.
It is interesting to note that although the maximum difference
between the mutual inductances calculated using (24), with
disti,j as di,j (of Fig. 14) used instead of exp(G), is only about
2.4% for the particular example presented later, even this small
difference is sufficient to cause major qualitative differences
when a large number of mutual inductance terms are calculated
in a matrix.

Fortunately, for a rectangular filament, the self-inductance L
(or Mi,i) can be obtained with high precision using a simple
formula which for flyer filaments takes the form [21]

Lf =
µ0l

2π

(
ln

4l

2(∆yf + ∆xf)
+

1
2

+ 0.118
2(∆yf + ∆xf)

l

)
(28)

and a similar expression can be used to calculate the self-
inductance of the stator filaments.

To calculate the time rate of change of the mutual in-
ductance, the same technique as in (6) is used: ∂Mi,j/∂t =
(∂Mi,j/∂(disti,j))(∂(disti,j)/∂t, with the result of the calcula-
tion given later in relation to the flyer dynamics.

D. Flyer 2-D Dynamics

To account for the 2-D deformation of the flyer, it is consid-
ered that each of the filamentary columns (along the Oy axis)
is capable of moving independently, and without any friction
between neighbours. In this case, the independent filamentary
column dynamics are dictated by the strength of the total
force produced electromagnetically and acting on the column,
calculated as the summation of all the elementary forces acting
on its filaments, all orientated along the Oy-axis. Because of
the internal symmetry, the columns in the right-hand side of the
flyer (FR) are numbered from the right edge to the left, as in
Fig. 15, and the total force acting on the i-th column can be
expressed as

F column
y (i) =

ny−1∑
k=0

F filament
y (i + k nx) (29)

where F filament
y (j) is the force acting on the j = i + knx

filament, which is a part of column i. This force represents
the interaction of the current flowing through this filament with
each of the magnetic fields produced by all the other filaments,
both from the stator as well as from the flyer. Because of the
particular shape of the filamentary cross sections (thin plates,
as discussed above), the two components of the magnetic field
produced by one filament and the resulting interaction forces
with the current flowing through any other filament have to
be calculated using the integration techniques detailed in the
0-D model, with the result for the force presented in (10a).
The complication is that this formula has been obtained for a
transmission line made from two thin parallel plates positioned
symmetrically, i.e., having their centers along the same perpen-
dicular to one of their sides, while for most of the filaments
their cross sections are positioned asymmetrically. In reference
to Fig. 14, for a pair of filaments placed either symmetrically
or asymmetrically both situated in the right-hand sides of the
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stator and the flyer (FRSR), the accelerating force acting along
Oy on the flyer filament is calculated as

FFRSR
y (i, j)

=
µ0IiIjl

2π ·∆xs·∆xs

{
Y

2
ln



[(

X1
Y

)2
+1
][(

X4
Y

)2
+1
]

[(
X2
Y

)2
+1
][(

X3
Y

)2
+1
]



−X1 tan−1

(
X1

Y

)
+X2 tan−1

(
X2

Y

)

+X3 tan−1

(
X3

Y

)

−X4 tan−1

(
X4

Y

)}
(30)

where Y = ys(i) − yf(j) with Y �= 0 and

X1 =xf(j) +
∆xf

2
− xs(i) − ∆xs

2

X2 =xf(j) +
∆xf

2
− xs(i) +

∆xs

2

X3 =xf(j) − ∆xf

2
− xs(i) − ∆xs

2

X4 =xf(j) − ∆xf

2
− xs(i) +

∆xs

2
.

The same technique applies for a pair of filaments in the flyer.
For Y = 0, i.e., when two filaments in the flyer are at the same
height, Fy is zero.

An analysis of the interaction between filamentary forces
shows that:

– Initially, when the flyer is flat, the centers of all flyer
columns are at the same height. In this case, the sum
of all internal vertical forces acting on each column is
null. The internal filamentary forces generated between
pairs of flyer filaments are along the Oy axis, with the
filament placed above being accelerated (the force posi-
tive in respect to Oy) while the one below is decelerated
(the force is negative). In other words, for a flat and
incompressible flyer the internal vertical forces exactly
cancel, and therefore they do not influence in any way
the flyer shape.

– Because of inductive effects, the current distribution
in both the stator and in the flyer is clearly nonho-
mogeneous. This effect influences the flyer dynamics:
some columns will move faster than others and therefore
an accelerated flyer will never remain flat. Related to
this, it is also easy to see that during a shot the sum
of all internal filamentary forces acting on a column
moving ahead is always negative, i.e., the net internal
force acts in a direction opposed to the accelerating
force produced by the stator filaments. Interestingly, this
means that the internal forces tend to oppose any flyer
deformation!

– Due to magnetic field diffusion in both the stator and in
the flyer, the current distribution during a shot spreads
more and more inside the material, thus reducing the
magnitude of the surface current. As a consequence
the accelerating force calculated with a 0-D model,

Fig. 16. System current during a shot continuous line: experiment; dotted line:
2D theory. Letters indicate the times for which the current and temperature
distributions are shown in Figs. 17 and 18, respectively.

where only surface currents exist, is always larger
than the total accelerating force calculated with a 2-D
model. The final kinetic energy of the flyer is therefore
reduced in a 2-D model in comparison with a 0-D
model.

Once the electromagnetically produced forces acting on
columns are found, the calculation of the column dynamics is
straightforward and the equations of motion are

dvcolumn(i)
dt

=
F column(i)
mcolumn

(31)

dycolumn(i)
dt

= vcolumn(i) (32)

where F column(i) is the total force acting on the i-th column
similar to (14), and vcolumn(i) and ycolumn(i) stand for the i-th
column vertical velocity and position, respectively, with initial
conditions vcolumn(i)|t=0 and ycolumn(i)|t=0 = d/2. The col-
umn mass is mcolumn = nyρflyerl∆yf∆xf , where ρflyer is the
mass density of the flyer.

The resultant system of differential equations contains 3N +
2(nx + 1) equations, corresponding to an equal number of
unknowns: N filamentary currents; the charge released in the
circuit; the Joule energy deposited into the fuse; N flyer fil-
amentary Joule energies, N stator filamentary Joule energies;
nx flyer column velocities and finally nx column positions.
The system is firstly solved algebraically for the time rate of
change of the unknowns and then integrated using the initial
conditions. More information about the implementation of the
2-D filamentary technique can be found in [12].

E. Theoretical Predictions Compared With Experimental Data

The main results obtained using 2D modelling are shown
in Figs. 16–21 for the same experimental data as presented in
Section II. The flyer and the stator are each represented by a to-
tal collection of 2N = 2nxny = 2 × 20 × 10 = 400 filaments,
with 200 independent currents. The total number of differential
equations to be integrated in this case is 642. The program is
written using MATHCAD 15 and a complete run over 60 µs
on a PC operated under Windows 7 with an Intel Core i7 X980
CPU @ 3.33 GHz and with 12 GB RAM takes about a day.



NOVAC et al.: NUMERICAL MODELLING OF A FLYER PLATE ELECTROMAGNETIC ACCELERATOR 2309

Fig. 17. Current distribution inside the flyer at the various times indicated in
Fig. 16 with the vertical scale indicating the filamentary current in Amperes.
In reference to Fig. 13, the filamentary currents are calculated only in the right-
hand side (FR) and the left-hand side currents are obtained assuming symmetry.
The flyer sides are indicated.

Fig. 18. Temperature variation inside the flyer during an experiment the
temperature variation is very small and for saving space it is only provided
at four of the eight times indicated in Fig. 16.

The results contain considerable useful information, both
from the point of view of a designer trying to maintain the flyer
surface as flat as possible and also allowing a clear understand-

Fig. 19. Time dependence of the flyer velocity. Continuous lines: velocities
of the flyer columns calculated using the 2D model. Dotted line: experimental
data from heterodyne Velocimetry technique [6].

Fig. 20. Flyer dynamics. Continuous lines: vertical displacement of the flyer
columns calculated using the 2D model. Dotted line: integrated experimental
data from Fig. 7.

Fig. 21. Flyer shape (cross section in the Oxy plane of Fig. 12) at different
moments during the first phase of acceleration, t1 = 20 µs, t2 = 30 µs, and
t3 = 40 µs, S-stator, I-insulator, F-flyer (initial position), T-target. The number
of flyer columns is indicated along the accelerator width (drawing not to scale).

ing and interpretation of data obtained from various diagnostic
tools used in the experiments, such as heterodyne velocimetry
technique, ultrahigh speed cameras, or flash X-ray systems.
An example of how the model can help in understanding the
acceleration phenomena is given below.

As presented in Fig. 17, inductive effects concentrate the
current distribution towards the flyer edges, and therefore it
could be expected for these to be accelerated ahead of the rest
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Fig. 22. Normalised force distribution along a static flyer width, for a DC
current flowing through the circuit.

Fig. 23. Velocity distribution along the flyer width at various times during a
shot: (a) 1.1 µs; (b) 2 µs; (c) 4 µs; (d) 7 µs; (e) 9 µs; (f) 10 µs; (g) 12 µs;
(h) 14 µs.

of the flyer’s material. However, the results in Fig. 21 show that
during acceleration, the flyer shape does not correspond to the
shape predicted by these simple arguments, i.e., the flyer edges
lag behind!

To understand this intriguing phenomenon, consider the
forces acting on flyer columns in DC conditions (i.e., when
the current distribution is homogeneous), and Fig. 22 shows
the result for this particular arrangement. The force acting
on the column positioned at the flyer’s edge is 1.45 times less
powerful than that acting on the column situated in the flyer’s
center. This means that, when applying transient currents, these
two forces will be equal only for a certain current distribu-
tion. A very rough estimation shows that, by neglecting the
flyer thickness, the current density at edge is required to be√

1.45 ≈ 1.2 times the current density in the center. For the
particular arrangement considered, this will only happen but for
an extremely short period of time.

The details of the first 14 µs of a shot are very interesting
(Fig. 23) and show the complexity of the first moments of
the flyer acceleration phenomenon. In the first microsecond
after the current begins to flow the flyer is stationary, i.e., the

gravitational force is larger than the force generated electro-
magnetically. The first movement of the flyer edges is predicted
at 1.1 µs [Fig. 23(a)] and at 2 µs the velocity is already over
0.11 m/s [Fig. 23(b)]. The flyer acceleration continues with
edges ahead [Fig. 23(c) and (d)], but slowly, these lose speed in
respect to the center [Fig. 23(e) and (f)], and finally the velocity
distribution radically changes [Fig. 23(g) and (h)]. After 14 µs,
the relative velocity distribution and the flyer’s shape remain
more or less the same (even though the flyer accelerates) until
the flyer approaches the target.

IV. CONCLUSIONS AND THE WAY AHEAD

Two numerical models have been developed jointly by
Loughborough University and AWE, Aldermaston, for predict-
ing the characteristics of a flat parallel-plate electromagnetic
accelerator.

The first, a 0-D model, has the advantage of being extremely
fast and is ideally suited for use in the parametric studies
required in the design of new arrangements.

The second, a very detailed 2-D model, provides more de-
tailed information and uses original calculation techniques.

Future work may include the development of a complex
multiphysics 3-D finite-element analysis model. This code will
account for elastoplastic properties and the generation of shock
waves, the variation of electrical conductivity with pressure,
and other related phenomena. This final stage of modelling may
also include the new element of the complex physics associated
with the flyer-target interaction.
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