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Abstract. Two programs for computer algebra systems are described
that deal with Lie algebras of generators admitted by systems of ordi-
nary differential equations (ODEs). The first one allows to find the gen-
erators of admitted transformations in the specified form. This program
is written in Python and based on SciPy library. It does not require
solving partial differential equations symbolically and can also analyze
equations with Riemann–Liouville fractional derivatives and find approx-
imate symmetries for systems of equations with a small parameter. The
second program written as a package for Maple computes the operator
of invariant differentiation in special form for given Lie algebra of gener-
ators. This operator is used for order reduction of given ODE systems.
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1 Introduction

Group analysis of differential equations (see, e.g., [1–4]) provides efficient ana-
lytical methods for studying and solving differential equations, which arise in
different areas of science.

In this paper, we consider the systems of ordinary differential equations
(ODEs), focusing on nonlinear ones. The Lie symmetry method for solving non-
linear ODE is one of the most universal methods because it can work for equa-
tions not matching any particular form. Each symmetry of equation (or system
of equations) describes the one-parametric group of point transformations that
leaves the equation (or system) invariant. When the Lie algebra of symmetry
generators is found, it can be used to reduce the order of the given equation
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or system. The order reduction algorithm for single equation is well-known and
Lie method is implemented and often used by default for solving ODEs in com-
puter algebra software like Maple and SymPy Python library.

However, the modifications of order reduction algorithm for systems of ODEs
(see, e.g., [5,6]) are not universal. Recently, a new order reduction algorithm was
proposed in [7,8]. It uses the operator of invariant differentiation (OID) with
multiplier of special type. In [9], a modification of this algorithm is proposed for
application to systems of ODEs with a small parameter that admit approximate
Lie algebras of generators (theory of approximate Lie groups is introduced in
[4]). To simplify the calculations, a program for constructing an OID with a
multiplier of a special type was developed in Maple computer algebra system
(Maple was chosen because it has a powerful solver module for partial differential
equations). In Sect. 3.2, we describe this program and illustrate its usage with
some examples.

Methods based on symmetries have been recently applied to classes of equa-
tions with fractional derivatives [10–12]. Systems of ordinary fractional differen-
tial equations (FDEs) are often considered in modern control system theory and
mathematical models of different processes. Such systems are also considered
when finding particular solutions of fractional partial differential equations by
invariant subspace method [13–15]. Known symmetries allow one to construct
invariant solutions of the considered systems. However, there are only few works
on symmetries of ordinary FDEs and systems, for example [16,17], there are
many technical difficulties and limitations because the fractional derivatives are
non-local integro-differential operators. For FDEs, the current method of con-
structing symmetries is restricting the form of operators and the resulting Lie
algebra is usually formed by combinations of some standard generators (usually
corresponding to translation, scaling, rotation and projective transformations).

Constructing symmetries for the considered systems requires a lot of calcu-
lations. To find the symmetries of equation or a system, one needs to solve the
so-called determining equations, which are the linear first-order partial differen-
tial equations (PDEs) [1–4,11]. There are multiple existing packages for finding
Lie symmetries of different types [18–20] (some of them support finding approx-
imate symmetries), and one for equations with fractional derivatives [21]. They
are usually based on powerful first-order PDE solvers but there is no guarantee
that the symmetry generators can be found in closed form for arbitrary form of
system, for example, including functions of derivatives.

The program described in Sect. 3.1 of this paper uses a semi-numerical app-
roach for finding symmetries. Symmetry generators are found as linear com-
binations of given basis operators Xi. This approach is usually implemented
for polynomial form of coefficients. For example, it is available inside Maple
PDEtools package and in SymPy library for single equation. Recent applica-
tion for dynamical systems is also described in [22]. However, in this work, we
do not restrict coefficients to have polynomial form. The numerical algorithms
like SVD decomposition are used to find the space of solutions for automati-
cally constructed determining equations. This approach allows to work with very
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complicated forms of nonlinear systems. Symbolic calculations are only used to
differentiate equation one time, substitute the coefficients of given operators Xi

into prolongation formula and collect the terms in linear expressions, the final
steps of computation are numerical.

Another advantage of using the fixed-form representations of symmetry gen-
erator is the possibility to analyze symmetries of the first-order differential
equations that are used in many mathematical models. Finding the symmetries
analytically in this case is a complicated task because the space of symmetry
generators is usually infinite-dimensional. Restricting the form of infinitesimal
generator (for example, by assuming polynomial coefficients) allows one to con-
struct solutions or conservation laws even without finding the complete set of
symmetries.

2 Theoretical Section

2.1 Point Symmetries of Differential Equations

Let us consider the system of ordinary differential equations

u(p)(t) = f
(
t, u(t), . . . , u(p−1)(t)

)
, (1)

where u = u(t) is a vector of m unknown functions u1(t), . . . , um(t), f is a vector
function with components fμ and u(k) is a vector of kth derivatives of u by t.

To define the symmetry of (1), the local Lie group of point transformations
Ta with parameter a is also considered:

Ta : (t, u) → (t̃, ũ), t̃ = ϕ(t, u; a), ũ = ψ(t, u; a), Ta+b = TaTb. (2)

The group of transformations can be defined by its generator

X = ξ(t, u)
∂

∂t
+ η(t, u)

∂

∂u
, (3)

where functions ξ(t, u) =
∂ϕ

∂a

∣∣∣∣
a=0

and η(t, u) =
∂ψ

∂a

∣∣∣∣
a=0

are the coordinates of

the tangent vector field. To study the symmetry properties of system (1), we
find the prolonged group acting in space, where the coordinates of some point
are t, u and all derivatives of u up to the pth order. This group is defined by
prolonged generator which has the form

X(p) = ξ(t, u)
∂

∂t
+

m∑
μ=1

ημ(t, u)
∂

∂uμ
+

m∑
μ=1

p∑
k=1

ζμ
k (t, u, . . . , u(k))

∂

∂u
(k)
μ

, (4)

where the coefficients ζμ
k are given by the prolongation formula

ζμ
k = Dk

t

(
η − ξu′

μ

)
+ ξu(k+1)

μ . (5)
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The coefficients ζμ
k describe the infinitesimal transformations of derivatives:

ũ(k)
μ (t̃) = u(k)

μ (t) + aζμ
k + o(a).

Here Dt is the total derivative operator:

Dt =
∂

∂t
+

p∑
k=0

m∑
μ=1

u(k+1)
μ (t)

∂

∂u
(k)
μ

.

The transformation group (2) is called point symmetry of system (1) if the
system is transformed to itself. The group generator is said to be admitted by
system (1). It is known [1–3] that ODE (1) admits generator (3), if and only if

X(p)
(
u(p)

μ − fμ

(
t, u, . . . , u(p−1)

))∣∣∣
(1)

= 0, μ = 1, . . . , m. (6)

From equation (6), after splitting with respect to powers of the derivatives,
one can obtain a system of determining equations. It is a linear overdetermined
system of partial differential equations for ξ, η coefficients. The solution of this
system gives a complete set of generators (3) admitted by equation (1).

The set of generators of the form (3) together with operation of commutation

[X1, X2] = X1(X2) − X2(X1) (7)

forms a Lie algebra of generators if it is a vector space and the commutator
of every two operators belongs to the same space. The conditions of bilinearity
antisymmetry and Jacobi identity are satisfied (see e.g. [3]). It is known that
generators admitted by an equation or a system always form a Lie algebra.

In this work we consider the ODE systems, which order is equal to dimension
of admitting Lie algebra Lr of generators, i.e., r = mp.

2.2 Invariant Representation of Differential Equations

Some function J (k) = J(t, u, . . . , u(k)), J (k) �= const, is kth-order differential
invariant of r-dimensional Lie algebra of generators Lr, if

X
(k)
j

(
J (k)

)
= 0, j = 1, . . . , r. (8)

We can rewrite system (1) by differential invariants of admitted Lie algebra
Lr, if and only if

rank
(
ξj ηj . . . ζ

(p)
j

)∣∣∣
(1)

= r, j = 1, . . . , r,

i.e., the general rank of the matrix formed by the coordinates of the prolonged
generators does not change on the manifold defined by system (1) (see e.g. [2]).
The system can then be rewritten so that every equation has the form

J (p) = F
(
J (q)

)
(9)

with some function F , here J (p) and J (q) are some pth-order and qth-order
differential invariants of Lr, q < p.
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2.3 Order Reduction for Differential Equations

For order reduction, in [7,8] authors suggested to seek auxiliary function Φ �=
const and construct the operator of invariant differentiation (OID) (see [2]) in
the form

1
DtΦ

Dt. (10)

The function Φ is obtained as any particular solution of system

Dt

(
X

(p−1)
j (Φ)

)
= 0, (11)

or
X

(p−1)
j (Φ) = Cj , j = 1, . . . , r, (12)

where constants Cj satisfy the relations

r∑
l=1

al
ijCl = 0,

and al
ij are structural constants of Lie algebra Lr (see [1–3]).

Then by using this OID, one obtains

1
DtΦ

Dt

(
J (q)

)∣∣∣∣
(9)

≡ Ψ
(
J (q), J (p)

)∣∣∣
(9)

= H
(
J (q)

)
.

The last expression can be rewritten as a first-order ODE

dJ (q)

dΦ
= H

(
J (q)

)
.

General solution of this equation is also the first integral of ODE (1).
A similar method can also be used to reduce the order and integrate the

systems of ODEs [7,8].

2.4 Symmetries, Invariants, and OID for Equations with a Small
Parameter

Studying equations with a small parameter, i.e., ODEs of the form

u(p) = f0(t, u, . . . , u(p−1)) + εf1(t, u, . . . , u(p−1)), (13)

we can use the theory of approximate transformation groups (see e.g. [4]). We
consider only the case of linearity on ε.

Such equations admit the generators of two types:

X(0) + εX(1), εY(0).

They can be obtained by solving Eq. (6) after neglecting ε2 terms and splitting
by ε together with derivatives. The generators form approximate Lie algebra
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[4]. We assume that system (13) has r0 operators of the first type, and r − r0
operators of the second type.

Invariants of the approximate Lie algebra can also have two forms [24]:

J
(k)
(0) + εJ

(k)
(1) , εJ

(n)
(0) ,

where the term J
(s)
(0) satisfies the equations

X
(s)
i,(0)J

(s)
(0) = 0, i = 1, . . . , r0,

Y
(s)
j,(0)J

(s)
(0) = 0, j = 1, . . . , r − r0,

and J
(s)
(1) satisfies equations

X
(s)
i,(0)J

(s)
(1) + X

(s)
i,(1)J

(s)
(0) ≈ 0.

In the work [9], the OID for the approximate Lie algebra was introduced. It
is shown that it can be obtained in the form

DtΦ0 − εDtΦ1

(DtΦ0)2
Dt,

where the functions Φ0 and Φ1 are particular solutions of systems

X
(p−1)
i,(0) Φ0 = Ci,(0), Y

(p−1)
j,(0) Φ0 = Cj,(0)

and
X

(p−1)
i,(0) Φ1 + X

(p−1)
i,(1) Φ0 ≈ Ci,(1),

respectively.

2.5 Symmetries of Equations with Fractional Derivatives

In the last decade, Lie group analysis methods were applied to the specific case of
integro-differential equations – equations with fractional derivatives. The survey
of proposed techniques and results may be found, for example, in [11,12].

The Riemann–Liouville fractional derivative is a nonlocal operator defined as

Dα
t u(t, x) =

1
Γ (n − α)

(
∂

∂t

)n ∫ t

0

u(z, x)
(t − z)α−n+1

dz, n − 1 ≤ α < n. (14)

Here x can be a vector of all other independent variables, n is a natural number.
Let the generator of point transformation group have the form

X = ξ0(t, x, u)
∂

∂t
+

n∑
i=1

ξi(t, x, u)
∂

∂xi
+

m∑
μ=1

ημ(t, x, u)
∂

∂uμ
. (15)
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The infinitesimal transformation of fractional derivative Dα
t u can be written as

Dα
t̃ ũμ = Dα

t uμ + aζα
μ + o(a).

The prolongation formula for the fractional derivative has the general form

ζμ
α = Dα

t

(
η − ∂uμ

∂t
ξ0 −

n∑
i=1

∂uμ

∂xi
ξi

)
+ ξ0Dα+1

t uμ +
n∑

i=1

ξiDα
t

∂uμ

∂xi
. (16)

with the restrictions ξ0|t=0 = 0.
The main problem here is that ζα

μ does not depend on finite set of differential
variables like it was for operator (4). To propose constructive algorithm for
finding symmetries, we have to restrict generator coefficients, considering the
linearly autonomous class of symmetries with

ξ0 = ξ0(x), ημ =
m∑

ν=1

pμ,ν(t, x)uν + qμ(t, x). (17)

Then the prolongation formula (16) can be written in the form

ζμ
α = Dα

t qμ +
m∑

ν=1

∞∑
k=0

(
α
k

)(
Dk

t pμ,ν + δμ
ν

k − α

k + 1
Dk+1

t ξ0
)

Dα−k
t uν +

+
n∑

i=1

∞∑
k=1

(
α
k

)(
Dk

t ξi
)
Dα−k

t

∂uμ

∂xi
. (18)

When only one independent variable t is considered, the last term in prolongation
formula vanishes.

After writing the invariance criterion like (6), we consider all integer deriva-
tives u

(k)
μ and fractional derivatives or integrals D

(α−k)
t uμ to be independent

variables, m of them are to be substituted from the given system. This is another
assumption that allows constructive symmetry finding.

The resulting system of determining equations is now infinite-dimensional.
Usually, but not always, it becomes finite after finding that ξ0 is a polynomial
function of t.

3 Algorithms and Computer Algebra Modules

3.1 Determining Lie Symmetries

To simplify the procedure of calculating symmetries, the computer algebra sys-
tems are often used.

There are many programs for calculating symmetry generators for equations
and systems developed using Maple, Mathematica, Reduce, and Maxima com-
puter algebra systems, see, for example, [18]. Modern examples of such packages



Symbolic and Numerical Methods for Searching Symmetries of ODE Systems 287

implemented in Maple are GeM [19] and DESOLVEII [20]. The package FracSym
[21] also supports fractional differential equations.

Here we describe a new package for finding symmetries based on free and open
source Python SymPy library [25]. It is not based on any of the existing modules,
only SymPy differentiation, substitution, and singular value decomposition from
Numpy are used.

The program part that constructs the determining equation is analogous to
other packages but includes specific modifications for using prolongation formu-
las suitable for fractional derivatives (18). Working with approximate symmetries
[4] is also supported by automatic collecting powers of ε and eliminating terms
with ε2.

Note that SymPy does not seem to have built-in “jet notation” for derivatives,
so it was implemented manually. For example, the symbol u_tttt describes
the derivative u(4)(t). The notation for fractional differential variable was also
introduced. SymPy symbols and expressions can be used in given system.

While constructing the determining equations, the program also detects
fractional derivatives in original system and restricts generators to be linearly
autonomous. For each fractional derivative, some unknown coefficient ημ is
replaced by its form (17) and the number of independent variables in corre-
sponding coefficient ξi is reduced.

The determining equations for system F = 0 are constructed in general form
(
X̃[ξ, η, t, u]Fμ

)∣∣∣
F=0

= 0, μ = 1, . . . , m, (19)

Here X̃[ξ, η, t, u] is the prolonged generator given by (4) including prolonga-
tions to derivatives of fractional order. It depends on functions ξ, η linearly but
contains the arbitrary combinations of u and its derivatives with respect to inde-
pendent variables t. SymPy built-in PDE solver is not powerful enough to solve
this overdetermined linear system automatically, but this is not a problem for
proposed approach. Instead of splitting the determining equations and solving
them symbolically, we use semi-numerical method described below.

We search for the generator as a combination of given basis operators:

X =
N∑

i=1

CiXi.

This idea is commonly used for polynomial coefficients of symmetry genera-
tors implemented for single ODE in sympy.solvers.ode.lie heuristic bivariate, for
example. Maple package PDETools also contains an option for polynomial sym-
metries finding. Similar method is described in the work [22]. However, here we
do not require coefficients ξi, ηi of Xi to be polynomial. Arbitrary known terms
can be included in the form of generator, which is a more universal way.

Introducing the notation Ψμ[ξ, η, t, u] = (X̃Fμ)|F=0, one can rewrite Eq. (19)
as a linear equation for C1, . . . , CN :

N∑
i=1

CiΨμ[ξi, ηi, t, u] = 0. (20)
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For each μ and i, Ψμ,i[t, u] = Ψμ[ξi, ηi, t, u] is a function of independent variables
t, dependent variables u and their derivatives (integer or fractional).

The program substitutes each ξi, ηi (or ξi, pi, and qi for linearly autonomous
symmetry) into the determining equation symbolically and builds the list of
functions Ψμ,i for each number of dependent variable μ.

The most general way of reducing (20) to algebraic system is using multi-
variate Taylor series expansion of Ψμ,i[t, u] with respect to all of its independent
variables. However, to speed up calculations, the program can also substitute
random arguments into (20) enough times to get overdetermined linear system
for Ci. This substitution can be done numerically by using the fast NumPy
library, all constants and arbitrary functions should be specified exactly at this
stage. As a result, rectangular matrix M with R rows and N columns is obtained.

To solve the overdetermined system MC = 0 numerically, it is convenient to
use singular value decomposition procedure. After using np.linalg.svd function
to compute the decomposition of the form

M = UΣV, Σ = diag{σ1, ..., σr, 0, . . . , 0}
with orthogonal matrices U, V and r non-zero singular values σ1, ..., σr, the fun-
damental set of solutions C is given by last rows of matrix V (with numbers
starting from r + 1), see [23].

Every found vector C describes the symmetry generator, but to present the
symmetries in convenient form, the matrix formed by coefficients Ci is trans-
formed to reduced row echelon form. The basis columns are chosen automatically
to maximize the number of coefficients close to zero. SymPy function nsimplify
is then called to guess rational fractions like 1/7 and roots like

√
2 from the cor-

responding numerical values.
Hereafter we assume that our module and SymPy are imported as follows:

> import symmetries as s
> from sympy import *

All commands entered by user are marked by starting > sign, lines after code
without the sign shows its output converted to LATEX. The superscript with
dependent variable symbol is used in the program instead of dependent variable
number, for example, ξt = ξ0, ηu = η1, puv = p1,2 in (15) and (17).

The process of calculating symmetries contains several steps described below.

1. Procedure LieSymmSetup(indepsList, depsList) is used to define the lists
of independent and dependent variables. For example, to study the ODE
systems with u(t) and v(t), one should call

> s.LieSymmSetup(indepsList=[’t’], depsList=[’u’,’v’])

2. Then the user defines the form of the system. The system can be presented
directly as Python dictionary with strings or SymPy objects for left-hand side
and right-hand side of equations, for example,

> sys={’u_t’: ’v_xx-u’, ’v_t’: ’u_xx-v’}



Symbolic and Numerical Methods for Searching Symmetries of ODE Systems 289

3. The function detPDES is used to compose the determining Eq. (19). For exam-
ple, determining equation for u′′(t) = u′(t) is calculated as
(ζ2 − ζ1)|u′′=u′ :

> s.LieSymmSetup(indepsList=[’t’], depsList=[’u’])
> XFS=s.detPDES({’u_tt’:’u_t’},UseJetVars2=True)

ηu
t − ηu

tt − 2ηu
tuut − ηu

uuu2
t + u3

t ξ
t
uu + 2u2

t ξ
t
tu + 2u2

t ξ
t
u + utξ

t
t + utξ

t
tt

To find approximate symmetries, one should call the function detPDE_Approx.
When the equation contains fractional derivatives, the function prolongUn
that implements prolongation formula (18) is used internally. The named
parameter UseJetVars2=True is used here to show result in the short form
and should not be used for further calculations.

4. The list BaseOps of basis operators Xi is constructed to specify the chosen
form of symmetry generator. Operators can be manually added to BaseOps
list or chosen in multivariate polynomial form by AddPolynomialBasis func-
tion as shown in the examples.

5. The build_C_Coeffs(XFS) substitutes all basis operators into constructed
determining Eq. (19) and calculates coefficients XFS_C_coeffs of system (20)
in symbolic form.

6. Using the procedure solveNumeric, overdetermined algebraic system for coef-
ficients Ci is constructed from (20) and solved numerically. The best combi-
nations of basis operators are chosen and stored as BestForm matrix. To view
the symmetries in convenient form looking like differential operators, one calls
the function getAdmittedOperators.

Example 1. Let us consider the system of fractional differential equations

Dα
t u = uv, Dα

t v = v2.

According to [17], any symmetry of (1) is a combination of basis operators

X1 = u∂u, X2 = v∂u, X3 = u∂v, X4 = v∂v, X5 = t∂t, X6 = t2∂t.

To construct the determining equations (steps 1–3), we use the code

> s.LieSymmSetup(indepsList=[’t’], depsList=[’u’,’v’])
> alpha=sympify(’1/5’);
> dau = s.fracD(’u’,’t’,alpha); dav = s.fracD(’v’,’t’,alpha)
> XFS=s.detPDES({dau: ’u*v’,dav: ’v*v’},sumN=2)

The function s.fracD(’u’,’t’,alpha) gives Dat[u](1/5), which is the rep-
resentation of D

1/5
t u (differential variable in the code). The determining equa-

tions stored in XFS contain multiple terms, one of them is calculated internally
as fractional prolongation by calling s.prolongUn(’u’,’t’,alpha,sumN=2)

puuDat[u]
(

1
5

)
+

puu
t

5
Dat[u]

(
−4

5

)
− 2puu

tt

25
Dat[u]

(
−9

5

)
+
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puvDat[v]
(

1
5

)
+

puv
t

5
Dat[v]

(
−4

5

)
− 2puv

tt

25
Dat[v]

(
−9

5

)
− ξt

t

5
Dat[u]

(
1
5

)
+

2ξt
tt

25
Dat[u]

(
−4

5

)
− 6ξt

ttt

125
Dat[u]

(
−9

5

)
+ Dat[qu]

(
1
5

)

with substituted Dat[u] = uv,Dat[v] = v2. The parameter sumN restricts the
number of considered terms in prolongation formula (18). Note that no simpli-
fications are done automatically to speed up calculations. During the following
steps, t, u, and v and all other remaining fractional derivatives and integrals of
u and v are considered as independent variables, see [11].

Using the code with provided basis operators

> s.BaseOps=[’u*D_u’,’v*D_u’,’u*D_v’,’v*D_v’,’t*D_t’,’t**2*D_t’]
> s.build_C_Coeffs(XFS)
> display(s.XFS_C_coeffs)

one gets the lists of Ψμ,i stored as XFS_C_coeffs that define pairs of equations∑
CiΨ1,i = 0,

∑
CiΨ2,i = 0 for Ci:

[[
0, 0, u2, uv,

uv

5
,

2t

5
uv − 4

25
Dat[u]

(
−4

5

)]
,

[
0, 0, uv, v2,

v2

5
,

2t

5
v2 − 4

25
Dat[v]

(
−4

5

)]]
.

Zeros in the first and second columns mean that C1 and C2 can be arbitrary con-
stants and X1, X2 are symmetry generators. All combinations of basis operators
that form symmetries are found by constructing and solving the overdetermined
algebraic system (step 6):

> s.solveNumeric()
> display(s.getAdmittedOperators())

9.977099577364706
Shape of matrix of overdetermined system for finding C_k:

(22, 6), doing SVD decomposition
Singular values:
[ 3.36e+00 1.07e+00 3.50e-01 3.41e-17 9.30e-18 -0.00e+00]
Finding best combinations of 3 basis operators...OK

The resulting 3 operators are found correctly, the code prints

[uDu, vDu, −5tDt + vDv] .

Example 2. Let us consider equation from [16] that contains fractional deriva-
tives of different orders:

Dα+1
x y = −α + 1

x
Dα

x y + y

(
Dα

x y

y

)α+1
α

.
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> s.LieSymmSetup(indepsList=[’x’], depsList=[’y’])
> x,y = symbols(’x y’); alpha = sympify(’1/3’)
> s.BaseOps=[]; s.AddPolynomialBasis(3)
> DAy = s.fracD(’y’,’x’,alpha); DAy1 = s.fracD(’y’,’x’,alpha+1)
> XFS = s.detPDES({ DAy1 : -(alpha+1)*DAy/x +

y*(DAy/y)**((alpha+1)/alpha)})
> s.build_C_Coeffs(XFS);s.solveNumeric();s.getAdmittedOperators()

All 3 admitted operators are found correctly:
[
xDx, x2Dx − 2x

3
yDy, yDy

]
.

Note that although the right-hand side depends on fractional derivative, it causes
no problems for the code because we do not solve partial differential equations
analytically. �	
Example 3. The method also works when operators contain non-polynomial
terms. For equation

Dα
x y = x−1−αeyx1−α

the symmetries are found correctly and include the term xα−1∂y:

> s.LieSymmSetup(indepsList=[’x’], depsList=[’y’])
> x,y = symbols(’x y’); alpha = sympify(’1/3’)
> s.BaseOps=[]; s.AddPolynomialBasis(2)
> s.BaseOps.append(’x**(1/3-1)*D_y’);
> s.BaseOps.append(’x**(1/3)*D_y’); DAy = s.fracD(’y’,’x’,alpha)
> XFS = s.detPDES({DAy: x**(-1-alpha)* exp(y*x**(1-alpha))})
> s.build_C_Coeffs(XFS);s.solveNumeric();s.getAdmittedOperators()

[
x2Dx − 2x

3
yDy, 3xDx +

(
−2y +

1
x

2
3

)
Dy

]
.

Note that the program should be able to automatically calculate Dαq for given
functions q(t) by using its internal fractional.D_RL function. �	
Example 4. In the work [15], the system of fractional differential equations

Dα
t a = μb2/2, Dα

t b = 2μbc, Dα
t c = 2μc2

is considered. It is obtained when searching for exact solutions of the time frac-
tional Korteweg–de Vries equation

Dα
t u =

μ

2

(
∂u

∂x

)2

+
∂3u

∂x3

by invariant subspace method [13], using the form of solution

u(t, x) = a(t) + b(t)x + c(t)x2.

The program successfully finds 3 symmetries for arbitrary order α and 4 sym-
metries for order α = 1/3:
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> t,a,b,c = symbols(’t a b c’)
> alpha = sympify(’1/3’); mu = sympify(’7/8’);
> s.LieSymmSetup(indepsList=[’t’], depsList=[’a’,’b’,’c’])
> dax = s.fracD(’a’,’t’,alpha); day = s.fracD(’b’,’t’,alpha);
> daz = s.fracD(’c’,’t’,alpha);
> XFS = s.detPDES({dax: mu*b*b/2,day: mu*2*b*c, daz: mu*2*c**2 })
> s.BaseOps = []; s.AddPolynomialBasis(2); s.build_C_Coeffs(XFS)
> s.solveNumeric()); display(s.getAdmittedOperators())

The displayed symmetries are

[bDa + 2cDb, aDa − cDc + 3tDt,

atDa + btDb + ctDc − 3t2

2
Dt, bDb + 2cDc − 6tDt

]
.

It can be shown similarly to [17] that all of the linearly autonomous symmetry
generators have polynomial coefficients, so the complete Lie algebra is obtained.
These symmetries are found for the first time and allow one to construct more
invariant solutions of the considered system. �	
Example 5. To calculate approximate symmetries for ODEs with a small param-
eter ε, one needs to add the terms with ε into basis operators Xi. The determining
equations are automatically split with respect to ε and the number of equations
doubles. For example, consider equation from [9]

x′′ = F0(x′) + ε (F1(x′) − F0(x′)(3xx′ − t) + F ′
0(x

′)x′(xx′ − t))

constructed from approximate differential invariants. It has four approximate
symmetries for arbitrary functions F0(x′), F1(x′). For example, let us test the
procedure for specific functions F0 = sinx′, F1 = (x′)2:

> s.LieSymmSetup(indepsList=[’t’], depsList=[’x’])
> dx = Symbol(’x_t’); d2x = Symbol(’x_tt’)
> f0 = sin(dx); f01 = cos(dx); f1 = dx**2
> sys = {d2x: f0+ s.e*(f1-f0*(3*x*dx-t)+f01*dx*(x*dx-t))}
> XFS = s.detPDE_Approx(sys)
> s.BaseOps=[]; s.AddPolynomialBasis(3,approx=True)
> s.build_C_Coeffs_Approx(XFS); s.solveNumeric()
> display(s.getAdmittedOperators())

[εxDx + Dt, εxDt + Dx, εDt, εDx]

The found operators are correct. The procedure gives the same result for any
other forms of F0, F1, even very complicated.

Here BaseOps includes operators like εx2t3∂t and XFS contains ε0 and ε1

terms (ε2 are treated like zeros in this theory [4]). �	
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Example 6. Let us check the program on a more complex system composed of
some differential invariants (the functions F0, G0, F1, and G1 are arbitrary):

⎧
⎨
⎩

ẍ = ẋ2

x F0(ẏ) + ε
(

ẋ2(tẏ−y)
x F ′

0(ẏ) + ẋ2

x F1(ẏ, x) − ẋ3
)

,

ÿ = ẋ
xG0(ẏ) − ε

(
tẋ
x G0(ẏ) − ẋ(tẏ−y)

x G′
0(ẏ) + ẋ

xG1(ẏ, x)
)

,
(21)

> s.LieSymmSetup(indepsList=[’t’], depsList=[’x’,’y’])
> F0=sympify(’z’); G0=sympify(’z**3’)
> F0y=F0.subs({’z’:’y_t’}); DF0y=F0.diff(’z’).subs({’z’:’y_t’})
> G0y=G0.subs({’z’:’y_t’}); DG0y=G0.diff(’z’).subs({’z’:’y_t’})
> dx = Symbol(’x_t’); dy = Symbol(’y_t’)
> F1=sympify(’sin(x*y_t)’); G1=sympify(’y_t**3-x’)
> RS1=dx**2/x*F0y + s.e*(dx*dx*(t*dy-y)/x*DF0y+ dx*dx/x * F1-2*dx)
> RS2=dx/x*G0y - s.e*(t*dx/x * G0y- dx*(t*dy-y)/x*DG0y+dx/x*G1)
> XFS=s.detPDE_Approx({’x_tt’:RS1,’y_tt’:RS2})
> s.BaseOps=[]; s.AddPolynomialBasis(2, approx=True)
> s.build_C_Coeffs_Approx(XFS); s.solveNumeric()
> display(s.getAdmittedOperators())

The following admitted operators are found:
[−εyDy + Dt,

(
t2ε + t

)
Dt + (tεy + y) Dy,

(tε + 1) Dy, εDt, tεDt + εyDy, εxDx, εDy] .

Combinations of 162 basis operators were considered. The calculations took
about 15 s on a laptop with Intel Core i7-4500U. �	

The obvious limitation of the method is in suggesting the fixed form of oper-
ator. It is not possible to include all terms like xβ∂u or sin(ωt)∂u with unknown
β or ω. Therefore, if the equations admit such specific form of generators, this
approach can be used only to check the symmetries (helping to avoid mistakes in
calculations). However, most of nonlinear, approximate, and fractional differen-
tial equations have rather simple form of symmetries. For fractional differential
equations, the fixed form of symmetry generator is the most common case [11].

The main advantage of the approach is that it works for a very wide class of
equations including ones with nonlinear functions of derivatives. The program
can easily be modified to compute different kinds of symmetries. It makes the
described package a suitable tool for express-analysis. It also works when the
group is infinite-dimensional, for example, if the first-order equations are consid-
ered, when constructing full symmetry algebra analytically is a very complicated
problem.

3.2 Computing the Operator of Invariant Differentiation in the
Specified Form

The algorithm for constructing the differential invariants and the OID for an
approximate Lie algebra of operators is realized in Maple system as the program
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“PR-OID: construction of differential invariants and an operator of invariant
differentiation for an approximate Lie algebra of operators”, which is registered
by Rospatent ([26]).

The program is a set of procedures. In this work, we present it with some
modifications.

The procedure commut(S1,S2,DepVars) takes two vectors with coordinates
of the corresponding infinitesimal generators (for example, the vectors [τ1(t, x, y),
ξ1(t, x, y), η1(t, x, y)] and [τ2(t, x, y), ξ2(t, x, y), η2(t, x, y)] and a list of dependent
variables (for example, [x(t), y(t)]). The procedure calculates the commutator of
given generators by formula (7) and returns the coordinate vector of the resulting
generator.

The procedure is_algebra(S,DepVars) takes a set of coordinate vectors of
infinitesimal generators and a list of dependent variables. The procedure checks
that every commutator of given generators belongs to the same vector space.
After calculations, the procedure returns the string “It is a Lie algebra”, if the
operators generate an Lie algebra, and “It is not a Lie algebra” otherwise.

The procedure prolong(S,DepVars,n) takes the vector of coordinates of the
infinitesimal generator, the list of dependent variables and the order of deriva-
tives, to which the generator must be continued. The procedure calculates the
coordinates of the prolonged generator using standard prolongation formulas (4)
and returns the vector of coordinates for the prolonged generator.

The procedure acting(S,f,DepVars,n) is auxiliary. It takes the vector of
coordinates of the infinitesimal operator, the tested function, the list of depen-
dent variables and the order of the highest derivative in f. The procedure returns
the result of the action of the prolonged generator on the given function.

The procedure approx_invariants(S,DepVars,n,eps) takes a set of coor-
dinate vectors of generators, a list of dependent variables, the required order of
differential invariants and indicator of case (exact or approximate). The proce-
dure returns a set of all independent invariants up to the n-th order.

The procedure approx_OID(S,DepVars,eps) takes a set of coordinate vec-
tors for infinitesimal generators, a list of dependent variables and indicator of
case (exact or approximate). The procedure returns the multiplier for the OID,
the function Φ used to construct this OID, as well as the result of the action of
given generators on the obtained function Φ.

Example 7. Let us consider the generators

X1 = (1 + εt)
∂

∂t
, X2 = εx

∂

∂x
, X3 = (1 + εt)

∂

∂y
,

X4 = (t + εt2)
∂

∂t
+ (y + εty)

∂

∂y

(22)

and write them in a Maple worksheet:

> S:=[[1+epsilon*t,0,0],[0,epsilon*x,0],[0,0,1+epsilon*t],
[t+epsilon*t^2,0,y+epsilon*t*y]];
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S := [[εt + 1, 0, 0], [0, εx, 0], [0, 0, εt + 1], [εt + t, 0, εty + y]]

If we check them with procedure

> is_algebra(S,[x,y](t));

we obtain the following structural constants of a certain Lie algebra:

[“It is a Lie algebra”], [{a1,2,1 = 0, a1,2,2 = 0, a1,2,3 = 0, a1,2,4 = 0},

{a1,3,1 = 0, a1,3,2 = 0, a1,3,3 = ε, a1,3,4 = 0},

{a1,4,1 = 1, a1,4,2 = 0, a1,4,3 = 0, a1,4,4 = ε},

{a2,3,1 = 0, a2,3,2 = 0, a2,3,3 = 0, a2,3,4 = 0},

{a2,4,1 = 0, a2,4,2 = 0, a2,4,3 = 0, a2,4,4 = 0},

{a3,4,1 = 0, a3,4,2 = 0, a3,4,3 = 1, a3,4,4 = 0}]

Note that each constant ai,j,k is a sum ai,j,k,(0) + εai,j,k,(1), i.e., if we obtain
a1,3,3 = ε, it means that a1,3,3,(0) = 0, a1,3,3,(1) = 1, and if we obtain a3,4,3 = 1, it
means a3,4,3,(0) = 1, a3,4,3,(1) = 0. So, the basis of Lie algebra is six-dimensional
and consists of the following generators:

X1, X2, X3, X4, εX3, εX4.

For obtaining the differential invariants up to the second order, we use

>approx_invariants(S,[x,y](t),2,1);

Its result is four invariants

yt + ε (tyt − y) ,
xt,tx

x2
t

+
2εx

xt
,

yt,tx

xt
+

εyt,ttx

xt
, εx.

The OID for approximate Lie algebra generated by six operators can be obtained
by the expression

>approx_OID(S,[x,y](t),1);

which returns the multiplier for OID, the function Φ and the result of acting
generators on Φ : [

x

xt

]
, [ln(x)] , [0, ε, 0, 0] .

Let us consider the system of ODEs (21), which admits the given generators.
Using obtained invariants, we can rewrite this system in the form

J
(2)
1 ≈ F0(J (1)) + εF1(J

(1)
(0) , J

(0)
(0) ), J

(2)
1 ≈ G0(J (1)) + εG1(J

(1)
(0) , J

(0)
(0) ).
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Applying OID to invariants J (1) and J (0), we get
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x

ẋ
Dt(ẏ) = H0(ẏ),

x

ẋ
Dt(tẏ − y) = H0(ẏ)

x

tẋ
+ H ′

0(ẏ) · (tẏ − y) + H1(ẏ, x),

x

ẋ
Dt(x) = x.

General solution of these equations is the approximate first integral of considered
system. Thus, we obtain the reducing system

J (1) ≈ W0(Φ) + εW1(Φ0), J (2) ≈ F̂0(Φ) + εF̂1(Φ0),

which admits generators X1, X3, and X4. Repeating the procedure, we can
obtain the approximate solution of given system. �	

The program can also be used to study the exact Lie algebra and construct
its differential invariants and the invariant differentiation operator.

Example 8. Let us consider the generators

X1 = x
∂

∂t
, X2 = x

∂

∂x
, X3 = y

∂

∂t
, X4 = y

∂

∂y
(23)

and write them in Maple worksheet:

> S:=[[x,0,0],[0,x,0],[y,0,0],[0,0,y]];

If we check them with procedure

> is_algebra(S,[x,y](t));

we obtain the following structural constants of a certain Lie algebra:

[“It is a Lie algebra”], [{a1,2,1 = −1, a1,2,2 = 0, a1,2,3 = 0, a1,2,4 = 0},

{a1,3,1 = 0, a1,3,2 = 0, a1,3,3 = 0, a1,3,4 = 0},

{a1,4,1 = 0, a1,4,2 = 0, a1,4,3 = 0, a1,4,4 = 0},

{a2,3,1 = 0, a2,3,2 = 0, a2,3,3 = 0, a2,3,4 = 0},

{a2,4,1 = 0, a2,4,2 = 0, a2,4,3 = 0, a2,4,4 = 0},

{a3,4,1 = 0, a3,4,2 = 0, a3,4,3 = −1, a3,4,4 = 0}]

The first- and second-order differential invariants of this Lie algebra are
obtained by

>approx_invariants(S,[x,y](t),2,0);

and they have the form

xyt

xty
,

(xtyt,t − xt,tyt) x2

x3
t y

,
xt,t (−tyt + y) + yt,t (txt − x)

xtyt,t − xt,tyt
.

The OID for Lie algebra generated by given operators can be found by
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>approx_OID(S,[x,y](t),0);

which returns the multiplier for OID, the function Φ, and the result of acting
generators on Φ : [

x

C2xt

]
, [C2 ln(x)] , [0, C2, 0, 0]

with arbitrary nonzero constant C2. Let C2 = 1.
Applying OID to the first-order invariant, we obtain

x

ẋ
Dt

(
xẏ

ẋy

)
=

xẏ

ẋy
−

(
xẏ

ẋy

)2

+
(ẋÿ − ẏẍ)x2

ẋ3y
.

So, for the system of ODEs
⎧
⎪⎪⎨
⎪⎪⎩

ẍ =
xẏ + tẋ2ẏ2 − xẋẏ2

x (ẏ(y − tẏ) + ẋ(x − tẋ))
,

ÿ =
yẋẏ2 − tẋẏ3 − xẋ

x (ẏ(y − tẏ) + ẋ(x − tẋ))
,

which admits these generators, one obtains

dJ (1)

dΦ
= 2J (1) − (J (1))2, J (1) =

xẏ

ẋy
.

And the first integral of given system is

Φ =
1
2

ln
∣∣∣∣

J (1)

J (1) − 2

∣∣∣∣ − 1
2

ln C1.

The reduced system is
⎧
⎪⎪⎨
⎪⎪⎩

ẋ =
C1x

2ẏ − y

2C1xy
,

ÿ =
yẋẏ2 − tẋẏ3 − xẋ

x (ẏ(y − tẏ) + ẋ(x − tẋ))
.

These equations admit 3 generators: x
∂

∂t
, y

∂

∂t
, y

∂

∂y
. The order reduction pro-

cedure can be repeated. �	

4 Conclusion

In this work, we have presented two programs for automatic symmetry cal-
culation and constructing OID for ODE system order reduction by Lie group
methods.

The procedure of finding symmetries is realized semi-numerically. It allows
one to compute symmetries of equations of any complex form. Another feature
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of the program is that it can be used for finding the symmetries of ODEs with
small parameter and fractional ODEs and their systems. The form of symmetry
generator is chosen by the user, it can contain non-polynomial terms. No analyt-
ical solving of PDE systems is required. The examples show the correct behavior
of the program for FDEs and ODEs with a small parameter for equations with
known symmetries. In example 4, new symmetries are found for FDE system
which were not published before.

The second program implements the recently developed algorithm of OID
construction. It is the first realization of this algorithm. The program can be
used for constructing OIDs of Lie algebras of generators, which are admitted
by standard ODE systems as well as systems of ODEs with a small parameter.
In the second case, the OID is constructed for corresponding approximate Lie
algebra of generators.

In the future, we plan to combine described programs on one platform (maybe
using SAGE as it has interfaces to other systems) and automate the algorithm
for order reduction of the ODE system with and without small parameter.

Acknowledgments. We are grateful to Prof. R.K. Gazizov and Prof. S.Yu.
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