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Abstract

Weber-Maxwell electrodynamics is a modernized, compressed, cleansed and, in many respects, advantageous representation

of classical electrodynamics that results from the Liénard-Wiechert potentials. In the non-relativistic domain, it is compatible

with both Maxwell’s electrodynamics and Weber electrodynamics. It is suitable for all electrical engineering tasks, ranging

from electrical machines to radar and high-frequency technologies. Weber-Maxwell electrodynamics also simplifies access to

quantum physics and other areas of modern physics, such as optics and atomic physics. Particular advantages of Weber-

Maxwell electrodynamics are its simple and fast computability in computer calculations and, as it is based on point charges, in

the simulation of plasmas. The latter is particularly important for fusion research. Moreover, Weber-Maxwell electrodynamics

is also highly suited to academic and post-primary education, as it allows an easy comprehension of both magnetism and

electromagnetic waves. Due to the novelty of Weber-Maxwell electrodynamics, there are currently no articles that summarize

its most important aspects. The present article aims to achieve this.
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Weber-Maxwell electrodynamics: classical electromagnetism in its
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Weber-Maxwell electrodynamics is a modernized, compressed, cleansed and, in many respects, advantageous representation of

classical electrodynamics that results from the Liénard-Wiechert potentials. In the non-relativistic domain, it is compatible with
both Maxwell’s electrodynamics and Weber electrodynamics. It is suitable for all electrical engineering tasks, ranging from electrical
machines to radar and high-frequency technologies. Weber-Maxwell electrodynamics also simplifies access to quantum physics and
other areas of modern physics, such as optics and atomic physics. Particular advantages of Weber-Maxwell electrodynamics are
its simple and fast computability in computer calculations and, as it is based on point charges, in the simulation of plasmas. The
latter is particularly important for fusion research. Moreover, Weber-Maxwell electrodynamics is also highly suited to academic
and post-primary education, as it allows an easy comprehension of both magnetism and electromagnetic waves. Due to the novelty
of Weber-Maxwell electrodynamics, there are currently no articles that summarize its most important aspects. The present article
aims to achieve this.
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I. Introduction

The history of electrodynamics is characterized by numerous
developments and theories that were ultimately unable to
prevail in practice [1]. One of these theories is Weber elec-
trodynamics, which was developed in the middle of the 19th
century by Carl Friedrich Gauss and Wilhelm Weber. Gauss
remains a well-known scientist today. Regrettably, despite
having an SI unit named after him and an extensive body
of scientific work that was far ahead of its time, this is not the
case for Weber [2]–[5].

Weber electrodynamics [6] is a very compact and elegant
representation of the scientific knowledge of that time. It takes
the form of a single formula known as the Weber force.
According to the knowledge of that time, science believed
that the Coulomb force could be generalized to moving point
charges and magnetism was just a multi-particle effect. It is
fascinating that the Weber force actually works very well

with direct currents and low-frequency alternating currents and
allows some effects to be explained that are difficult to interpret
using Maxwell’s equations [7]–[10].

The basic concept of Weber electrodynamics demonstrates that
the definition of a magnetic field can be avoided, because the
Weber force shows that the magnetic force can be interpreted
as the sum of the individual forces of all charge carriers within
an electrically neutral line current. This does not require the
individual charge carriers to have individual magnetic fields
[11]–[13]. The Weber force is therefore more than just a
mathematical description, it also represents a compression of
knowledge and an interpretation of magnetism.

However, the Weber force cannot be used to represent electro-
magnetic waves, at least not directly and without a transmis-
sion medium. This is because the Weber force only depends
on the locations and speeds of point charges at the current
time. The Weber force is therefore an instantaneous force that
propagates between point charges without any time delay.

The inability of Weber electrodynamics to represent electro-
magnetic free-space waves ultimately led to it being almost
completely forgotten after around 1890, i.e., after the intro-
duction of the displacement current in Maxwell’s equations
by James Clerk Maxwell and the experimental detection of
electromagnetic free-space waves by Heinrich Hertz. This is
not surprising, as electromagnetic free-space waves fascinated
scientists to a great extent around 1900, and many new
technologies such as radio communication and radar were
developed. For this reason, the majority of scientists were only
interested in mathematical formalisms that allowed the study
and rationalization of electromagnetic free-space waves. The
fact that Weber electrodynamics worked better for electrostat-
ics and magnetostatics than the conglomerate of Maxwell’s
equations, Lorentz transformation, and Lorentz force was soon
forgotten.

Currently, few scientists are familiar with Weber electrody-
namics, and Maxwell’s electrodynamics is the undisputed stan-
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dard theory of electrical engineering. However, the predomi-
nance of Maxwell’s electrodynamics obscures the fact that it
also has certain disadvantages, which will not be discussed
here. Instead, this article describes the fundamentals of so-
called Weber-Maxwell electrodynamics, which has gradually
emerged in the last two years. It is based on the Liénard-
Wiechert potentials, i.e., the solution of Maxwell’s equations
for point charges. By means of a mathematical trick, it is
possible to simplify the abstract Liénard-Wiechert potentials
– without approximation and without loss of information
– to a simple force formula that shows great similarities
with the force formula of Weber electrodynamics. Ultimately,
this shows that there is a close connection between the two
seemingly fundamentally different philosophies, allowing their
respective disadvantages to be eliminated.

The objective of this article is to provide a compact summary
of the current developmental state of Weber-Maxwell electro-
dynamics and to show what still needs to be investigated. The
article is divided into an introductory section that describes the
theoretical foundations of Weber-Maxwell electrodynamics, a
section that shows how Weber-Maxwell electrodynamics can
be used in practice, and a theoretical section that presents the
derivation of Weber-Maxwell electrodynamics from Maxwell’s
equations and shows how Weber electrodynamics can be
derived from Weber-Maxwell electrodynamics. In addition,
a proof is included demonstrating that the conservation of
momentum is always fulfilled in classical electrodynamics and
that the limits of Newtonian mechanics are not exceeded, even
in the presence of electromagnetic waves.

II. Equations and properties ofWeber-Maxwell
electrodynamics

In contrast to Maxwell’s electrodynamics, the mathematical
basis of Weber-Maxwell electrodynamics does not consist of
a set of partial differential equations, rather of a kind of
generalized Coulomb law, which also applies in particular and
explicitly to arbitrarily accelerated point charges. The formula
for the electromagnetic force F that a point charge qs with
the trajectory rs(t) exerts on another point charge qd with the
trajectory rd(t) is

F =
qd qs γ(v)

4 π ε0

 (r c + r u)
(
c2 − v2 − r · a

)
(r c + r · u)3 +

a r
(r c + r · u)2

)
,

(1)

in Weber-Maxwell electrodynamics. To shorten the notation,
the retarded distance vector

r := rd(τ) − rs(τ), (2)

the retarded difference velocity

u := ṙd(τ) − ṙs(τ) (3)

and the retarded difference acceleration

a := r̈d(τ) − r̈s(τ) (4)

are introduced. γ(.) is the Lorentz factor.

In addition to the formula of the Weber-Maxwell force (1),
one also needs the time τ, which can be calculated iteratively
using equation1

τ = t −
∥r∥
c
. (5)

The fixed-point iteration converges2, as long as the difference
velocity of the two point charges is lower than the speed of
light c at all times.

Time τ in the preceding equations corresponds to the time
at which the force has left the charge qs to reach the charge
qd at time t. The equation (5) shows that the electromagnetic
force travels independently of the relative velocity u in every
inertial frame at the vacuum speed of light c. This means
that in Weber-Maxwell electrodynamics, Einstein’s postulates
are already fulfilled without Lorentz transformation. This
represents a significant practical advantage.

Although somewhat surprising at first glance, Weber-Maxwell
electrodynamics is able to correctly represent all aspects of
classical electrodynamics, including electromagnetic waves.
This will become apparent in the course of this article.
Furthermore, it will be shown that all other effects, such as
magnetism, Lorentz force, and induction, are also included.
This may also be surprising, as the Weber-Maxwell force does
not require the definition of a magnetic field. Mathematically,
both can be traced back to the fact that the Weber-Maxwell
force can be derived from the Liénard-Wiechert potentials, i.e.,
the solution of Maxwell’s equations for point charges, and that
it contains classical Weber electrodynamics as a special case.
Incidentally, the close connection to the Liénard-Wiechert
potentials distinguishes Weber-Maxwell electrodynamics from
the approach proposed by Moon and Spencer in an article in
1954 [14].

Another special feature of Weber-Maxwell electrodynamics is
that it clearly shows that the usual conservation laws also apply
in classical electrodynamics; particularly the conservation of
momentum. If the source and the receiver of the force are
swapped, the signs of r, u, and a are reversed. This results in
the force (1) also changing its sign. It is therefore immediately
clear that the Weber-Maxwell force satisfies the principle
action = reaction. The fulfillment of Newton’s third law is
an essential prerequisite for the fulfillment of the conservation
laws and important for electrical engineering. In contrast,
Maxwell’s equations together with the Lorentz force obscure
this fact.

III. Practical application

A. Direct current and low-frequency alternating current

Weber-Maxwell electrodynamics is based on the premise that
all electromagnetic effects arise from the presence and motion
of point charges in an otherwise completely empty, absolute,
Newtonian space. In some fields of research, such as atomic
physics or plasma physics, this is an advantage, since working

1Note that r depends on τ due to definition (2). To solve the equation,
Newton’s method can be applied.

2This can easily be shown by means of the Banach fixed-point theorem.
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with fields, Lorentz force, and Lorentz transformation is highly
complicated when point charges are involved. Conversely, in
electrical engineering, one almost never works with point
charges, but with electric currents and voltages. It is therefore
necessary to show how the individual force between two point
charges can be converted into a force between currents.

A naive approach to calculate the force of a current acting on a
test charge would be to insert the trajectories of all electrons
and metal ions of a current-carrying wire into the formula
(1) and then sum up all the individual forces. This procedure
is practical for a computer program as no approximations
are required. However, this is not a suitable approach for
theoretical estimations and analyses.

For theoretical purposes, it is often useful to first split a current
path into very small segments of length dl. The quantity of
all negative charge carriers in each segment is then dl λ−,
where λ− is the number of negative charge carriers per meter
conductor length. Accordingly, the total charge of all positive
charge carriers in the segment is dl λ+. The introduction of
linear charge densities allows the use of integrals instead
of sums. Another significant simplification results from the
separation of a current into a direct current component and an
alternating current component.

In the case of direct current, the two charge quantities move
almost uniformly during the propagation time of the force, i.e.,
with the constant velocities u− and u+. As shown in section
IV-B, this approximation allows a simplification of the Weber-
Maxwell force (1) to the Weber force

FW (qd, qs, r, u) =
qd qs r

4 π ε0 r3

(
1 +
v2

c2 −
3
2

( r
r
·
u

c

)2
)
, (6)

provided that v is much lower than the speed of light c. r is in
this case only the instantaneous distance vector r := rd(t)−rs(t)
and u the constant difference velocity. This means that the
formula (5) no longer needs to be taken into account for direct
current.

The force dFDC that a direct current element exerts on a test
charge qd moving at speed u can therefore be expressed by
the equation

dFDC(r) = FW (qd, dl λ−, r, u − u−) +
FW (qd, dl λ+, r, u − u+).

(7)

In metallic conductors, u− is usually extremely small and u+
can even be zero. For this reason, it is possible to use the
first-order Taylor series:

dFDC(r) ≈ FW (qd, dl λ−, r, u) −
dFW (qd, dl λ−, r, u)

du
· u−+

FW (qd, dl λ+, r, u) −
dFW (qd, dl λ+, r, u)

du
· u+.

(8)

With −λ− = λ+ this becomes

dFDC(r) = −
dFW (qd, dl λ+, r, u)

du
· (u+ − u−) . (9)

The calculation of the vector gradient finally results in

dFDC(r) =
µ0 qd IDC r

(
3 (r · u) r − 2 r2 u

)
· dl

4 π r5 , (10)

using the equations λ+ (u+ − u−) = IDC dl/dl and ε0 c2 = 1/µ0.
Here, IDC is the current strength of the direct current in the
wire and dl is a vector that has the same length as the wire
segment and points in the direction of the current flow.

The equation (10) is Ampère’s force law in its original form
[15, p. 29]. As Maxwell already demonstrated, this force law
leads to the same result for closed current loops as the Biot-
Savart law in combination with the Lorentz force [16, p. 162].
However, this does not apply to current loops that are not
closed. The presence of wire stubs means that there is no
direct current flow. However, alternating current can flow. If
its frequency is so low that the wavelength of the emitted elec-
tromagnetic wave is considerably longer than the distance of
the test charge qd, there is usually no objection to calculating
the force using equation (10), since the approximations used
to derive the Weber force are also sufficiently valid here. In
this case, the current strength i(t) of the alternating current
at current time t can be used for IDC . However, the field
oscillates instantaneously in the entire space. This means that
electromagnetic waves are not represented correctly by this
method.

In contrast to the force law (10), the application of the Biot-
Savart law together with the Lorentz force is fundamentally
wrong for stubs or point charges because, as Maxwell has
shown, it is necessary to presume that the current loop is closed
in order to derive the Biot-Savart law. In the general case,
however, Maxwell’s equations lead to the Weber-Maxwell
force (1) and thus ultimately to Ampère’s force law (10) and
not to the Grassmann force [17]. For this reason, caution is
advised.

B. High-frequency alternating current

The application of the Weber force (6) and Ampère’s force
law (10) is, as has been demonstrated, only possible if the
distance between the two point charges qs and qd is so small
that the distance variation of the point charges during the force
propagation from qs to qd is almost constant. With alternating
current, this condition is only fulfilled if the distance r is much
smaller than the wavelength of the electromagnetic wave.

If this condition is not satisfied, another approximation can
often be used. The approach for simplification is to exploit
the fact that with alternating current, the force-generating
charges are at rest in the temporal average. The trajectory of
a sinusoidally oscillating point charge qs, which is stationary
in the time average, is

rs(t) = rs + s(t), (11)

with
s(t) := ŝ es sin (ω t) . (12)

rs is the time average of the trajectory, ŝ the maximum dis-
placement (peak amplitude), es the unit vector of the direction
of oscillation, and ω the angular frequency.

The special case (11) yields for the definitions (2), (3) and (4):

r = rd(τ) −
(
rs + s(τ)

)
(13)
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u = ṙd(τ) − ṡ(τ) (14)

a = r̈d(τ) − s̈(τ). (15)

For a high-frequency alternating current, the peak amplitude
ŝ is usually very small compared to the distance between qs

and qd. For this reason, we substitute the equations (13), (14),
and (15) into the Weber-Maxwell force (1) and expand the
expression into a first-order Taylor series. In this way we
obtain

F ≈ F|ŝ=0 + ŝ
(

d
dŝ

F
)∣∣∣∣∣∣

ŝ=0
. (16)

For test charges at rest qd, ṙd(τ) and r̈d(τ) are zero and we
obtain with r = rd(τ) − rs the equation

F(r) ≈
qd qs r

4 π ε0 r3 −

qd qs

(
r2 s(τ) − 3 r

(
r · s(τ)

))
4 π ε0 r5 −

qd qs

(
r2 ṡ(τ) − 3 r

(
r · ṡ(τ)

))
4 π c ε0 r4 −

qd qs

(
r2 s̈(τ) − r

(
r · s̈(τ)

))
4 π c2 ε0 r3 .

(17)

It is evident that only the last term in equation (17) is important
for high-frequency alternating currents. The term in the first
line is compensated in a metallic wire by metal ions at
rest. The two lines in the middle are only relevant if the
measurement is performed in the immediate vicinity of the
conductor. For greater distances r, only the last term remains.
We can therefore provide a rather simple equation for the force
dFAC that an alternating current element exerts on a stationary
test charge qd at a distance r:

dFAC(r) ≈ −
µ0 qd dl λ−

(
r2 s̈(τ) − r (r · s̈(τ))

)
4 π r3 . (18)

This can be further transformed to

dFAC(r) =
µ0 qd dl λ−

4 π r

( r
r
×

( r
r
× s̈

(
t −

r
c

)))
, (19)

exploiting that for this special case τ = t − r/c.

The current strength IAC of an alternating current is defined
as the root mean square (RMS) of the instantaneous value i(t)
during a cycle, i.e., the direct current strength that would de-
liver the same energy in the same time. The motion according
to equation (12) corresponds to the current

i(t) = λ− ŝω cos (ω t) . (20)

Therefore, the RMS is3

IAC = −
1
√

2
λ− ŝω. (21)

3The negative sign is necessary because λ− represents a negative charge
quantity.

If this and the equation (12) are inserted into the equation (19),
the force that a wire segment with alternating current exerts
on a test charge qd at a distance r is because of dl = es dl:

dFAC(r) =
µ0 qd IAC ω (r × (r × dl)) sin

(
ω

(
t − r

c

))
√

8 π r3
. (22)

Equation (22) is the analogous equation to Ampère’s force
law (10) for alternating current. However, there are two major
restrictions: The first is that the test charge needs to be located
at an appropriate distance from the current element, as the
equation (22) only represents the far field. Secondly, the test
charge qd must not move too rapidly. The calculations shown
here can also be carried out without these restrictions, but the
resulting formulas are then considerably longer.

The practical value of the formula (22) is that it provides a
relatively simple means by which to estimate the field of the
electromagnetic force generated by an alternating current. A
reader trained in classical electrodynamics will recognize that
the equation (22) corresponds to the far field of a Hertzian
dipole.

C. Simulation

By means of the equations (10) and (22), it is possible to
obtain an idea of the shape of a electromagnetic field of a
certain configuration quickly. However, if one needs accurate
results, it is usually necessary to calculate with the complete
Weber-Maxwell force (1). For simple tasks (for example, for
individual point charges with non-trivial trajectories), such
analyses can be carried out quickly and easily with Mathe-
matica. If one plots the resulting fields, one recognizes that
the Weber-Maxwell force not only represents simple waves, it
also contains effects such as the Doppler effect, which is only
included in standard electrodynamics if the Lorentz transfor-
mation is applied, which makes the calculation considerably
more complicated and laborious.

In more complex tasks, large numbers of point charges interact
with each other. This means that both the force generated by a
point charge and how this force affects every other point charge
in the environment need to be calculated. Furthermore, in
complex tasks, point charges are usually subject to constraint
forces, which must also be taken into account. Complex tasks
can therefore only be analyzed satisfactorily with specialized
software. As Weber-Maxwell electrodynamics is still very
new, there is currently only a single software framework that
works with the Weber-Maxwell force. The source code of
the framework referred to as OpenWME is freely available
at Github. Compared to other EM solvers, OpenWME is
extremely fast and powerful. Its speed advantage results from
the fact that there is no need to solve Maxwell’s equations
numerically.

OpenWME contains a number of small applets that demon-
strate possible use cases. Figure 1 shows a selection whereby
the partial figures represent the corresponding fields at repre-
sentative times. These were taken from the videos in Open-
WME. Details, parameters, and further explanatory informa-
tion can be found in the OpenWME documentation.
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(A) (B)

(C) (D)

(F)(E)

Fig. 1. Calculated fields with OpenWME: (A) Field of an initially stationary point charge that was suddenly accelerated for an instant (bremsstrahlung). (B)
Field of a point charge moving on a path corresponding to a lying number eight. (C) Field of a fast-moving Hertzian dipole. (D) Interference at a double slit.
(E) Diffraction at a half-plane. (F) An electromagnetic wave coming from the left is deflected around a reflecting surface.
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The applets demonstrate that there are hardly any limits regard-
ing the complexity of the tasks. This is somewhat surprising, as
Weber-Maxwell electrodynamics does not require differential
equations. OpenWME thus clearly shows that classical elec-
trodynamics is basically very simple and that its complexity
only arises through the interactions of a large number of point
charges. Realizing this is particularly important for pupils
and students, as they are often not yet able to recognize the
simplicity hidden behind complexity.

With the help of Weber-Maxwell electrodynamics, pupils and
students can be better enabled to comprehend effects such as
diffraction, interference, Lorentz force, and induction in detail
and to develop an intuitive understanding of the fundamentals
of physics. This is particularly useful for engineering students,
as the creative use of the laws of nature requires an intuitive
and profound understanding.

IV. Proofs and deductions

A. Deduction of the Weber-Maxwell force from Maxwell’s
equations

Maxwell’s electrodynamics is presently still the standard. It
has this status because it has performed very well in practice
for more than a hundred years. It is therefore necessary to show
how Maxwell’s electrodynamics and Weber-Maxwell electro-
dynamics are related. In the following section, the Weber-
Maxwell force is consequently deduced from Maxwell’s equa-
tions.

Maxwell’s electrodynamics in a vacuum consists of four
differential equations [18] [19]

∇ · E =
ρ

ε0
, (23)

∇ · B = 0, (24)

∇ × E = −
∂B
∂t
, (25)

∇ × B = µ0 j +
1
c2

∂E
∂t

(26)

and the supplemental formula

FM = qd E + qd u × B. (27)

The formula (27) is known as the Lorentz force. It provides
the force that is exerted by an electric field E and a magnetic
field B on a point-shaped test charge qd that is located at r
at time t. The fields E and B are in turn auxiliary quantities
that can be calculated by inserting the charge density ρ and
current density j following from the problem description into
the system of differential equations (23) to (26).

u represents a velocity. Usually, u is the speed of the test charge
qd in the laboratory frame of reference, i.e., the frame in which
the field-generating device is located. Since electrical currents
in metallic conductors consist of a large number of charge
carriers with various speeds that only move extremely slowly,
u is in electrical engineering practically always identical to the
difference velocity between the test charge qd and the field-
generating wires and metallic conductors. This means that a

test charge that is at rest in relation to the field-generating
device is not affected by the magnetic field B. In this case,
the Lorentz force (27) can be simplified to

FM = qd E. (28)

In the following, we assume that not only the test charge qd,
but also the field-generating charge qs is a point charge. The
charge density of this point charge is

ρ = qs δ(r − rs(t)), (29)

where rs(t) is the location of the point charge qs at time t. For
the current density,

j = ṙs(t) ρ (30)

applies.

Maxwell’s equations can be transferred into a wave equation.
To obtain this equation, we first differentiate Maxwell’s fourth
equation (26) with respect to time t. This results in

∇ ×
∂B
∂t
= µ0

∂ j
∂t
+

1
c2

∂2E
∂t2 . (31)

Then, we insert the third Maxwell equation (25) and obtain

1
c2

∂2E
∂t2 = −µ0

∂ j
∂t
− ∇ × (∇ × E) . (32)

Based on the identity ∇× (∇ × E) = ∇ (∇ · E)−∇2E and using
the first Maxwell equation (23), the equation (28), and µ0 =

1/(ε0 c2), we get the wave equation(
1
c2

∂2

∂t2 − ∇
2
)

FM = −
qd

ε0

(
1
c2

∂ j
∂t
+ ∇ ρ

)
. (33)

The wave equation (33) is solvable. The approach is described
in Section IV in [20], but it can also be found in certain
textbooks on theoretical electrical engineering or physics, e.g.
in [18] or [19]. The solution reads

FM = −qd

(
∂

∂t
A + ∇Φ

)
, (34)

with
Φ =

qs c
4 π ε0

(
c2 (t − τ) − ṙs(τ) · (r − rs(τ))

) , (35)

A =
1
c2 ṙs(τ)Φ (36)

and

τ = t −
1
c
∥r − rs(τ)∥ . (37)

The potentials Φ and A are known as Liénard-Wiechert
potentials in the center-of-momentum frame of the test charge
qd. In the current scientific literature, the Liénard-Wiechert
potentials are always the final result. The fact that it is possible
to simplify them further by means of a mathematical trick was
not known [21]. This method is explained below, and it is used
to derive the Weber-Maxwell force from the Liénard-Wiechert
potentials.
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First, we calculate the derivatives of the potentials Φ and A
and obtain the equations

∇Φ =
qs c h2(τ)∇ τ + qs c ṙs(τ)

4 π ε0 h1(τ)2 (38)

and

∂

∂t
A =

qs [h2(τ) ṙs(τ) − h1(τ) r̈s(τ)] ∂τ∂t − qs c2 ṙs(τ)
4 π ε0 c h1(τ)2 (39)

using the auxiliary quantities

h1(τ) := (r − rs(τ)) · ṙs(τ) − c2 (t − τ) (40)

and
h2(τ) := c2 − ṙs(τ) · ṙs(τ) + (r − rs(τ)) · r̈s(τ). (41)

Now, we insert the equations (38) and (39) into the equation
(34) and obtain

FM = −
qd qs

4 π ε0

c2 h2(τ)
h1(τ) ∇ τ +

[
h2(τ)
h1(τ) ṙs(τ) − r̈s(τ)

]
∂τ
∂t

c h1(τ)
. (42)

The remaining derivatives in equation (42) can be derived by
applying the differential operators to both sides of the equation
(37). This gives us

∇ τ =
r − rs(τ) + (r − rs(τ)) · ṙs(τ)∇ τ

c ∥r − rs(τ)∥
(43)

and
∂τ

∂t
= 1 +

(r − rs(τ)) · ṙs(τ)
c ∥r − rs(τ)∥

∂τ

∂t
. (44)

By solving the equations using equation ∥r − rs(τ)∥ = c (t −
τ), and the definition (40), we obtain the surprisingly simple
equations

∇ τ =
r − rs(τ)

h1(τ)
(45)

and
∂τ

∂t
= −

c2 (t − τ)
h1(τ)

. (46)

These can now be used in equation (42).

Finally, let us assume that the center-of-momentum frame of
the test charge qd is moving along the trajectory rd(t) and
that the velocity difference between qs and qd is much lower
than the speed of light in a vacuum c. In this case, the use of
non-relativistic dynamics and the Galilean transformation are
allowed. We now use this to generalize the force to a moving
test charge qd.

Since r disappears in the center-of-momentum frame of the
test charge, we first perform the substitution

r→ 0. (47)

Only the source charge qs appears to be moving in the
center-of-momentum frame of the test charge, namely with
the trajectory rs(t) − rd(t). For this reason, we now carry out
the substitutions

rs(τ)→ −r := rs(τ) − rd(τ), (48)

ṙs(τ)→ −u := ṙs(τ) − ṙd(τ) (49)

and
r̈s(τ)→ −a := r̈s(τ) − r̈d(τ). (50)

This and c (t − τ) = r finally give us

FM =
qd qs

4 π ε0

 (r c + r u)
(
c2 − v2 − r · a

)
(r c + r · u)3 +

a r
(r c + r · u)2

)
.

(51)

A comparison of the force FM with the Weber-Maxwell force
(1) reveals that the equation

F = γ(v) FM (52)

applies. The force calculated using Maxwell’s equations is
therefore identical to the Weber-Maxwell force except for a
scalar renormalization factor γ(v) that only depends on the
difference velocity v.

The introduction of the Lorentz factor appears to be arbitrary.
However, it is a reasonable measure, as this ad-hoc assumption
eliminates a number of equations. In addition, the Lorentz
factor hardly plays any role in the case of electromagnetic
waves, since transmitters and receivers often move very slowly
in relation to each other. Ultimately, the purpose of the
Lorentz factor is only to achieve compatibility with Weber
electrodynamics. This in turn integrates the very important
findings of Carl Friedrich Gauss and Wilhelm Weber, i.e., that
magnetism is only a multi-particle effect. In other words, the
added Lorentz factor renders the Lorentz force (27) and the
magnetic field superfluous. The following section IV-B will
discuss this even further.

B. Deduction of the Weber force from the Weber-Maxwell
force

The Weber-Maxwell force (1) is very general, which some-
times makes calculations unnecessarily complicated. In the
case of direct current, a major simplification is possible
because a force-generating point charge qs usually moves so
slowly that the difference trajectory is almost a straight line
during the time period between the emission of the force at
time τ and the arrival at the receiver of charge qd at time t.

This means that the distance vector s := rd(t) − rs(t) between
qd and qs at time t can be expressed by equation

s = r + u (t − τ). (53)

Furthermore, the acceleration a disappears and the velocity
u is a constant. The Weber-Maxwell force can therefore be
simplified to

F =
qd qs γ(v) (r c + r u)

(
c2 − v2

)
4 π ε0 (r c + r · u)3 . (54)

Because c2 − v2 = c2/γ(v)2, this can be further rearranged and
we obtain

F =
qd qs

(
r
r +

u
c

)
4 π ε0 γ(v) r2

(
1 + r

r ·
u
c

)3 . (55)
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Because of equation (5), t − τ = r/c. If we insert this into the
equation (53), we get

s
r
=

r
r
+
u

c
. (56)

Equation (55) thus becomes

F =
qd qs s

4 π ε0 γ(v) r3
(
1 + r

r ·
u
c

)3 . (57)

In addition, equation (56) becomes
r
r
·

s
r
= 1 +

r
r
·
u

c
(58)

and equation (57) can be transformed into

F =
qd qs s

4 π ε0 γ(v)
(

r
r · s

)3 . (59)

Now, the only disturbing term is r/r · s. For this term, the
equation

r
r
· s =

s − u (t − τ)
c (t − τ)

· s =
s2

c (t − τ)
−

s · u
c

(60)

applies due to equation (53) and t − τ = r/c. From equation
(5) follows

t − τ =
r
c
=
∥s − u (t − τ)∥

c
, (61)

i.e.,

t − τ =
s2

s · u +
√

(s · u)2 + s2 (c2 − v2)
. (62)

This can be inserted into equation (60) and we get

r
r
· s =

1
c

√
(s · u)2 + s2 (c2 − v2)

=

√
s2 −

1
c2 ∥s × u∥

2.

(63)

This allows equation (59) to be transformed into

F =
qd qs s

4 π ε0 γ(v)
(
s2 − 1

c2 ∥s × u∥2
)3/2 . (64)

This equation now only depends on the current distance vector
s between qd and qs at time t. Quantities that depend on
the past time τ are no longer included, which significantly
simplifies the practical use of the equation in calculations.

Equation (64) is not only a special solution of Maxwell’s
equations but also an alternative representation of the classical
Weber force in Weber electrodynamics. To show this, we
perform the substitution u → u u and expand the term into
a Taylor series. This yields

F =
qd qs s

4 π ε0 s3

(
1 −

s2 v2 − 3 ∥s × u∥2

2 s2 c2 u2 + O(u)3
)
. (65)

Now, we can set u = 1, which reverses the substitution u→ u u.
By means of formula

∥s × u∥2 = s2 v2 − (s · u)2 , (66)

we ultimately obtain the approximation

F =
qd qs s

4 π ε0 s3

(
1 +
v2

c2 −
3
2

( s
s
·
u

c

)2
)
, (67)

which corresponds to the Weber force without acceleration
terms. This demonstrates that the essence of Weber electrody-
namics is included in Weber-Maxwell electrodynamics.

However, it also becomes evident that the acceleration terms in
classical Weber electrodynamics are artifacts and that Weber
electrodynamics is only valid under certain conditions, namely
when

• the transit time of the force from qs to qd is so small
that both point charges move almost uniformly within
this time interval; and

• the differential velocity between the two point charges is
very small compared to the speed of light.

In electrical engineering, this is the case with direct cur-
rents and low-frequency alternating currents. A low frequency
means that the distance between the current and the measuring
location is much smaller than the wavelength. If this condition
is not met, Weber electrodynamics is unsuitable and Weber-
Maxwell electrodynamics is required. The fact that classi-
cal Weber electrodynamics is incorrect for accelerated point
charges has also been demonstrated experimentally [22], [23].

C. Proof of the conservation of momentum

The question of whether the conservation of momentum is
satisfied or violated in Maxwell’s electrodynamics is not
easy to answer. In Weber-Maxwell electrodynamics, however,
providing a proof for conservation of momentum is very
straightforward. First, we can verify that the force (1) exerted
by a point charge qs on another point charge qd is equal in
magnitude to the force exerted by the point charge qd on the
point charge qs. The direction, on the other hand, is exactly
inverse. Ultimately, the equation

Fik = −Fki (68)

applies to any pair qi and qk of point charges, which is known
as Newton’s 3rd law. From this, it follows immediately that,
in an isolated system consisting of n point charges, the total
momentum p of all point charges is invariant.

The proof is simple. The temporal change of the total momen-
tum p of the system is the sum of the temporal momentum
changes of all point particles:

ṗ =
n∑

k=1

ṗk. (69)

The temporal momentum change ṗk of the kth point charge
is equal to the sum of all forces acting on this point particle,
i.e.,

ṗk =

n∑
i=1

Fki, (70)

provided we define that Fii := 0. This gives

ṗ =
n∑

k=1

n∑
i=1

Fki. (71)
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Because of equation (68),

ṗ =
n∑

k=1

n∑
i=1

Fki = −

n∑
k=1

n∑
i=1

Fik (72)

follows. Formal renaming of the summation indices leads to

ṗ =
n∑

k=1

n∑
i=1

Fki = −

n∑
i=1

n∑
k=1

Fki = −

n∑
k=1

n∑
i=1

Fki, (73)

which can only be true if ṗ is exactly zero. This shows that
the total momentum p must be a conserved quantity.

Furthermore, it demonstrates that the sum of all forces acting
on the point charges disappears in an isolated system. Con-
sequently, electromagnetic waves themselves cannot have any
momentum. Instead, momentum is a property that only matter
can possess. The electromagnetic force is just the mediator.
However, if we only consider a subsystem consisting of an
electromagnetic wave and the receiver of the force, it appears
as if the electromagnetic wave has momentum, since it ulti-
mately causes a momentum change at the receiver. However,
we must not forget that somewhere else the transmitter of
the wave is experiencing a compensating momentum change
at the same time. Electromagnetic waves therefore only have
momentum if we consider non-isolated systems.

V. Unresolved issues

As has become clear up to this point, Weber-Maxwell electro-
dynamics is a fully-fledged theory of electromagnetism in the
non-relativistic regime. However, it explicitly does not apply
to very high difference velocities. The question of how Weber-
Maxwell electrodynamics can be generalized to this domain
is still completely open. It may be sufficient to use relativistic
dynamics without the Lorentz transformation. Conversely, it
might also be necessary to integrate the special theory of
relativity into Weber-Maxwell electrodynamics in a way that
seems suitable.

However, the relativistic range is not of great interest for
electrical engineering as it does not work with such high ve-
locities. Moreover, Weber-Maxwell electrodynamics correctly
reproduces the relativistic effects in the non-relativistic regime,
even without the Lorentz transformation. However, if Weber-
Maxwell electrodynamics is to be applied to atomic physics,
a more in-depth study of this subject cannot be avoided.

In the context of atomic physics, whether existing theories
that use the concept of the magnetic field contain systematic
errors must also be clarified. Magnetic fields are particularly
problematic for point charges because, as has been shown,
they can only be meaningfully defined for closed current loops.
Furthermore, it has long been known that Maxwell’s equations
are overdetermined [18]. In fact, neither the second Maxwell
equation nor the cross product term of the Lorentz force is
required to derive the Weber-Maxwell force in section IV-A
from the Maxwell equations.

Another open point concerns the conservation of energy.
Currently, the conservation of energy for Weber-Maxwell
electrodynamics can only be proven if the point charges are

moving sufficiently linearly. It is possible to specify a potential
energy formula for the force (64), which in turn can then be
used in the proof of the conservation of energy [24]. The
conservation of angular momentum can currently also only
be shown for the force (64).

However, these questions are more of theoretical interest.
Of greater practical importance is the further development
of the usability of Weber-Maxwell electrodynamics for com-
puter simulations. To this end, it would be useful if the
Weber-Maxwell force could be generalized to surface and
volume elements. At present, complex objects still have to
be modeled with point charges and Hertzian dipoles. This
seems unnecessarily time-consuming, as it can be assumed
that force formulas can also be found for surface and volume
elements. Their use would then both improve the quality
of simulations and reduce their resource requirements and
necessary computing time.

Another open question is how Weber-Maxwell electrody-
namics can be used in plasma physics. It is apparent that
the Weber-Maxwell force should be particularly suitable for
plasma physics as it avoids the cumbersome and problematic
use of magnetic fields. It is likely that Weber-Maxwell elec-
trodynamics might quickly lead to new results and successes
in fusion research.

Furthermore, the question arises as to why the Weber-Maxwell
force has the form that it has. The mere appearance of the
Weber-Maxwell force gives rise to the suspicion that the
electromagnetic forces could be transmitted by force carriers,
which – on the one hand – are emitted like projectiles at
random speeds by the force-generating point charges and –
on the other hand – are only accepted by the force-absorbing
point charges if they move slower than the speed of light
in their center-of-momentum frames. This is certainly only
a hypothesis for now, and one that still needs to be examined
with suitable experiments. However, the Weber-Maxwell force
shows that the Lorentz transformation is not necessarily the
only approach to explaining Einstein’s postulates and relativis-
tic effects.

A further remark is addressed to the community of scientists
working on gravitational research: Weber-Maxwell electrody-
namics demonstrates that it is possible to describe complicated
relativistic wave phenomena without differential equations.
Something similar could also be possible in the field of
gravitation.

And finally, it is necessary to develop new textbooks that
make Weber-Maxwell electrodynamics available to students of
electrical engineering and physics. The high degree of clarity
and simplicity of Weber-Maxwell electrodynamics suggests
that it might even be included in high-school physics lessons.
This would also require the adaptation and extension of
existing textbooks.

VI. Conclusions

This article has shown that it is relatively straightforward to
combine Maxwell’s classical electrodynamics with Weber’s
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interpretation of magnetism. It is interesting to note that this
synthesis results in a theory that works completely without a
magnetic field, avoids the Lorentz transformation, and requires
only the two basic equations (1) and (5).

It is also interesting that Weber-Maxwell electrodynamics does
not use differential equations. This represents a clear advan-
tage. On the one hand, it considerably increases the speed of
computer simulations, as it is no longer necessary to rely on
numerical solution methods for partial differential equations.
On the other hand, it makes classical electrodynamics easier
to learn, which is a decisive advantage, not only for pupils
and students, but also for practicing electrical engineers.

Although some questions remain unanswered, it can be con-
cluded that Weber-Maxwell electrodynamics is equivalent to
Maxwell’s electrodynamics, but clearly surpasses it in terms
of practical usability. Its performance is not only supported
by the theoretical analyses in this article, but also demon-
strated by means of the new software framework OpenWME.
This not only shows that the electrostatic and magnetostatic
aspects are reproduced correctly, but also that all electrody-
namic effects, such as diffraction, interference, scattering, and
bremsstrahlung, can be reproduced correctly. The latter results
from the fact that the Weber-Maxwell force (1) is basically
just an alternative – but more usable – representation of the
Liénard-Wiechert potentials.
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