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In this paper we present an example of a specific metric which ge­
ometrizes explicitly a light-like four-vector potential field (Evans­
Vigier field). We define the concepts of 'semilocal' and 'complete' 
geometrization and show that a light-like vector field has the same 
geometrical structure as a gravitational Kerr field. With this back­
ground in mind we discuss a theoretical proposition that a rotating 
body generates, besides a special gravitational field, a magnetic-type 
gauge field which might be identified with a geometrized Evans­
Vigier field. We finally present a discussion which inform us that 
a classical Evans-Vigier field represents a novel type of field because 
we cannot identify it with any of the known electromagnetic fields. 

Key words: light-like vector potential, force-free field, complete ge­
ometrization. 

1. INTRODUCTION 

In this contribution, we construct a metric which appears appro­
priate for a geometrization, within the framework of a Riemannian 
spacetime, of a light-like 4-vector potential field which can be as­
signed to an electromagnetic-type field. Such an exotic field with a 
4-vector potential Aa satisfies the relation 

(1) 

and is denoted by us as an Evans- Vigier field since in accordance 
with our information it emerged for the first time in the work of 
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these authors in connection with the hypothesis of the existence of 
a special kind of magnetic field (see, for instance [1]). 

The starting point is the well known approach to the ge­
ometrization of physical fields involving the construction of space­
time geometries (the so called force-free geometries) within which 
the geodesic equation proves to be identical to the equation of mo­
tion of a particle when interacting with such (nongravitational) fields. 
This method derives in fact from the generalized Einstein's equiv­
alence principle which asserts that "any trajectory is a geodesic of 
some geometry" [2]. Furthermore, the laws of motion, in the case 
of interacting particles, are given by the differential equations of the 
geodesics for the metric in question at the instantaneous position of 
each particle [3]. 

Pursuing this subject, we observe that for the formulation 
of the geodesic equations also in the presence of nongravitational 
forces, some efforts have been directed towards applying changes to 
the metric (see, for instancej [4, 5]) and other efforts to modifica­
tions of the connection [6, 7, in a Riemann or a Riemann-Cartan 
spacetime. There appeared also papers which consider the possibil­
ity of applying a Finsler [8] or a Randers geometry [9] or a fractal 
spacetime geometry [10-12] in order to establish unitary theories of 
gravitation and electromagnetism in conjunction with a probabilistic 
interpretation of the geometry of the background spacetime. 

However, all these alternative interpretations of force-free ge­
ometries have not yet reached the same level of elaboration and ex­
perimental verification as is the case for Einstein's general theory of 
relativity the formal structure of which has continuously invited the 
development of gauge theories. These are the reasons that why we 
maintain in the present work the framework of a Riemannian space­
time which helps us to geometrize a vectorial field. We propose a 
geometrization of a vectorial field in the sense that the associated 
physical quantity (e.g., the four-vector potential Aa.) enters directly 
into the metric which may be interpreted, alternatively, as an 'inte­
rior' (Ta.p f= O) or 'exterior' (Tap = 0) solution of Einstein's equa­
tions. However, from an Einsteinian point of view, the field defined 
by Aa is completely (truly) geometrized (like the gravitational field 
itself) if it leads to a determination of the geometry of the (curved) 
vacuum spacetime in which no other (non-geometrized) matter man­
ifests its presence in conjunction with a non-zero energy-momentum 
tensor. We emphasize that the physical quantities (e.g., density, 
pressure, electromagnetic field tensor etc) which generally appear on 
the right hand side of Einstein's equations represent non-geometrized 
quantities, i.e., the source of the (geometrized) gravitational field. 

In the present paper we adhere to the Einstein's general rela­
tivity and thus the energy and momentum of the geometrized Evans­
Vigier field are encapsulated solely in the pseudotensor t 01p on the 
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same geometrical footing as any gravitational field. We recollect that 
the general relativity is a very special non-Abelian gauge theory and 
thus it is possible that a truly spacetime geometrization can be ap­
plied also to a non-Abelian analogue of the electromagnetic field. 
The Yang-Mills field may serve as such a field. 

We parenthetically note that in a generalisation of Einstein's 
gravity theory which assumes a non-zero stress energy of the grav­
itational field (see, e.g., [13] and its criticism in [14]) we can assert 
that there exists a third alternative geometrization, but we will not 
refer to this aspect here. 

Attempts have also been made to mix directly the standard 
symmetric Riemannian metric tensor with an antisymmetric ( elec­
tromagnetic) field tensor, but the new nonsymmetric metric cannot 
achieve a real geometrization of the electromagnetic field [15]. 

Even if, for the time being, we cannot propose a firm ex­
perimental program to detect or generate an Evans-Vigier field, the 
latter retains the merit of enhancing the search of exotic forms of 
gauge fields in Abelian and non-Abelian gauge theories. Moreover, a 
possible existence of a light-like 4-vector electromagnetic field would 
be a proof that the most important metrics of general relativity, 
Schwarzschild and Kerr solutions (which in Eddington coordinates 
are described also by light-like four vectors) have an electromagnetic 
analogue. Thus, the Kerr metric, which represents the gravitational 
field exterior to a spinning source which 'drags' space around with 
it, has the 3ame geometrical 3tructure as a geometrized Evans-Vigier 
field. This calls for a possible general relativistic physical explana­
tion of the mutual relation between a magnetic dipole (or, generally, 
another 'gauge dipole' described by a light-like non-abelian vector 
potential) and the angular momentum, as observed already in the 
case of astrophysical bodies (see the Wil3on-Blackett-Ahluwalia- Wu 
relation [16]). 

On a microscopic level, the Evans' optical (light) magnet [171 
produced by a circularly polarised light beam appears as a natural 
and physically possible hypothesis. A search for cyclically symmet­
ric equations, similar to spin angular momentum relations but now 
refering to a magnetic-type field, seems also tempting from a geo­
metrical point of view. Of course, as for gravitation or perhaps for 
the entire field of physics we do not yet know the physical intrinsic 
mechanism of such a magneto-rotation induction: 'rotation generates 
magnetic-type field and magnetic field generates rotation', and yet 
we attempt to model and describe it here. 

A simple experimental proposal for the verification of these 
hypotheses may be the detection of an Aharonov-Bohm effect as 
arising, for example, in the usual two-slit electron diffraction exP.er­
iment in which the solenoid is replaced bl a rotating body. lFor 
a recent overview of microturbines see [18J, and for a two-slit elec-
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tron diffraction experiment with a rotating superconductor see [19].) 
These explorations might be extended to an astrophysical scale in 
which a natural cosmic gravitational Aharonov-Bohm situation may 
arise [20]. Indeed, the gravitational field of a rotating astrophysical 
lens object plays the role of both a double slit (by its electriclike 
and curvature inducing effects by gravity) and an 'external' field 
(with a magneticlike contribution of the gravitation). A proposal 
for a laboratory experiment for an observation of a gravitational 
Aharonov-Bohm effect in conjunction with photons is described in 
[21). 

The section 'Physical Content of the Evans-Vigier Condition' 
tries to construe an answer to the much disputed question: What is 
the Evans-Vigier B(3} field? 

In the final section we present a discussion on the possibility 
of identifying an Evans-Vigier field within the set of known electro­
magnetic fields. 

2. A SPECIAL METRIC AND BASIC RELATIONS 

Let us consider a null-like four-vector with components 

We denote by 
A 2 = 'f/ 0 (3 AaA,a = 0 

its Minkowskian module, in which 

'f/o(3 = [+1, -1, -1, -1) 

(2) 

(3) 

(4) 

is the Minkowski {flat) diagonal metric. We should mention that 
A0 (xf3) is here a standard spacetime vector which may represent 
the vector potential of an electromagnetic-type gauge field. For the 
moment, we cannot foresee if Aa may be associated with a massive 
or a zero-mass field or if we must include the subject of a gauge 
invariance. Consequently, all the calculations are given in the tangent 
bundle of spacetime. 

We propose to study under which conditions a metric g0 p 
having the special form 

9o(3 = 1}o(3 + KAaAp, (5) 

where K -=/= 0 is a constant still to be determined, can define an 
Evans-Vigier field. 
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The determinant of the metric tensor g01p is given by 

(6) 

and thus the inverse (contravariant) metric is 

(7) 

The metric (5) is similar to the one which describes a weak gravita­
tional field, i.e., 

(8) 

However, for the time being we do not impose yet any condition on 
the value or the strength of the term KA01 Ap. There follows that 

and thus the indices of Aa may be raised and lowered with either 
the metric 9a.B or the Lorentz metric 'l}a,B· It is easy to show that 

(10) 

where the ordinary partial derivatives are denoted by commas (or 
alternatively by 8a and 8f8x01 ), and COVariant derivatiVeS by Semi­
COlOnS. The Christoffel symbols are 

rt;'Y = 9010'[.8-y, u] 

= ~Kgaa [(AaAp),,. + (AuA,.),p- (ApAoy),u] 

= ~Kg01u [A.aB-ru + A-yBfJu + Au(Ap,-y + A-y,p)] (11) 

= ~K1] 01u [A,aBoyu + AoyBpu + Au(Ap,-y + Aoy,p)] 

- ~K2 A01 AO'(ApBoyu + AoyBpu), 

where 
Bvp = Ap,v - Av,p, (12) 

and [,8-y, u] is the Christoffel symbol of the first kind. 
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Because g =constant= -1, it follows that 

and thus the Ricci tensor is given by 

Rp-r = -1]
017 [,9/,0'],01 +K[AC¥Au[p/,O'J.OI 

+ (A~01A17 +A01A~01 ) (/3/,0']] +1] 0111 1] 17v(j30',j.t](/a,v] 

- K ( 17 01 ~' Au Av + 17uv A 01 A11 ) [,90', ~-tH/a, v] 

+ K 2 A 01 A" A 17 Av[/30', J.t][/a, v] 

=: KR1 + K 2
R2 + K 3 

R3 + K 4
R4. 

3. FORCE-FREE FIELD AND A 
SEMILOCAL GEOMETRIZATION 

Introducing the parameter s defined by 

the equations of geodesics, 

become 
du 01 KAOI dC - KG OluB 'Y 
ds + ds - 1] u-rU ' 

where 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

At this point it is easy to see that an Evans-Vigier field described by 
the metric (5) becomes a 'force-free field' with respect to the motion 
of a charged test particle having the characteristic parameter qfm0 , 
and subject to the constraint 

KG= constant=~­
moe 

(19) 
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With this constraint, the geodesic equation (17) reduces formally to 
the Lorentz equation 

dua q aaB v 
-- = --ry" pvU . 
ds moc2 (20) 

We may identify Bpv given by (12) with an electromagnetic 
field tensor if the 4-vector potential A" is related to an electromag­
netic potential AI' by a gauge transformation of the second kind 

of 
A"= A"+~· vx" 

(21) 

Since it is possible to demonstrate that constraints such as (19) and 
(21) are consistent and in fact do not contradict each other along the 
traJectory of the test-particle (see,e.g., [22]), we can assert that we 
have achieved a local or a semilocal geometrization (i.e., one along a 
curve) of the Evans-Vigier field. 

The final conclusion of this section is that any field described 
by a metric of the form (5) may act on a test particle with a Lorentz­
type force (20). In such geometrical terms, a Lorentz-type force was 
known until now only for a weak gravitational field (see, e.g., [23]). 

4. A COMPLETE GEOMETRIZATION 
OF EVANS-VIGIER FIELD 

Bearing in mind that the metric tensor is given in our account by 
equations (5) and (7), we need only derive the Rap, R, and also the 
Einstein's tensor from the 9ap_ and establish in this way the com­
ponents of the matter tensor T01p. If this energy-momentum tensor 
coincides with one which is known for a ~iven (physical, phenomeno­
logical) material scheme, we say that ( 5) represents a solution of 
Einstem's equations for such a scheme. lf we do not possess such 
a coincidence, we say that we face an exotic matter which might 
determine the desired properties of the spacetime (e.g., 'traversable 
wormhole' [24] or 'warp drive' [25]). From this point of view the 
general theory of relativity is not a closed theory, and sometimes 
the Einstein's equations seem to form a mathematical identity if a 
suitable metric is chosen: 

G a ·- "'Gap -· "'T. a a,., ·- •• -. "' a,.,· 
K 

(22) 

In other words, in this case Einstein's equations are used merely for 
a definition of an energy-momentum tensor which generates a given 
gravitational field. 
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In the following we will not use this identity aspect of the 
Einstein's equations since we intend to geometrize the Evans-Vigier 
field Aa which may be considered as a gravitational perturbation 
of a vacuum spacetime. Then the field equations correspond to an 
'exterior case' and are given by 

Rp-y = 0, (23) 

where Rp-y is given by Eq. (14). In a way, the constant K may be 
called a 'coupling constant' because it characterizes the strength of 
the perturbation of the vacuum spacetime generated by an Evans­
Vigier field. We assume that the form of the metric (5) retains its 
independence from the value of K. In other words, the metric 9ap 
given by (5) remains a solution for any arbitrary value of K. Thus 
in the expression (14) of Rp-y, each coeficient of K and of its powers 
must be cancelled separately. In this way, we obtain four equations: 

Rt = 0 = -1]au[,8/, u].a, (24) 

R2 = 0 = K [AaAu[,B/, ul,a + (A~aAu +A a A~a) [,81, uJ] 
+ 1Jap1Ju11 [,Bu, JLH1a, v], (25) 

R3 = 0 = -K (17a~' Au A 11 + 1Juv A a A~')[,Bu, JL]('Ya,v], (26) 

R4 = 0 = +K2 A a A~' Au A 11 [,8u,JL][/a, v]. (27) 

We note that, in accordance with Eq. (26) the potential Aa generates 
a new light-like vector aa which, by analogy with the kinematics 
of a timelike congruence of curves, may be called an 'acceleration­
potential vector' and has the following properties: 

aa = Aa;pAP = Aa,pA.B = -b(x'Y)Aa, (28) 

aa = ga.Bap = 1Ja.Bap, 1]a.Baaap = gaPaaap = 0, (29) 

aaaa;.B = aaaa,p = a0 Aa;P = aaAa,.B = 0, (30) 
aa Aa = 0. (31) 

We define also an 'expansion', E(x.B), of the light-like potential con­
gruence in the form of 

E(x.B) = -Aa;a = -Aa,a· 

We notice that Eqs. (25) and (27) are satisfied identically, and that 
Eq. (26) is reduced to the definition of the acceleration potential 
(28). Thus the Einstein field equations (24)-(27) become 

IT(ApA-y)- [(£ + b)Ap] + [(£ + b)A-y] = 0. (33) 
,-y ,,8 
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For the stationary case, [j --+ - V2 , there arise two remark­
able type (2,2) D solutions of Eq. (33), namely, the Schwarzschild­
type solution [see, e.g., [26], p. 111, Eq. {9.7)] 

s s s s s 1 ( x y z) A a :=(A o, A 1, A 2, A 3) = . r.; 1, -, -,­
yr r r r 

~ [ :,.. v (20')] 

and the Kerr-Schild type metric (see, e.g., [27], p. 146) 

AKS _ p3 
( px + ay py + ax ::_) 

a - 4 2 2 
1' 2 2 ' 2 2 ' ' p +a z a +p a +p p 

where 

(34) 

(35) 

(36) 

(37) 

Here a is a parameter related to the angular velocity and, thus, to 
the angular momentum of the source. We remind the reader that the 
Kerr metric represents a vacuum field exterior to a spinning source. 
Hence, an Evans-Vigier field and a type (2,2) gravitational field have 
the same topological properties. It is important to stress that, for 
the Schwarzschild-type solution (34), 

V x A 5 = 0 (no magnetic- type field) (38) 

and, for the Kerr-Schild type metric (35), 

V x A KS =/= 0 (magnetic- type field). (39) 

(The physical interpretation and other formal details of these equa­
tions will be discussed in another paper which is now under study 
[28].) An immediate consequence of these results is that rotating 
bodies generate, besides a special kind of gravitational field, also 
some magnetic-type gauge fields defined by light-like vector poten­
tials (see Sees. 1 and 5). For the time being all experimental tests of 
general relativity (e.g., advance of the perihelion of Mercury, bending 
of light, gravitational red shift etc) are expressed only as functions 
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of the mass of the central gravitating body. In order to evaluate the 
physical implications of the Evans-Vigier field we must evaluate all 
these effects in terms of the light-like vector potential Aa. This is not 
a simple task because we have to apply Cartesian-type coordinates 
to spherically or axially symmetric solutions (see [28]). 

5. PHYSICAL CONTENT OF THE 
EVANS-VIGIER CONDITION 

5.1. Four Independent Electromagnetic Invariants 

In Classical electrodynamics there exist only four independent elec­
tromagnetic (EM) field invariants [29, 30], namely (in units with 
c = 1), 

Io = AaAa, 

It = ~FapFa,B = IEI2 -IBI2
, 

I2 = -~Fap:Fa.B = 2E · B, 
2 

I3 = -2AaeTae.8 Ap, 

(40) 

(41) 

(42) 

(43) 

where Fap is the EM field tensor, ;:a.O is the dual EM field tensor 
and T 01.8 is the Maxwell stress-energy tensor. Salingaros [30] used 
these invariants to announce the proposition: Plane monochromatic 
EM (transverse) waves are characterized by vanishing invariants It = 
I2 = !3 = 0 in the Lorentz gauge. As we mentioned, the Evans-Vigier 
field is defined by a vanishing invariant 10 = 0. 

5.2. Is the Evans-Vigier Condition a Lorentz-Covariant 
Gauge Condition or a Constraint Defining 
an Exotic Electromagnetic Field? 

In this section we consider the question if AaA01 = 0 can be pro­
posed as a particular (nonlinear) Lorentz-covariant gauge condition 
for Abelian or non-Abelian gauge theories. We mention that a simi­
lar nonlinear condition in which, however, 

AaeA 01 = constant ¥= 0 (44) 

was proposed by Dirac [31]. This is equivalent to a proportionality 
between A01 and the particle four-velocity ua [32, 33]. 
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Generally, there are two constraints which arise in connection 
with any gauge condition: attainability and completeness (or unique­
ness) [34]. Attainability means that given an arbitrary 4-vector po­
tential Ba not satisfying the Evans-Vigier condition, one can find a 
gauge transformation U such that the gauge-transformed Ba, 

Ba~Bu a= u-1 BaU- ~U-1 8aU, (45) 

satisfies the gauge condition. Imposing the condition (3) on Bu a, 
we find a nonlinear differential equation for U 

(46) 

where 

(47) 

Concerning the problem of uniqueness we assume that there exists a 
potential Ba satisfying Eq. (3)and also a gauge transformed Bu a of 
that potential which also satisfies the Evans-Vigier condition, i.e., 

B Ba _ Bu BUor _ 0 
a - a - · (48) 

Applying Eq. ( 45) to Eqs. ( 46) and ( 48), we obtain nonlinear dif­
ferential equations for U which for a simply connected spacetime 
and for regular vector potentials can, in principle, be solved. Thus, 
the uniqueness is not fulfilled and the Evans-Vigier condition (3) is 
rather a constraint defining an exotic electromagnetic-type field than 
a Lorentz-covariant gauge condition. 

5.3. Evans-Vigier Field and Non-Abelian Fields 

It is well known that actually we cannot speak about a non-Abelian 
SU(2) electrodynamics but merely about a non-Abelian (nonlinear) 
analogue of Maxwell's equations or about a non-Abelian analogue 
of electric and magnetic fields which do not appertain to what we 
ordinarily associate with electromagnetism. In contrast to electrody­
namics, the Lagrangian of the Yang-Mills field in vacuum contains, in 
addition to the second-order terms in such fields, higher-order terms. 
Thus, Yang-Mills fields possess a nontrivial self-interaction as in the 
case of a gravitational field. In other words, the mediating particles 
of the Yang-Mills field themselves possess charges. 

On the other hand, these three classical theories, Maxwellian 
electrodynamics, Einsteinian general relativity, and Yang-Mills the­
ory possess a common feature they all admit a Birkhoff theorem [35]. 
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In a restricted sense, this means that if we consider {in each of these 
theories, i.e., even for SU(2) and SU(3) simmetries)] the gauge field 
of a single point particle, for larger, it proves similar to the Coulomb 
type field. 

For example, the non-Abelian SU(2) analogue of the electro­
magnetic field strength tensor is the curvature tensor of the SU(2) 
internal bundle 

where the matrices Aa are defined by 

(50) 

and Ta are the isospin matrices appropriate to the particular multi­
plet of wavefunctions on which the gauge-covariant derivative 

(51) 

acts. The matrix form of equation ( 49) depends on the particular 
representation of the gauge group SU(2) to which the matrices Ta 
appertain. However, in every representation, these matrices satisfy 
the commutation relations of the Lie algebra 

(52) 

In an isospin space, T and A a are 3-dimensional vectors (a, 
b, c=l, 2, 3). Then 

F~f = (oaAp- fJpAa- GAa x Ap) · T. (53) 

If we want to describe the interaction between the gauge fields 
and n species of spin-t particles (fermions) with masses mi, we can 
use the total action 

SNA = J d4x (54) 

x [ - ~ F~pF••P + t, ,b;( x")(iil - G A( x") - m; ),P;( x")] , 

where the 'bar' notation means the 'contraction' with (Dirac) 'Yil 
matrices, i.e., for instance, 

(55) 
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and where T(i)a is the ath generator matrix in the isospin-T(i) rep­
resentation. The sum is over multiplets of wavefunctions t/Ji, each 
having (2T(i) + 1) entries in the case of a SU(2) isospin, and each 
member being itself a Dirac spinor. 

The variation of the action (54) with respect to AI' yields 
Euler-Lagrange equations for the gauge fields A~(x.B) which are the 
Yang-Mills equations, i.e., the non-Abelian analogue of Maxwell'" 
equation8: 

or 
DaFar:<,B - Gcabc A~Fca,B = Ja.B' 

where the current is given by 

(56) 

(57) 

(58) 

For free fields, written in terms of the vector potential in the Lorentz 
gauge, 

8Aa = O 
8x 01 , 

the Yang-Mills equations become 

OAa +GAP X (8pA 01 - DaAp- GAa X Ap) = 0. 

(59) 

(60) 

In order to coml?are this with the geometrized Evans-Vigier 
potentials (34) and (35), we remind the reader that the spherically 
symmetric solutions of the source-free Yang-Mills equations for a 
single point particle do not differ fundamentally from the Coulomb 
field [36-37]. Indeed, the solution has the form 

Ao = icp(r), (61) 

which even for a canonical case cannot apparently satisfy the Evans­
Vigier condition. We cannot apparently also identify an Evans-Vigier 
field in the set of monopoles and instantons, that is within solutions 
corresponding to Yang-Mills equations for SO( 4) and S0(3,1) gauge 
groups. The word 'apparently' is used here because solutions of the 
form (61) are very particular, and it is possible that Yang-Mills fields 
with other symmetries admit Evans-Vigier type exotic potentials as 
exact solutions which, when they are geometrized in spacetime, may 
be of the form (34) or (35). 
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5.4. Rotation and Evans-Vigier Field 

Following our preceding account, we may now state that a geometri­
zed Evans-Vigier field represents a classical but exotic electromag­
netic - type field which possesses similar properties to gravitational 
fields defined by Schwarzschild and Kerr metrics. The process of 
geometrizing such an Evans-Vigier field, through association of the 
vector potential with part of the structure of spacetime, leads to the 
supposition that, possibly, there exists a fundamental relation be­
tween rotation and a magnetic-type field. It should be emphasized 
that in a sense our results demonstrate a generalisation of and the 
reciprocity to a well-known physical phenomenon. Thus, consider­
ing a free particle in an external electromagnetic field defined by the 
tensor FafJ, we observe the generation of a vorticity 

(62) 

which is related to the field tensor F01 p via the (London) equation of 
superconductivity [38, 39]: 

aAp aA01 me 
Fap = -a - -a I> = -wafJ· 

X 01 X" e 
(63) 

In a geometrized field, free noninteracting test particles placed in 
an external gravitational field define a gravitational superconducting 
state because they move on (force-free) geodesics meeting no 'resis­
tance' [40, 41]. 

Equation (63) expresses that the four-vector J_>Otential A01 is 
tangent to the part1ele trajectories at all points [42j and thus the 
particle velocity is proportional to the vector potential as we have 
seen above. It is important to stress that it is the external vecto­
rial field A 01 which determines the motion of a test particle and not 
vice versa. Moreover, generally, the four-velocity u 01 may be defined 
as the vector-potential of an inertial-gravitational field and may be 
assigned to each point of the spacetime independently of the fact 
whether or not a test particle resides at that point [43, 45]. Hence, if 
the vacuum spacetime is perturbed by the presence of the vectorial 
field A01 we can assert that the source of vorticity is precisely this 
field. 

Our ~eneralisation arises from the fact that not only does a 
normalized (Dirac) vector potential field [see Eq. ( 44)] generate a vor­
ticity field, but yields also a relation between the angular momentum 
of a rotating body and a geometrized li~ht-like vector potential. This 
result is clearly illustrated by Eqs. (35) and (39). It is not possible 
to write a simple relation similar to Eq. (63) because, in the present 
case, A01 is light-like and u 01 is time-like and the relation between 
these quantities is more complicated than in (63) (see [28]). 
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However, it is not unreasonable to search for a relation be­
tween a vector potential Aa and the 'vorticity' of the wavevector of 
a null-free electromagnetic field (an incoherent fluid of photons) for 
which we quote the relations [46]: 

E2 B2 = 0, (64) 
EB = 0, (65) 

Tema/3 = eae/3 (stress- energy tensor), (66) 

eae 01 =0, (67) 

ea;f3e = 0 (null geodesics). (68) 

If Aa is proportional to the null wavevector ea which now plays 
the role of a four-velocity vector, the existence of an Evans-Vigier 
magnetic-type field follows in a natural way: An 'axial' magnetic-type 
field B(3) is generated by the vorticity of the null wavevector which 
defines a null (i.e., transverse) electromagnetic field. Characterizing 
the null electromagnetic field by its wavevector ea(xf3), we can write 

EV aAp a A"' ( aep aeOt ) 
F at/3 = axa - 8xf3 = constant X oxcr - oxP . (69) 

On the other hand, let us consider as a simple example, a 
circularly polarized plane wave with a 3-vector potential 

A ( ~±·~)Eo (· iwz) = X 1y ~ exp lWt - 7 , (70) 

where the ± signes correspond, respectively, to the complex vector 
potentials A <1> and A (2) which define the circularly polarized wave. 
Of course, we note that B(l) = V x A (l) and B(2 ) = V x A <2 > 

represent two transverse magnetic fields of the electromagnetic wave. 
The Evans-Vigier hypothesis that vectorial fields of the form B(l) x 
B(2 ) or A (1) x A (2) [the latter being inspired by the Yang-Mills 
relation (53)1 could be associated with real electromagnetic fields 
must be ven:fied by experiment. 

Another idea proposed as a hypothesis by Evans and Vigier 
is that the fields B(l), B(2 ) and B(8) ex B(l) x B(2 ) are related by 
the angular commutator theory. In fact, we recognize a similar idea 
in a recent paper [47] where it is shown that magnetic fields might 
be related to spatial rotations. Furthermore, we observe that the 
number of the non-null components of an electromagnetic field is 
dictated by the particular form of the parameters and generators of 
the Lorentz group. 
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We finally remark that a possible reciprocal magneto-rotation­
induction effect: 'rotatin~ (even neutral) particles generate a magnetic­
type field' (see section 1) is supported also by an analogy between 
charge and spin in general relativity (see, e.g., [48]) and thus, from 
a geometrical point of view, both charges and angular momenta are 
sources of electromagnetic-type fields. 

6. DISCUSSION 

In this section we detail some ideas related to the possibility that a 
photon becomes massive or acquires a mass by its interaction with 
other fields. Because our understanding of the Evans-Vigier field is 
still incomplete, we expect in this way to demonstrate the similarities 
and differences between the Proca field and the Evans-Vigier field. 

6.1. Classical Proca Massive Photons 

In the case of the classical electrodynamics of massive spin one par­
ticles in a flat (Minkowski) spacetime, the Proca Lagrangian density 
(in the absence of charges and currents) is 

where 
mphc 1 

JL=--=-
Ti A 

(71) 

(72) 

is the inverse Compton wavelength of the photon. We assert that 
even if AaA a were zero we can still formally use the Lagrangian 
density (71) but have to substitute ultimately in the equations of 
motion A0 A0 = 0 if such an expression were possibly involved. 

The Euler-Lagrange equations of motion with respect to Aa 
are precisely the Proca equations 

which describe the wave aspect of massive photons. If we apply the 
divergence (8a) to these equations, we find 

(74) 

for J.l =/= 0. We see that the Lorentz condition is now a necessary 
condition and not a choice of gauge. 
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On the basis of a minimal coupling procedure (1Jap--+ 9ap, and 
8pFPa --+ pPa.p), we observe that the Proca equations in a curved 
spacetime, ass.;,ming that the electromagnetic field is weak and does 
not perturb the background metric, are given by 

(75) 

The Proca equations arise here as the only possible linear general­
ization of the Maxwell equations [49]. As a result of the presence 
of the coupling constant p (the mass of the photon), the potentials 
become directly measurable (observable) quantities. 

For the static case, the Proca equations in vacuo reduce to 

(76) 

For example, the electrostatic scalar potential of a point charge 
placed at the origin (Proca-Yukawa potential) becomes 

canst 
</>(r) = -- exp( -pr). 

r 
(76) 

Thus, we observe that the assumption of a non-vanishing mass for 
photons leads to a deviation from the Coulomb law. Another conse­
quence is that a free electromagnetic wave with massive photons, 

Aa = Pa(p)exp[-i(wt- k · r)] = Pa(p)exp ( -*PaX0
) 

=: P 0 (p)exp( -ikaxa), 

possesses a dispersion relation in a vacuum, 

as well as a group velocity 

dw c I 
Vg = dk = ~(w2 - p2c2)1 2, 

(78) 

(79) 

(80) 

where pa(p) = (P0 , P) is the polarization vector of the photon, pi' = 
(p0

, p) is the 4-momentum of the photon, and k = ( k0 , k) is the wave 
vector. To each component of the quantized four vector potential, 
there corresponds a special type of a photon. In conjunction with 
the Lorentz condition (74) we obtain 

(81) 
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Since there exists no gauge invariance, the massive photon possesses 
three degrees of polarization (freedom), corresponding to helicities 
(spin projections along the direction of propagation) e = ±1 and 0. 
For instance, a massive photon with momentum p along the z axis 
displays the polarizations: 

pR,L := p(~=±l) (82) 

1 (A±'~) := =f v'2 ex lCy (circular polarizations : R and L ), 

p(e=o) =;(!PI, 0, 0, ~). (83) 

These polarizations satisfy the relation of completeness [50] 

~ p(e:)* p<~> = _ + P01PfJ 
~ 01 jJ 'f'JafJ 2 ' 
~ ~ 

(84) 

which suggests a possible link with the projection tensor in an in­
finitesimal 3-space orthogonal to p01 • Since 

("mass- shell" condition), (85) 

we observe that the Proca longitudinal polarization (83) does not 
satisfy the Evans-Vigier hypothesis A01 A 01 = 0. The Maxwell-Proca 
stress-tensor corresponding to the Lagrangian density (71)) is 

(86) 

and this expression can be consistent with an Evans-Vigier field only 
if we assume the condition A01 A 01 = 0 here but do not extend this to 
the original Lagrangian (71 ). 

We conclude this subsection with a discussion on some prop­
erties of Maxwell, Proca and, possibly, also of the Evans-Vigier field. 

1. The electromagnetic field entries are composed of two parts: 
the transverse part for which energy and momentum form a 
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four vector and behave like the energy and momentum of free 
particles as far as their transformation properties are con­
cerned, and the longitudinal part for which this does not 
apply. In conventional quantum electrodynamics, only the 
first (transverse) part is subject to a quantification, giving 
rise to a photon. The second part remains usually unquanti­
fied. The latter part gives rise, in the presence of matter, to 
the Coulomb interaction between charged bodies in classical 
electrodynamics (lines of force obeying Gauss' law) and the 
quantum electrodynamic effects (exchange messenger, virtual 
particles). 

2. The longitudinal photon does not transport energy and can­
not be observed as a free particle. Thus, for instance, there 
does not exist any gravitational interaction between a longitu­
dinal photon and a massive object, and this is why a Coulomb 
field can cross the event horizon of a black hole. At this point 
we can offer a non-local interpretation to this phenomenon. 
Indeed, the longitudinal photons do not travel in space as do 
ordinary transverse photons at a finite speed c. They sim­
ply happen as instantaneous (i.e., non-local) extended events 
in which the longitudinal quanta (or 'connections' [52]) are 
spatially and non-temporally distnbuted and connected re­
productions as it happens in an ordinary still photograph. 
Such a longitudinal photon may possibly be associated with 
an Evans-Vigier B(3) field. It is evident that we can define 
in a similar way a longitudinal graviton corresponding to a 
gravitomagnetic B~3 ) field. 

As regards the estimates of the (rest) mass of a photon we 
quote the ufper limit which is extracted from "Galactic Electrody­
namics" [53 

mph ;S 10-58gm. (87) 

It is very difficult to hope that the effects of such a minute mass may 
be detected in a laboratory. 

We remind the reader that the condition J1. # 0 is not con­
sistent with gauge invariance, and for this reason Proca's electrody­
namics appears aesthetically defective to many theoretical physicists. 
However, the only certain assertions on the value of J1. which can be 
made must be based on experiments [54], and observations we might 
add. Furthermore, it is important to stress that Hora [55], studying 
the motion of electrons in a laser field, noted the presence of an un­
expected longitudinal component. At this point we mention that in 
an infinite plane wave, the E and B fields are everywhere perpen­
dicular to the wave vector and the energy flow is everywhere parallel 
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to the wave vector. However, in a wave of finite transverse extent 
(e.g. a circularly polarized wave propagating in the z direction, as, 
for instance, in the laser beam contained within an optical fiber with 
a radius of about a micron) the E and B fields have a (longitudi­
nal) component parallel to the wave vector (the field lines are closed 
loops). This is a well known classical result (see, for instance, [56]). 

6.2. Interacting Electromagnetic and 
Gravitational Fields 

We consider a free electromagnetic field, in a vacuum spacetime, 
which creates its proper gravitational field 9a{J· Such an interacting 
system incorporating a gravitational field (gap) and an electromag­
netic field (Aa) may be specified by the Lagrangian density [57] 

L = - -
1
-AFapFafJ + !v=ggaP Rap 

16~ K 

+ x]:_AA-rA'r gaP Rap, 
K 

(88) 

where X is the coupling constant. If we require that the action ema­
nating from this Lagrangian is to be stationary with respect to vari­
ations in 9ap(x ), one obtains the Euler-Lagrange equations. These 
are, in fact, the Einstein's equations, for the nonlinear interaction 
between electromagnetic and gravitational fields. Thus we find 

Contracting (89) with gaP, we find 

(90) 

Now, the Euler-Lagrange equations deduced from (88) by a variation 
of Aa are 

paP;P + ;RAa = 0, (91) 

or 

(92) 
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We stress that these are the equations of an electromagnetic field 
interacting with its proper gravitational field. Comparing also with 
Eqs. (75), we establish a relation for the mass of the photon: 

2 

p 2 = ~R := -3!_(A7 A1 ).,/. 
K, K, , 

(93) 

Thus, we may conclude that a photon acquires a mass as a result 
of its nonlinear interaction with its proper gravitational and (or) 
electromagnetic field. The mass of the photon is directly proportional 
to the magnitude of the vector potential Aa and (or) to the curvature 
scalar of spacetime. 

We finally remark that in the present case the Proca massive 
field does not coincide with the Evans-Vigier field. 
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