
Description Document

GeM Symbolic Software Package (Version 32.12 and Higher)

for General Symmetry and Conservation Law Analysis

of Differential Equations

c⃝ Alexei F. Cheviakov (alt. spelling Alexey F. Shevyakov),

Department of Mathematics and Statistics,

University of Saskatchewan, Saskatoon, S7N 5E6 Canada

April 10, 2015

Abstract

This document gives a brief introduction to algorithms and notation for symmetry
and conservation law analysis of differential equations (DE), and describes correspond-
ing routines of the Maple-based package GeM.

As of today, GeM module has been tested for Maple versions 14-18.

The GeM module can be requested by emailing the author.

Examples are not reviewed in detail, but are available as Maple programs on the
author’s web page.

1 Symmetry and conservation law analysis of DEs

A symmetry of a system of DEs is any transformation of its solution manifold into itself. One-
parameter and multi-parameter Lie groups of point symmetries are found using the general Lie
algorithm, which is equally applicable to algebraic and ordinary and partial differential equations.
Contact and higher-order symmetries are computed in a similar algorithmic manner. Closely related
are methods for discovering nonlocal symmetries of differential equations. The framework further
extends on symmetries of integro-differential equations, symmetries of difference equations, and
various kinds of approximate symmetries of differential equations.

An important counterpart to knowledge of the symmetry structure of a PDE system is infor-
mation about its conservation laws. Conservation laws describe essential physical properties of
the modeled process. They are used for analysis, in particular, existence, uniqueness and stability
analysis, study of analytical (including geometrical) properties of solutions of PDE systems, and
construction of effective numerical schemes. Conservation law structure contains information about
the possibility of linearization of the given PDE system by an invertible mapping and allows to con-
struct the explicit mapping. Moreover, conservation laws of PDE systems yield nonlocally-related
PDE systems, which in turn may yield new analytical results for the given system, in particular,
new nonlocal symmetries, nonlocal conservation laws, or linearization.

1



For applications, examples, and further details on symmetries and conservation laws, the reader
is referred to [2, 3, 7–9] and references therein. In particular, the notation adopted below follows
that of the book [3].

In general, we consider a system of N differential equations (DEs) of order k with n independent
variables x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x)), given by

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (1.1)

The notation

∂u ≡ ∂1u =
(
u11(x), . . . , u

1
n(x), . . . , u

m
1 (x), . . . , umn (x)

)
denotes the set of all first-order partial derivatives;

∂pu =
{
uµi1...ip | µ = 1, . . . ,m; i1, . . . , ip = 1, . . . , n

}
=

{
∂puµ(x)

∂xi1 . . . ∂xip
| µ = 1, . . . ,m; i1, . . . , ip = 1, . . . , n

}
denote higher-order derivatives.

1.1 Local symmetries

1.1.1 Point symmetries

Consider a one-parameter Lie group of point transformations

(x∗)i = f i(x, u; ε), (1.2a)

(u∗)µ = gµ(x, u; ε), (1.2b)

with the corresponding infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ηµ(x, u)

∂

∂uµ
. (1.3)

The kth extension (prolongation) of (1.3) is given by

X(k) = ξi(x, u)
∂

∂xi
+ ηµ(x, u)

∂

∂uµ
+ η

(1)µ
i (x, u, ∂u)

∂

∂uµi

+ . . .+ η
(k)µ
i1...ik

(x, u, ∂u, . . . , ∂ku)
∂

∂uµi1...ik
,

(1.4)

where the prolonged components η
(1)µ
i , . . ., η

(k)µ
i1...ik

are defined in terms of {ξi(x, u), ηµ(x, u)} by

η
(1)µ
i = Diη

µ − (Diξ
j)uµj , (1.5)

and

η
(k)µ
i1...ik

= Dikη
(k−1)µ
i1...ik−1

− (Dikξ
j)uµi1...ik−1j

, (1.6)

for µ = 1, . . . ,m, and i, ij = 1, . . . , n for j = 1, . . . , k, and

Di =
∂

∂xi
+ uµi

∂

∂uµ
+ uµii1

∂

∂uµi1
+ uµii1i2

∂

∂uµi1i2
+ · · · , (1.7)

2



i = 1, . . . , n.

A one-parameter Lie group of point transformations (1.2) leaves the PDE system R{x ;u} (1.1)
invariant (and hence is a point symmetry) if and only if its kth extension (1.4) leaves invariant the
solution manifold of R{x ;u} in (x, u, ∂u, . . . , ∂ku)-space. This is the case if and only if for each
α = 1, . . . , N ,

X(k)Rα(x, u, ∂u, . . . , ∂ku) = 0, (1.8)

when

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (1.9)

In order to find point symmetries admitted by a given PDE system (1.1), one needs to determine
the tangent vector field coordinates ξi, ηµ of the symmetry generator (1.3).
The PDE system for ξi, ηµ is obtained from determining equations (1.8) by first substituting the

conditions (1.9) (to restrict to solution manifold), and then using the fact that ξi, ηµ do not depend
on derivatives of uµ. Thus one obtains an overdetermined system of linear PDEs for the unknown
for ξi, ηµ. Such systems can be rather large. For example, for the system of adiabatic compressible
Plasma Equilibrium equations, one obtains 188 linear PDEs for 13 unknown functions [4].

The symmetry generator (1.3) can be equivalently rewritten in the evolutionary (characteristic)
form

X̂ =
[
ηµ(x, u)− uµi ξ

i(x, u)
] ∂

∂uµ
. (1.10)

1.1.2 Contact and higher-order symmetries

When tangent vector field components ξi, ηµ of the symmetry generator (1.3) essentially depend
on derivatives,

(x∗)i = xi + εξi(x, u, ∂u, ..., ∂qu) +O(ε2), i = 1, . . . , n,
(u∗)µ = uµ + εηµ(x, u, ∂u, ..., ∂qu) +O(ε2), µ = 1, . . . ,m,

(1.11)

corresponding symmetries are called higher-order symmetries. Unlike Lie symmetries, they act
on the solution manifold in the infinite-dimensional space of all variables and derivatives. Due
to this fact, higher-order symmetries, in general, cannot be integrated to yield a global group
representation similar to (1.2), and thus cannot be used to explicitly map solutions of differential
equations into new solutions.

Contact symmetries are symmetries of the form (1.11) that preserve the contact condition du∗ =
u∗jdx

∗
j . Similarly to Lie point symmetries, contact symmetries act in the finite-dimensional space,

and their global group representation can be reconstructed from the local representation. In the
case of one equation, N = 1, tangent vector field components of contact symmetry generators
essentially depend on first derivatives. For N > 1 equations, contact symmetries are independent
of derivatives and are equivalent to point symmetries.

Contact and higher-order symmetries are computed the same way as point symmetries. In par-
ticular, determining equations are still given by (1.8) with (1.9). The overdetermined system of
linear PDEs for ξi, ηµ is found by equating to zero, in the determining equations, all coefficients at
derivatives of order higher than q.

Note that to restrict to the solution space of the given system, one now has to substitute into
(1.8) not only the equations (1.9) but also all their differential consequences.

3



Without loss of generality, the symmetry generators for higher-order symmetries are usually
sought in the evolutionary (characteristic) form

X̂ = ζµ(x, u, ∂u, ..., ∂q)
∂

∂uµ
, (1.12)

and thus ξi(x, u, ∂u, ..., ∂qu) = 0 is assumed.

1.1.3 Point symmetries of linear and linearizable DEs

Compared to nonlinear DEs, linear equations admit an infinite number of point symmetries corre-
sponding to the addition of a solution of a linear homogeneous equation (system) to any solution of
a given system. The existence of such symmetries poses certain difficulties algorithmic symmetry
computations. For details on symmetry computation for linear systems, see [6].
A sufficiently rich infinite set of point (or local) symmetries present for a nonlinear model may

yield a linearization of that model by a local transformation (see e.g. [3], Chapter 2).

1.1.4 Equivalence transformations

An important notion closely related to symmetry analysis is that of equivalence transformations.
Equivalence transformations are computed algorithmically; they reduce numbers of constitutive
functions/parameters in a model, simplify classifications, etc.
For details, see [10] and [3] (Sec.1.2).

4



1.2 Conservation laws

Consider a problem of finding divergence-type conservation laws in the form

DiΦ
i(x, u, ∂u, ..., ∂qu) = 0 (1.13)

that hold for the system (1.1). The conserved densities (fluxes) Φi may depend on x, u and deriva-
tives up to an arbitrary order.

A conservation law (1.13) is called trivial if its fluxes are

Φi = M i +H i

where M i and H i are sets of smooth functions such that M i vanish on the solutions of the system
(1.1), and div(H1, ..., Hn) ≡ 0. Two conservation laws DiΦ

i = 0 and DiΨ
i = 0 are equivalent if

Di(Φ
i − Ψi) = 0 is a trivial conservation law. The more general ‘triviality’ idea is the notion of

liner dependence of conservation laws. Conservation laws are linearly dependent if there exists a
linear combination of them which is a trivial conservation law.
In practice, one seeks nontrivial linearly independent local conservation laws of a given system of

differential equations.

1.2.1 The direct method of construction of conservation laws

In general, for a given PDE system (1.1), nontrivial local conservation laws arise from linear combi-
nations of the equations of the PDE system (1.1) with multipliers that yield nontrivial divergence
expressions. In seeking such expressions, the dependent variables (and their derivatives) that arise
in the PDE system (1.1), or appear in the multipliers, are replaced by arbitrary functions (and
their derivatives). By their construction, such divergence expressions vanish on all solutions of the
PDE system (1.1).
A set of multipliers {Λσ[U ]}Nσ=1 = {Λσ(x,U, ∂U, . . . , ∂

lU)}Nσ=1 yields a divergence expression for
the PDE system R{x ;u} (1.1) if the identity

Λσ[U ]Rσ[U ] ≡ DiΦ
i[U ] (1.14)

holds for arbitrary functions U(x). Then on the solutions U(x) = u(x) of the PDE system (1.1), if
Λσ[U ] is non-singular, one has a local conservation law

Λσ[u]R
σ[u] = DiΦ

i[u] = 0. (1.15)

A multiplier Λσ[U ] is singular if it is a singular function when evaluated on solutions U(x) = u(x) of
the given PDE system (1.1). [In practice, one is only interested in non-singular sets of multipliers,
since considering singular multipliers can lead to arbitrary divergence expressions that are not
conservation laws of the given system. For example, Λσ[U ] = DiΦ

i[U ]/Rσ[U ] yields Λσ[U ]Rσ[U ] ≡
Di(NΦi[U ]), in terms of arbitrary functions Φ1[U ], . . . ,Φn[U ].]

The Euler operator with respect to U j is the operator defined by

EUj =
∂

∂U j
−Di

∂

∂U j
i

+ · · ·+ (−1)sDi1 . . .Dis

∂

∂U j
i1...is

+ · · · (1.16)

for each j = 1, . . . ,m.
It is well known that the Euler operators (1.16) annihilate any divergence expression DiΦ

i[U ]. In
particular, the following identities hold for arbitrary U(x):

EUj (DiΦ
i(x, U, ∂U, . . . , ∂rU)) ≡ 0, j = 1, . . . ,m. (1.17)

5



The converse also holds.

It follows that in order to find non-singular local conservation law multipliers {Λσ(x, U, ∂U, . . . ,
∂lU)}Nσ=1 for the PDE system R{x ;u} (1.1), one needs to solve multiplier determining equations

EUj (Λσ(x,U, ∂U, . . . , ∂
lU)Rσ(x, U, ∂U, . . . , ∂kU)) ≡ 0,

j = 1, . . . ,m,
(1.18)

holding for arbitrary functions U(x).

The set of equations (1.18) yields the set of linear determining equations to find sets of local
conservation law multipliers of the PDE system R{x ;u} (1.1) of a prescribed order l = 1, 2, . . ..
Since equations (1.18) hold for arbitrary U(x), it follows that one can treat each Uµ and each of
its derivatives Uµ

i , U
µ
ij , etc. as independent variables along with xi. Consequently the linear PDE

system (1.18) splits into an over-determined linear system of determining equations for unknown
local multipliers Λσ.

1.2.2 Completeness of the direct method

For wide classes of DE systems, the direct method is proven to be complete, i.e., no conservation
law of a given system is missed, provided that multiplier ansatz is sufficiently wide.
In particular, the completeness is proven for DE systems written in standard and general Ko-

valevskaya form [9] and in extended Kovalevskaya form [1].

1.2.3 Computation of fluxes

After finding a set of multipliers {Λσ} that yield a conservation law (1.13), one can obtain the
corresponding set of fluxes {Φi} using one of the available methods. For details, see [3, 5]. GeM

package offers four methods of flux computation.

1. Direct method. Here one simply writes down PDEs (1.15) and solves them for the set of fluxes
{Φi}. This method is most straightforward for conservation laws arising for simple PDE systems
from simple forms of multipliers. The corresponding GeM routine uses Maple pdsolve to solve (1.15)
for fluxes.

2. The first homotopy (integral) formula. This formula is due to Bluman and Anco. It is described
in detail in [5]. The formula involves integrations, and also an arbitrary function Ũ(x), chosen
manually so that the integral converges. Different choices of Ũ yield fluxes of equivalent conservation
laws. One normally chooses Ũ = 0 (provided that the integral converges). This formula is rather
powerful and is a preferred formula for complicated PDE systems and conservation law multipliers
which do not involve arbitrary (constitutive) functions.

3. The second homotopy (integral) formula. This formula is due to Hereman et al. It is in many
ways similar to the first homotopy formula; it does not involve an arbitrary function; it sometimes
produces simpler fluxes than the first homotopy formula. The only restriction in applying the
second homotopy formula is that the expression

f(x,U, ...) = D1Φ
1(x, U, ...) + . . .+DnΦ

n(x,U, ...),

has to satisfy the condition f [0] = 0, which is not the case for some conservation laws.

6



4. The scaling formula. This formula is due to Anco. If the given PDE system that has a scaling
symmetry

Xs[u] = p(i)xi
∂

∂xi
+ q(ρ)uρ

∂

∂uρ
, (1.19)

Suppose a given conservation law is scaling-invariant, and moreover, homogeneous under the
scaling symmetry (1.19), i.e.,

X(l)
s [U ]DiΦ

i[U ] = PDiΦ
i[U ] (1.20)

(which is often the case for physical systems).
When a given PDE system is scaling-invariant and the conservation law is scaling-homogeneous,

then the scaling symmetry method is the method of choice, since it involves simplest computations
(no integration is required). Moreover, this formula yields a result even when given PDEs and/or
multipliers involve arbitrary functions. In this situation, the scaling symmetry method is the only
systematic method available.
If the given system admits several scaling symmetries (1.19), one should use one that involves only

(or mostly) components for the dependent variables, since the form of fluxes will be the simplest
in that case.

The Table 1 is borrowed from [5].

Table 1: Comparison of Four Methods of Flux Computation.

Method Applicability Computational complexity

Direct Simpler multipliers/PDE systems, which may in-
volve arbitrary functions.

Solution of an overdeter-
mined linear PDE system
for fluxes.

Homotopy 1 Complicated multipliers/PDEs, not involving arbi-
trary functions.

One-dimensional integra-
tion.

Homotopy 2 Complicated multipliers/PDEs, not involving arbi-
trary functions.
The divergence expression must vanish for U = 0.
For some conservation laws, this method can yield
divergent integrals.

One-dimensional integra-
tion.

Scaling Complicated multipliers/PDEs, may involve arbi-
trary functions.
Scaling-homogeneous PDEs and multipliers.
Nontrivial conservation laws.

Repeated differentiation.

7



2 “GeM” symbolic package: Description

A Maple - based package GeM has been recently developed by the author. The package routines
are capable of finding local (Lie, contact and higher-order) symmetries, adjoint symmetries and
conservation laws of any ODE/PDE system without significant limitations on DE order and number
of variables, and without human intervention.
The routines of the module allow the analysis of ODE/PDE systems containing arbitrary consti-

tutive functions or parameters. Such symmetry/conservation law classification problems naturally
arise in DE systems from applications. Classification leads to isolation of particular forms of con-
stitutive functions and/or parameter values for which the given DE system possesses an extended
symmetry or conservation law structure.
The GeM package employs an efficient representation of the system under consideration and result-

ing symmetry / conservation law determining equations: all dependent variables and derivatives are
treated as Maple symbols, rather than functions or expressions: ∂B1/∂x ≡ B1x, etc. For example,
the resulting Maple expression for the divergence of a 3-vector B(x, y, z) = (B1(x, y, z), B2(x, y, z),
B3(x, y, z)) becomes

∂

∂x
B1(x, y, z) +

∂

∂y
B2(x, y, z) +

∂

∂z
B3(x, y, z) = B1x + B2y + B3z = 0. (2.1)

This significantly speeds up the computation involving establishing, splitting and solution of sym-
metry and conservation law determining equations. The final overdetermined linear PDE systems
are reduced using Maple rifsimp routine. (See Maple help system, sections on rifsimp,maxdimsys,
and related commands.)
The reduction of overdetermined systems of symmetry / conservation law determining equations

is usually the most resource-demanding task, in particular, in problems that involve classifica-
tion. Reduced systems of determining equations are normally much simpler and are integrated
automatically (Maple pdsolve, dsolve) or even by hand.
In symmetry analysis, after the determining equations are solved, a GeM routine is called that

outputs all symmetry generators, thus completing the symmetry analysis.
In conservation law analysis, after the determining equations are solved and conservation law

multipliers are found, another GeM routine is used to compute fluxes and output them in the
canonical form.

Below, Maple program sequences for symmetry and conservation law analysis using GeM are out-
lined.
The program sequence for local symmetry or conservation law analysis is similar for most symbolic

packages and typically includes the following steps.

1. Declaration of variables and the given PDE system.

2. Construction of a set of symmetry or conservation law determining equations.

3. If necessary (e.g., for finding symmetries or solutions of the adjoint linearized system), in the
set of determining equations, the dependent variables arising from the given PDE system are
restricted to solutions of the given PDE system.

4. Simplification (e.g., elimination of redundancies, partial solution) of the over-determined set
of determining equations.

5. Solution of the simplified set of determining equations. Output of the point symmetries or
conservation law multipliers.

6. For conservation laws: generation of fluxes.

8



If the given PDE system contains constitutive function(s) and/or constant parameter(s), a classi-
fication and case splitting is performed at Step 4, and Steps 5 and 6 are performed separately for
each case that arises.

Run examples are given in separate Maple worksheets on the GeM web page of the author.

3 Program sequence for symmetry analysis

1. Clear the variables and read in the GeM module as a Maple text input file.

restart:

read(d:/gem32_12.mpl):

Here d:/ denotes the full path to the file. Replace module name with an appropriate one for newer
versions.

2. Declare variables and arbitrary functions/constants.

gem_decl_vars(indeps=[...], deps=[...], freefunc=[...], freeconst=[...]);

where [...] denotes a Maple list of objects.

• indeps: a list of independent variables. For DEs, a list of one entry.

• deps: a list of dependent variables.

• freefunc: a list of arbitrary constitutive functions present in the given DE system (may de-
pend on independent variables, dependent variables, and derivatives of dependent variables).

• freeconst: a list of arbitrary constants present in the given DE system.

3. Declare the given PDE system.

gem_decl_eqs([...], solve_for=[...]);

• First list [...]: A set of equations (ODE or PDE) involving ONLY the above-defined inde-
pendent and dependent variables, arbitrary constitutive functions, arbitrary constants.

• For symmetry analysis, it is necessary that a given PDE system can be written in a solved
form with respect to a set of leading derivatives specified in the solve_for parameter.

4. Generate symmetry determining equations

det_eqs:=gem_symm_det_eqs([...]);

• The name in the left-hand side can be arbitrary; the corresponding Maple variable will contain
the determining equations.

• The list [...] contains the dependence of symmetry components. Can include independent
and dependent variables (for point symmetries), and also derivatives of dependent variables
(for higher-order symmetries).

9



• If symmetries are sought in the evolutionary (characteristic) form (1.12), one specifies an
additional parameter

in_evolutionary_form=true

• In case of higher-order symmetries, symmetries are normally sought in the evolutionary form.

• If one does not wish the determining equations to be split with respect to (higher) deriva-
tives which do not participate in tangent vector field coordinates, one specifies an additional
parameter

return_unsplit=true

• If one wishes the determining equations to be split with respect to some particular variables
and/or derivatives, one specifies an additional list-type parameter

split_wrt=[...]

(this is an option needed only in very special situations!)

• There are additional parameters, which by default are

{special_tvf_dependence::boolean:=false},

{special_tvf_dep_list::list:=[]}

One can use them to specify different dependencies/restrict dependencies for different symme-
try components. This is used, for an illustration, in one of symmetry computation examples
online.

5. Request names of symmetry components and place them in some user variable.

sym_components:=gem_symm_components();

6. Simplify and reduce the overdetermined system of symmetry determining equations.

simplified_eqs:=DEtools[rifsimp](det_eqs, sym_components,

mindim=1);

[In particular, the option mindim=1 forces the output of the number of linearly independent solutions
of equations simplified_eqs, i.e., the number of symmetries of the given PDE system.]

7. Solve the determining equations.

symm_sol:=pdsolve(simplified_eqs[Solved]);

8. Print all symmetries.

gem_output_symm(symm_sol);

Remark 1. The given DE system is assumed to be non-linear. Linear DE systems involve trivial
infinite symmetries which meed to be excluded. GeM routines for symmetry analysis of linear DE
systems will be added soon.

Remark 2. If a given system involves arbitrary constitutive functions/constant parameters, and
symmetries need to be classified, this can be done on a case-by-case basis. See specific examples
on the author website.

10



4 Program sequence for conservation law analysis

1. Clear the variables and read in the GeM module as a Maple text input file. (Same as in the
symmetry analysis sequence.)

2. Declare variables and arbitrary functions/constants. (Same as in the symmetry analysis se-
quence.)

3. Declare the given PDE system. (Same as in the symmetry analysis sequence.)

• For obtaining conservation law multipliers, it is NOT necessary that a given PDE system can
be written in a solved form with respect to a set of leading derivatives. The parameter may
therefore be omitted.

• If fluxes of conservation laws are to be computed later, specification of the solve_for param-
eter is necessary, since the program verifies whether or not, indeed, the divergence expression
DiΦ

i[U ] vanishes on the solutions U(x) = u(x).

4. Generate multiplier determining equations

det_eqs:=gem_conslaw_det_eqs([...]);

• The name in the left-hand side can be arbitrary; the corresponding Maple variable will contain
the determining equations.

• The list [...] contains the dependence of multipliers. Can include independent and depen-
dent variables and derivatives of dependent variables up to any order.

5. Request names of unknown multipliers and place them in some user variable.

CL_multipliers:=gem_conslaw_multipliers();

6. Simplify and reduce the overdetermined system of multiplier determining equations.

simplified_eqs:=DEtools[rifsimp](det_eqs,

CL_multipliers, mindim=1);

Again, mindim=1 forces the output of the number of linearly independent solutions of equations
simplified_eqs, i.e., the number of independent local conservation laws of the given PDE system
within the specified multiplier ansatz.]

7. Solve the determining equations.

multipliers_sol:=pdsolve(simplified_eqs[Solved]);

8. Compute the corresponding fluxes. If multipliers_sol involves arbitrary constants, print
fluxes of independent conservation laws separately.

gem_get_CL_fluxes(multipliers_sol);

11



• To employ the first homotopy formula, use an additional parameter method="Homotopy1". In
this case, one may also specify an arbitrary function Ũ(x) (by default, it is zero). The arbitrary
function is a vector function having the same dimension as the vector of dependent variables.
For example, if the given PDE system has independent variables (x, y, z) and dependent
variables A(x, y, z), B(x, y, z), the A− and B− components of the arbitrary function are
specified as the following additional set-type parameter:

arb_func_Homotopy1={A=x+y, B=z+1}

In particular, the corresponding right-hand sides can be any expressions involving independent
variables.

• To employ the second homotopy formula, use an additional parameter method="Homotopy2".

• To employ the scaling formula, use an additional parameter method="Scaling". In this case,
one needs to specify the scaling symmetry to be used. For example, suppose the given PDE
system has independent variables (x, y, z) and dependent variables A(x, y, z), B(x, y, z), and
the scaling symmetry is given by

X = x
∂

∂x
+ 2y

∂

∂x
+ z

∂

∂z
+ 2A

∂

∂A
− 3B

∂

∂B
,

Then the necessary parameter is:

symmetry={xi_x=x, xi_y=2*y, xi_z=z, eta_A=2*A, eta_B=-3*B}

5 Further remarks on execution of GeM routines

1. DE systems involving transcendental functions. If given equations are not polynomial
in independent and dependent variables and derivatives of dependent variables, but involves
transcendental functions, say, sines, powers, exponents, etc., then Maple rifsimp routine
will not work. One should either omit the rifsimp step and directly proceed to solution, or
denote the transcendental function as an “arbitrary” function F (...), and later, in the rifsimp
step, append determining equations with conditions on F (...) that determine it uniquely. The
corresponding example is given on the web site.

References
[1] L. M. Alonso. On the noether map. Letters in Mathematical Physics, 3(5):419–424, 1979.

[2] G. Bluman and S. Kumei. Symmetry and differential equations, volume 81. Springer: Applied Mathematical
Sciences, 1989.

[3] G. W. Bluman, A. F. Cheviakov, and S. C. Anco. Applications of Symmetry Methods to Partial Differential
Equations. Applied Mathematical Sciences, Vol. 168, Springer, 2010.

[4] A. F. Cheviakov. Bogoyavlenskij symmetries of ideal mhd equilibria as lie point transformations. Physics Letters
A, 321(1):34–49, 2004.

[5] A. F. Cheviakov. Computation of fluxes of conservation laws. Journal of Engineering Mathematics, 66(1-3):153–
173, 2010.

[6] A. F. Cheviakov. Symbolic computation of local symmetries of nonlinear and linear partial and ordinary differ-
ential equations. Mathematics in Computer Science, 4(2-3):203–222, 2010.

[7] N. Ibragimov. CRC Handbook of Lie group analyis of differential equations, volume 1. CRC Press, 1994.

[8] N. Ibragimov. CRC Handbook of Lie group analyis of differential equations, volume 2. CRC Press, 1994.

[9] P. Olver. Applications of Lie groups to differential equations, volume 107. Springer Verlag, 2000.

[10] L. Ovsiannikov. Group analysis of differential equations. Academic Press, 1982.

12


