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1. Introduction 

I c o n s i d e r  s tud ies  in  t he  t h e o r y  1 o f  f i r s t - o rde r  p a r t i a l  d i f fe ren t ia l  e q u a t i o n s .  

F r o m  m y  s t a n d p o i n t ,  these  s tudies  c o n s t i t u t e  a p r o c e s s  o f  g r a d u a l  u n d e r s t a n d i n g  

o f  the  ideas  w h i c h  f o r m e d  the  in t r ins i c  e s sence  o f  t he  t h e o r y ,  t he  e s sence  r ev ea l ed  

1 Mathemat ic ians  use the word  theory in two essentially different meanings.  In  a 
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by LIE in the 1870's. The development of the theory of partial differential equations 
took place in several stages, or periods, during each of which only some of the 
ideas were prominent. Moreover, as seen from the vantage-ground of subsequent 
history, the prominent ideas were often considered from a particular point of  
view. Note that even in the presence of such dominant ideas as characterized one 
or another period, other concepts might well have been discussed in the outlying 
districts of the region under study, thus paving the way for a later stage. 

I single out four stages. Thefirst one (§ 2) lasted to the end of the 1760s, or 
the beginning of the 1770s. It was all but exclusively connected with EVLER and 
D'ALEMBERT, and it was primarily characterized by integration of equations with 
the aid of  a number of  specific versions of the method of multipliers. Accordingly, 
mathematicians extensively used expressions representing total differentials. Specif- 
ic methods used for the solution of equations were devoid of any geometric inter- 
pretation, and for this reason I call the whole period formal-analytic. The new 
concept of a complete solution of first order partial equations that matured in 
LAGRANGE'S studies began a new stage. 

The distinctive feature of the second period (§ 3) (from the beginning of the 
1770s to the 1830s) is the development of LAGRANGE'S theory. Other main charac- 
ters involved at this stage besides LAGRANGE were MONGE, who developed the 
geometric aspect of  the theory and, also, PFAFF, CAUCHY and C. G. JACOBI. 
They largely completed the program of research inherent in the theory. 

JACOBI'S study of his so-called 'second method' prompted by requirements 
of mechanics constituted the chief subject of the next (the third) period (§ 4), 
which lasted until the end of the 1860s. HAMILTON was the first to establish close 
ties between mechanics and partial differential equations while JACOBI followed 
in his steps. 

In the beginning of the 1870s, LIE constructed his 'general theory', which made 
up the subject of  the fourth period (§ 5). The premisses of LIE'S 'theory' took shape, 
during the former periods while general geometric ideas framed exactly at the same 
time (the beginning of  the 1870s) served as its foundation. 

Concepts which acted as hidden nerves of studies on first-order partial differ- 
ential equations were completed in LI~'s 'theory'. In its context, methods and ideas 
developed by previous authors were treated as parts of a single whole rather than 
a collection of so many scarcely interconnected fragments. 

Each of the four stages ended when their central ideas became sufficiently 
realized in corresponding 'theories'. It is common knowledge that new fundamental 
ideas whose application demands a transition to a subsequent stage are formulated 
and developed under the influence of  both internal and external factors. 

Internal factors alone can determine the development of a mathematical theory 
but in the case I study external agents (mechanics in the first place) turned out to 
be powerful motives for progress. Without them, I presume, the theory would not 

narrow sense, it denotes a complex structure based on definite ideas and methods and 
covering a certain range of studies (thus, the theory of GALOIS, or  LAGRANGE'S theory of 
first-order partial differential equations). In a broad sense, the word theory designates 
a province of thought (e.g., theory of numbers; of differential equations). To distinguish 
between the two cases, I use single quotation marks in the latter instance ('theory'). 
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have advanced so intensively. As evidenced by the work of D'ALEMBERT (see my 
§ 2.2) and JACOBI (§ 4.1), mechanics exerted a permanent and prevailing influence 
on mathematical studies from their very beginning. 

2. Formal-analytic Period 

2.1. Enler. Historians of science (M. CANTOR [1], H. WIELEITNER [1],V. AN- 
TROPOVA in A. P. YOUSHKEVITCH, ed. [1]) assume that the theory of first order 
partial differential equations commenced in 1740 with one of EULER'S works [I]. 
This tradition can be traced back to the end of the 18 th century, and, in particular, 
to COUSIN [1, p. xiv]. His opinion contradicted the then generally accepted view 
according to which the origination of the theory took place in D'ALEMBERT'S 
works published in the 1740s. 

For my part, I [2] think that EULER'S memoir [1] constituted no more than the 
prehistory of the new branch of analysis. Concerning himself with geometric 
problems, he encountered expressions which we now interpret as partial differential 
equations. EULER intuitively sensed their importance and considered them in 
detail. Nevertheless, this part of his work, though not closely tied to geometric 
problems, did not acquire any independent significance. Evidently, even EULER 
himself, to say nothing about his contemporaries, could not predict its future role. 
Only later on, in successfully attempting to establish EULER'S priority, did his 
followers recall this part of his work. 

2.2. D'Alembert. During the 1740s, D'ALEMBERT arrived at a number of equa- 
tions, or systems of equations, of mathematical physics" 

and 

(1) In 1743 [1] at the equation 

a2__Zy _ ay q - s) a2y at 2 as a S  2 " 

(2) In 1747 [2] at systems 

8~ & 8/3 8~ 
au - a s '  ~-~u = O -&s + ~o (u,s) 

& t -  as '  " ° T s + P ~ =  
8{~ &, 

7 ~ +  m~u+F(u,s). 

(3) In 1749 [3] at an equation for the vibrations of the string 

a2y 82y 

at 2 ax 2 • 

D'ALEMBERT wrote one of his equations (2.2.1) as 

d--7= q -  q - s )  . 

(2.2.1), 

(2.2.2) 

(2.2.3} 

(2.2.1) 
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Here, in his own notation, which differs but little from the one in current use, 

dy dy 
P = - ~ '  q =-~s" 

As to other equations ((2.2.2) and (2.2.3)), he put them down as expressions in 
total  differentials. Thus he wrote the latter in the form of  a system 

where 

dp = oc dt + ~ ds, dq = r st + o~ ds (2.2.4) 

~y ~y 
P - - ~ t '  q = - ~ s "  

The appearance of such systems was likely occasioned by the method which 
D'ALEMBERT employed for the integration of equations ((2.2.2) and (2.2.3)). 2 
He developed this method of  multipliers undoubtedly proceeding from various 
tricks due to EULER [1]. At least, D'ALEMBERT knew this memoir: elsewhere [2] 
he referred to EULER'S De infinitis curvis etc, originally published in the same vo- 
lume of the Commentarii Acad. Sci. Imp. Petrop. as the Additamentum [1] to it. a 

In § 2.3 I adduce examples of the use of D'ALEMBERT'S method of multipliers 
fo r  the solution of first-order equations. For  the time being, I shall only say that 
:starting from differential relations involved in a given system of equations (such as 
:system (2.2.4)) he formed their linear combination with suitable numerical or 
functional coefficients; he then transformed the linear combination into an inte- 
grable expression by substitutions of the independent variables and the function 
sought. 

Exactly in the works which I mentioned above D'ALEMBERT treated partial 
.differential equations as an object belonging to a new branch of analysis; he 
formulated the problem of their solution 4 and, finally, introduced the first meth- 
,ods for their integration. 

The most eminent mathematicians of the time at once turned their attention 
to D'ALEMBERT'S works. EULER himself became interested in the new field of 
,study, and he was compelled to continue his own research [1]. Just after D'ALEM- 
~ERT published his study of the vibrations of strings [3], EULER [2] offered a modi- 
fication of D'ALEMBERT'S method of integrating the system (2.2.4) and expressed 
~his views on the nature of the solution obtained. From this moment onwards 
EULER began his long study of the theory of partial differential equations, in which 
he  strove for superiority to D'ALEMBERT. The work of these outstanding scholars 
was the essence of the first period. 

2.3. Main Achievements. The new domain of  analysis provided enough room 
for  research while pertinent methods proved to be indispensable for the solution 
of  a series of problems in mechanics, thus provoking widespread interest. For  

z In 1743 he was not yet able to integrate equation (2.2.1). 
3 Naturally enough, the Additamentum followed just after the main memoir, De 

,infinitis curvis. 
4 To find a function which transforms the given equation into an identity. 
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all that, only a selected few were able to master the new branch, which up to the 
19 th century remained the most complicated field of analysis. 

At first, efforts were mainly concentrated on equations of the second order: 
mechanics, the dominant science of the 18 th century, led to just these equations. 
Even so, the authors of  the new calculus soon turned great attention to equations 
of  the first order. Naturally enough, a systematic development of the general 
theory of partial equations, a goal perceived in D'ALEMBERT'S and EULER'S works 
of  the 1760s, first and foremost demanded the study of equations of the first order. 

The main achievements in this direction are due to EULER [4] 5 and D'ALEM- 
BERT [5] (1764 and 1768 respectively), who reduced partial equations to equations 
in total differentials and solved these by the aid of one or another specific version 
of  the method of multipliers. Consider for example a problem due to EULER [6, 
problem 21]. It  is required to solve the equation 

p x - [ - q y = O  P = ~ x '  q =  " 

First, EULER arrived at an equation in total differentials 

dz = p dx  + q dy = p dx  - -  dy = p dx  - -  y dy . 

Then he noticed that the expression 

X 
dx  - - - - d y  

Y 

possesses an integrating factor l / y ,  so 

dz -= p y  y2 = p y  d . 

Finally, he concluded that p y  is a function of x / y ,  s o  

p y  = f '  , z = 

where f ( t )  is an arbitrary function of its argument. 
This example vividly illustrates the two features characteristic of the first 

period, viz: 

(1) Reduction of partial equations to equations in total differentials. This 
mode of action, which retained the ties between the virgin tract and the cultivated 
area of ordinary differential equations, was caused by the use of the method of  
multipliers. 

(2) A formal-analytic approach combined with the use of clever tricks for 
reducing differential expressions to integrable forms; lack of any geometric inter- 
pretation either of equations or their solutions. Note that exactly the formal nature 
of analytic tricks which he used for integrating some partial equations 6 enabled 

5 See  a l so  his later publication [6]. 
6 For example, equations pq = l, q =f(p) ,  q = f l ( P )  x +f2(P). 
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EULER [6, problems 12, 14, 17] to accept partial derivatives p (or q) as independent 
variables. Thus, EULER was the first to apply contact transformations effectively 
to partial differential equations. 

Regarding equations of the first order, essential progress was achieved during 
this first stage. Mathematicians integrated the following important equations: 

8z 8z 
1. ~x + 2(x, y) ~yy -k co(x, y) = 0 

(EuLER, 1764 [4]). 

8z ~z 
2. ~ + ~(x, y) ~ + ~(x, y) z + v(x, y) = o 

(D'ALEMBERT, 1768 [5]). 

8z 8z 
3. -~x @" 2(x, y) ~ + f (x ,  y, z) = 0 

(LAPLACE, 1777 [1]). 
Needless to say, not all of the achievements of the 1750s and 1760s fall within 

my rigid description of characteristic features of this period (see above). Following 
D'ALEMBERT (see my equation (2.2.1') in § 2.2), mathematicians gradually devel- 
oped an inclination to consider equations irrespective of corresponding equations 
in total differentials. The inclination became standard practice under EULER'S 
influence (EULER [3], TRUESDELL [1, p. 260]). 

The first methods of integration adapted to the new manner of writing the 
equations were the methods of separation of variables and of characteristic coor- 
dinates. The former is due to D'ALEMBERT (see also TRUESOELL [1, p. 241]); in 
1752 he [4] applied what might be called the kernel of the method, and he sub- 
sequently [1, 2 nd edition] fully developed his idea. The latter method is due to 
EULER who introduced it in 1766 [5] for the solution of wave equations. 

3. Lagrange's 'Theory' 

3.1. Origin (Euler and Lagrange). According to EULER [6, §§ 37 and 249] (see 
also ENGELSMAN [1]) an integral of an n th order partial differential equation is 
complete if it includes n arbitrary functions. 7 He understood the completeness 
of the solution thus defined in the sense that it contained a totality of particular 
solutions obtained by corresponding specialization of the arbitrary functions. 

The origin of LAGRANGE'S 'theory' is connected with his gradual approach 
to the new concept of a complete solution. Naturally enough, he commenced from 
EULER'S understanding of the term. In 1774, applying methods extremely similar 
in spirit to those used by EULER, he [1] considered anew some problems from the 
Institutiones. StiU adhering to EULER'S terminology, LAGRANGE noticed that solu- 

7 Note that EULER [6, § 38] guided himself by an analogy with the solution of ordinary 
equations, replacing arbitrary constants by arbitrary functions. 
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tions with two arbitrary constants are also complete in the sense that their varia- 
tion yields all solutions including those which are complete in EULER'S sense. 

This remark acquired a dominant significance in a later (1776) memoir [2] 
which contained a new concept of a complete solution and thus signified that 
LAGRANGE had  progressed beyond EULERIAN ideas. Here LAGRANOE called a solu- 
tion of equation 

( f(x,  y, z, p, q) = 0 P = ~x '  q = (3.1.1) 

complete if it depended on two arbitrary constants (a and b): z = ~0(x, y, a, b). 
Justifying the name of this term he showed that, varying the two constants, it 
was possible to determine all other solutions. Indeed, suppose b = ~0(a) where ~o 
is an arbitrary function of its argument and exclude a from system 

~z 
z = q~(x, y, a, ~p(a)), ~a = O. 

Then the solution thus obtained which depends on an arbitrary function will be 
general (intdgrale gdndrale), or complete, according to EULER. Finally, eliminate 
both a and b from the system 

8z 8z 
z = q ~ ( x , y , a , b ) ,  ~aa=O' ~--ff=O 

and the corresponding solution will be singular (intdgrale particuliOre). 
Thus LAGRANGE reduced the integration of equation (3.1.1) to the discovery of 

its complete solution. 
LAGRANGE revealed the geometric sense of his terms. A complete solution 

defined a two-parameter family of solutions while a general solution corresponded 
to a totality of  envelopes of an arbitrarily chosen one-parameter subfamily of the 
surfaces contained in the complete solution, s Finally, a singular solution determined 
the envelope of the entire two-parameter family of surfaces contained in the com- 
plete solution. 

Still, LAGRANGE did not construct a consistent geometric 'theory' of first order 
equations. This noteworthy step was taken by MONGE who published his findings 
in a whole series of memoirs on the subject; I shall mention only two of them 
[1; 2], published in 1787 and 1807 respectively. In particular, MONGE introduced 
the notion of characteristics effectively considered even by EULER and LAC~RANGE 
and showed how solutions could be constructed with their help. 

3.2. Charpit. LAGRANGE'S creative work led him [3; 4] (1781 and 1787 respec- 
tively) to a problem of integrating the equation 

~z 
a i ( x  D X 2 . . . .  Xn,  z ) -  = b(xb X 2 . . . .  , xn, z) (3.2.1) 

i= 1 ' ~ X i  

s The subfamily was defined by relation b = v~(a). 
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for arbitrary n by reducing it to a system of ordinary equations 

dxi dz 
(3.2.2) 

a i ( x l ,  X 2 . . . . .  Xn, z) b(xl, x2 . . . . .  xn, z) 

P. CHARPIT completed LAGRANGE'S study of equation 

f(x, y, z, p, q) = 0. (3.2.3) 

In 1784 CHARPIT submitted his work to the Paris Academy of Sciences, but he 
died prematurely (in 1785) and the manuscript remained unpublished. LACROIX 
[1, §§ 740-741] published some information about CHARPIT'S findings. 9 

In essence, the method, due to LAGRANGE and CHARPIT, consists in determining 
a function ~(x, y, z, p, q) such that 
(a) two equations 

f (x ,  y,  z, p, q) = 0, q0(x, y, z, p, q) = a,  (3.2.4) 

where a is an arbitrary constant, may be solved with respect to p and q: 

P = f l (x,  y, z, a), q = fz(x, y, z, a) ; 

(b) the equation 

dz =f l (x ,  y, z, a) dx +f2(x, y, z, a) dy = p dx + q dy (3.2.5) 

is identically satisfied for all values of a. Integration of it provides a solution which 
includes not only the arbitrary constant a, but also the arbitrary constant of inte- 
gration. 

Thus, the integration furnishes a complete solution of equation (3.2.3), so 
the entire problem is reduced to the discovery of an additional equation, the second 
in system (3.2.4). It is not difficult to prove that in order to determine the function 
q~(x, y, z, p, q), it is sufficient to satisfy identically the relation (3.2.5), leading to 
an equation 

0~ 0~0 0~0 0q~ 0q~ 
P-~x + Q-~y + (Pp + Qq)-~z - (X + pZ)-@p - (Y + qZ)--~q = 0, (3.2.6) 

Of Of _ _ e f t = o f  of 
P=--~p,Q =~--q,X=o--- x ,  ~ y y , Z = ~ z "  

Indeed, equation (3.2.6) belongs to the type (3.2.1) so that (see above) it is reduced 
to a system of ordinary equations 

dx dy dz --dp --dq 
P -- Q - Pp + Q q -  X + p Z -  Y + q Z "  (3.2.7) 

Any one of its integrals, ~(x, y, z, p, q) = a, which includes one arbitrary constant, 
suffices to solve the problem. 

9 At the beginning of this century CHARPIT'S manuscript was found. SALTYKOW 
[1; 2] described it, but his work passed unnoticed. 
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Now consider arbitrary equations 

f ( x l ,  x2 . . . .  , x,,, z, P l ,  P2, . . . ,  P,,) =-- 0 

with more than two (n ~ 2) independent variables. I t  would have been natural' 
to integrate such equations by discovering one or another generalization of the- 
LA6RAN~E-CHARI'IT method. However, this approach leads to serious difficulties. 
Without loss of  generality suppose that equation (3.2.8) does not explicitly include: 
zlO: 

f (x i ,  x2 . . . . .  xn, Pl,  P2 . . . . .  pn) = 0. 

Suppose also that there are n -  1 more relations between P l , P 2  . . . .  ,P,,~ 
involving n - -  1 arbitrary constants h~, hz . . . . .  h ,_l  and such that expression 

p l ( x l ,  x2 . . . . .  x , ,  h l ,  h2 . . . .  , h, ,_l) d x l  + . . .  (3.2.9)~ 

+ pn(x l ,  x2 . . . . .  x , ,  h i ,  hz . . . . .  h n _ l )  dx ,  

is a total differential. In this case the complete integral sought will be determined 
by integrating the differential (3.2.9). Now for expression (3.2.9) to be a to ta l  
differential it is of  course necessary and sufficient that 

ep~ ~pk 
?xk ~xi 

for any i, k = 1, 2 . . . . .  n. Thus, the n - -  1 functions sought must satisfy (n - -  1) n/2: 

conditions. Only if n = 2 does the number of  conditions coincide with that o f  
the unknown functions; otherwise the former number is larger than the latter. 

I t  is likely that many mathematicians of  the time (the end of the 18 th century) 
attempted to solve equation (3.2.8). H Even so, there was no progress, and the  
corresponding problem remained one of the most important.  Its significance fo r  
the beginning of the 19 *h century is proved by the fact that such eminent scholars 
as PFAFF, CAUCHY and C. G. JACOB! contributed to its solution. 

3.3. Pfaff. PFAFF [1] was the first to integrate equation (3.2.8). In 1815, at a 
sitting of  the Berlin Academy of  Sciences, he delivered his report on the subject. 

PFAVF shunned the geometric spirit characteristic of  the French mathematical  
school. He was rather attracted by EULER'S formal-analytic style and, in actual 
fact, he kept to the same style, or approach, in his own constructions. Exactly 
this approach enabled PFAFF to consider the problem as though in a 2n-dimensional 
space ~2 and, moreover, following EULER, to regard partial derivatives with respect: 
to the unknown function as independent variables. 

lo It is not difficult to eliminate z from the equation. 
11 According to LACROIX [1, p. 567], CHARPIT himself considered it, but without: 

Success. 
12 I say 'as though' since no such geometric interpretation was possible in the begin-. 

ning of the 19 th century. 
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PFAFF reduced the problem of integrating equation (3.2.8), or, as he himself 
usually wrote it, equation 

Pn = q)(xa, x2 . . . . .  Xn, Z; P~, P2 . . . . .  Pn--1), (3.3.1) 

to  an equivalent problem of integrating the equation 

d z  - -  P l  d x l  - -  P2 dx2  . . . . .  Pn-a  d x n - 1  - -  qD(xl, x2 . . . . .  Xn, z ; p a , p 2  . . . . .  Pn--a) dxn 

-k  0 dp~ -? . . .  -k  0 d p , _ l  = 0. (3.3.2) 

However, he actually considered a more general equation in total differentials: 

AI(y~ . . . . .  Yt,) dy l  -k  " '" q- A k ( y l  . . . . .  Yk) dyk  = 0 (k = 2n). (3.3.3) 

PFAFF showed that under a particular substitution of variables the latter is re- 
placed by a similar equation in (2n --  1) variables. He noted without proof  that 
the substitution of this kind is possible only for even values of k. As to the case 
k = 2n --  1, equation (3.3.3) might be reduced to a similar equation with k = 
2n --  2 by a different method, and PFAFF proved that in this instance the equation 
is finally solved by determining n relations involving y~ . . . . .  yg and an arbitrary 
function. For  equation (3.3.2) the n relations involve x~,  x2 . . . . .  Xn, z,  p l , p z  . . . . .  Pn--1 

and, again, an arbitrary function. Elimination ofp~, P2 . . . . .  Pn-1  from these rela- 
tions furnishes the general solution. 

Thus PFAFF introduced a method which at least in principle made it possible 
to integrate equation (3.2.8). Still, his approach led to great difficulties. I f  k = 2n, 

to diminish by 1 the number of variables in equation (3.3.3) demanded a solution 
of  a system of ordinary differential equations and, accordingly, the problem as a 
whole involved a solution of n such systems, the first of them being 

dxi  _ d z  _ dpj  ( i , j  1, 2 . . . .  n ) .  (3.3.4) 
of C--, of of of 
Op---7 z., pk 7 -  pj 

k=l  cp~ Oxi Oz 

Subsequent research due to CAucI-~ and JACOBI (see my §§ 3.4 and 3.5) proved 
that the integration of  system (3.3.4) alone is sufficient for a complete solution of 
equation (3.2.8). Accordingly, PFAFF'S method was set aside? 3 

3.4. Cauchy. The complicated political situation then prevailing in Europe 
hindered correspondence. Accordingly, CAUCHY, who investigated equation (3.2.8) 
for arbitrary values of n, remained unaware of PFAFr'S findings, work he 
saw only when preparing his own inquiry for publication. CAUCH¥ published his 
memoir [1] in 1819. He began it by explaining his point of view: " . . .  since the 
case concerns one of the most important problems in integral calculus, and since 
the method due to Mr PFAFF differs from mine," CAUCHY noted, his (CAucHY'S) 
own exposition was also important for geometers. 

CAUCHY considered only equations with two and three independent variables, 

la Note that his work proved highly important for the theory of equations in total 
differentials, equations subsequently called after PF~J~r. 
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but he pointed out that the general case presented no additional difficulties. 
Here is his method (I restrict attention to an equation with two variables). Given 
an equation 

f ( x ,  y, z, p, q) = 0, (3.4.1) 

it is required to find a solution z(x, y)  such that Z(Xo, y) = ~v(y). I f  x, y and z are 
functions of  two independent variables, then the problem is reduced to discovering 
five functions x, y, z, p, q of these variables which satisfy equation (3.4.1) and the 
relation 

dz --  p dx --  q dy = 0. (3.4.2) 

CAUCHV uses a change of variables introduced by AMI'~R~ in 1815 [1], 

x = x, y = y(u, x) ,  (3.4.3) 

to arrive at 

ez coy COz coy 
¢0-~- = P -1- q ~xx' COu --  q ~u" (3.4.4) 

He  differentiates equation (3.4.1) with respect first to x and then u. Setting 

he gets 

x = ~ f  y=cof cof cof col 
co , z = -gz , e = Q - 

coy COz COp COq 
X +  Y--~x -t- Z-~x + P ~x -+- Q ~x = O, 

COy COz COp #q 
g ~u + Z-~u 4- P-~u + Q-~u = 0, 

(3.4.5) 

so now functions x, y, z, p, q as of variables x and u must satisfy equations (3.4.4) 
and (3.4.5). CAUCHY chose a function u such that these latter became a system of 
four  equations involving only derivatives with respect to x but not with respect 
to u: 

COy COz ~q COp 
P ~x = Q, P ~x = Pp -k Qq, P-~x --  r - -  qZ,  P-~x --  X --  p Z .  

This system coincides with the system (3.2.7) which appears in the LAGRANGE- 
CHAR•IT method. Its integral under initial conditions (Xo, u, qs(u), p(xo, u), q)'(u)) 
furnishes the solution sought. 

Thus CAUCHY reduced the integration of equation (3.4.1) to the solution of 
one system of ordinary differential equations rather than n systems as demanded 
by the method due to PFAFF (see my § 3.3). CAUCHY also constructed solutions 
consisting of characteristics ~4 passing through curve x = xo, z = ~(y). He thus 
furthered the theory of characteristics originated by MONGZ (see § 3.1). However, 
over a long period of time CAUCHY'S memoir, which had been published in an 

14 He did not use the term itself. 
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inappropriate periodical, remained little known. In particular, C. G. JACOBI 
(see my § 3.5) knew nothing about it. In 1841 CAUCHY [2] once more described the 
essence of  his method. 

3.5. C. G. Jacobi: his "First Method".  JACOBI contributed essentially to PFAFF'S 
method (see my § 3.3), and he published one of his papers [2] on this subject as 
early as 1827. Ten years later, commencing from this very method, he [3] came to, 
effect the first change of variables into the idea of  'initial values'. This concept 
was closely connected with the works of W. R. HAMILTON published in 1834-1835 
which JACOBI then studied with utmost diligence, using them as a starting point  
for his own investigations in mechanics. 

Considering equation (3.2.8) and following PFAFF, JACOBI wrote the corres- 
ponding system of equations as 

dxi dz - -dp j  

P----i = ~ e k P k  X j  -k Zpy (3.5.1), 

k=l 
with 

e f  ~ f  ~ f  
Pi - -  ~Pi '  X j  - -  #x i ,  Z = ~---f , i, j = 1, 2 . . . . .  n .  

Its integration furnished a system of  2n independent integrals 

l~li(Xl, X2, . . . ,  Xn,  Z, 131, P2 . . . . .  Pn) = ai, i =- 1, 2 . . . . .  2n - -  1, 

f ( x l ,  X 2 . . . . .  Xn, Z, Pl ,  P2 . . . . .  Pn) =--- O. 

JACOBI then assumed Ul, u2 . . . . .  u2,_1, z to be the new variables. From this point  
on his "first method",  as it was subsequently called, differed from the one due to, 
PFAFF. Using the idea of  initial values, JACOm set 

xilz=o = ~i, pilz=o = ~ .  

The quantities thus introduced were functions of ul, u2 . . . . .  u: ,_l  and, therefore, 
of z, x~, xz ,  . . . ,  x , ,  p~, p2,  . . . ,  pn. JACOm showed that 

2n-- 1 ~X i 
--dz -~ p l  dX1 -~- ' ' '  ~- pn dxn : i=1 ~ j~=l Pi-'~j 

and that 

- - d z - ~ P l  d x l  + P 2  dx2 + "'" + p n d x n ' +  Odpz  + "'" + O d p . - 1  

Thus, one single change of variables was enough to reduce an equation with 
2n variables to another one with only n variables. The complete solution of the 
initial equation (3.2.8) appeared at once by eliminating Pa,P2  . . . . .  p ,  from the 
system 

~i(z, x l  . . . . . . .  Pl . . . .  , p,~) = ci, i = 1, 2 . . . . .  n ,  

f ( x1  . . . . .  Xn, z, Pl . . . . .  p , )  = O. 
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JACOBI presented another exposition of the "first method" in his lectures 
delivered in 1842/43 at the K6nigsberg University. In 1866, after JACOBt died, 
CLEBSCH published these lectures (JACOBI [5]). 

3.6. Further development of the theory. PFAFF, CAUCHY and JACOB[ largely 
solved the main problem of the theory of first-order partial differential equations, 
the solution of equation (3.2.8), which challenged mathematicians at the beginning 
of the century. The principal part of LAGRANGE'S 'theory' attained completeness, 
a fact which signified the end of the second period. True enough, many particular 
points within the framework of the 'theory' still remained unstudied while its 
methods demanded clarification and, moreover, admitted considerable generaliza- 
tion even beyond the theory. 

PFAFF regarded partial derivatives of the function sought as additional inde- 
pendent variables, thus effectively introducing a 2n-dimensional space. The accept- 
ed geometric interpretation of the theory could not find a place for his method. 
CAUCHY outlined the way for a subsequent development of the theory of charac- 
teristics for equations of the first order. JACOBI inseparably linked these equations 
with research in such active directions as analytical mechanics and the calculus 
of variations. Various transformations (contact transformations, as they were 
called later on) due to LAGRANGE [2], LEGENDRE [1] and AMPERE [2] came into 
general use. In the 1870s, taking these transformations as a basis, LIE constructed 
a 'general theory' of equations of the first order (see my § 5). 

Thus the studies accomplished in the context of LAGRANGE'S 'theory' possessed 
an intrinsic potential for further evolution. Even so, their development would 
hardly have been so impetuous as it occurred in real life were it not for the power- 
ful influence exerted by analytical mechanics. Within the HAMILTON-JACOBI 
theory, as JACOm himself proved, it was possible to reduce integrations of equa- 
tions originating in mechanics to the discovery of complete solutions of one first 
order partial equation. 

Taken in itself, this fact provided no practical benefit since the integration of 
the latter in its turn came down to a complete integration of a system of ordinary 
equations equivalent to the original system. 

This was a vicious circle, but a method of integrating first-order equations 
based on a new principle, the so-called "second method" due to JACOBI provided 
a way out. This method, or rather JACOBI'S work in general, was the essence of 
the next period under consideration. 

4. C. G. Jacobi's 'Theory' 

4.1. The "Second Method". JACOB! had to discover a method for integrating 
equation (3.2.8), a method essentially differing from the one he himself introduced 
earlier, which had reduced the problem to a complete integration of the system 
(3.5.1). Such a method, due to LAGRANGE and CHARI'Ia" (see my § 3.2), existed for 
the case of two independent variables, but its generalization to a larger number 
of  variables ran into grave difficulties (§ 3.2). 

"Up to now, this difficulty prevented analysts from extending LAGRANGE'S 
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[-CHARPIT'S] method to a larger number of variables. On the contrary, it will not 
scare us; knowing that the problem can still be solved despite the redundant num- 
ber of conditions, we shall inquire how n --  1 functions can obey n(n - -  1)/2 
equations of condition." 

These were the words with which JACOBI introduced the exposition of  the new, 
long sought-for method in his Vorlesungen [5, lecture 31]. Even in 1827 he had 
[1, p. 10] come out in favor of "extending LAGRANGE'S method as far as possible." 

Not later than in 1838, JACOBI managed to generalize the LAGRANGE-CHAR- 
PIT method to an arbitrary number of  independent variables. This is the date of 
his manuscript which CLEBSCH discovered among his posthumous papers and pub- 
lished in 1862 [4]. 

Essentially, the "second method" is this. Let 

f ( x l ,  x2, . . . ,  x , ,  P l ,  P2 . . . . .  Pn) = hi, i = 1, 2 . . . .  , n - -  1, 

ht being arbitrary constants, be the n -- 1 sought-for relations. Together with the 
initial equation 

fo(xl ,  x2 . . . . .  xn, p l , p 2  . . . .  ,p~) = 0 (4.1.l) 

(it is not difficult to represent equation (3.2.8) in this form) these relations deter- 
mine Pl,  P2, . . . ,  P ,  in terms of xl ,  x2, . . . ,  x,  for any values of constants h~, h2 . . . . .  
. . . .  h~_~ such that the sum 

p~ d x ,  + P2 dx2 + . . .  + p~ dx~ (*) 

becomes a total differential. 
The integration of this differential furnishes the complete integral sought. It  

depends on the arbitrary constants hi ,  h2 . . . . .  hn-1 and on hn, the constant of 
integration. JACOBI proved that for quantities p~, P2, . . . ,  P~ to transform expres- 
sion (*) into a total differential it is necessary and sufficient that equality 

(f~fk) = ~ af~ af~ aj~ afk i, k = O, 1 . . . . .  n -- 1, (4.1.2) l=x axt apt apt axz' 
holds identically. Here, (f~f~) is POlSSON'S bracket which he introduced in 1809 [1]. 

Thus the unknown functions f ~ , f 2  . . . . .  f , , -1  satisfy conditions 

( fofO = o, (4.1.2-1) 

I ( f o f  2) = O, 

( f~ f2 )  = 0 (4.1.2-2) 

[ (f0f.-1) = 0, 
( A f , - 0  = 0, (4.1.2-(n --  1)) 

( f , - 2 f , - 1 )  = 0. 



Partial Differential Equations of First Order 339 

Sincefo is known, equation (4.1.2-1) is a linear equation of the first order with 
respect to f l .  After a particular solution involving pi has been determined, it is 
possible to solve the system (4.1.2-2) of two linear equations of the first order 
with respect to f2 etc. All in all, it is thus necessary to solve a system 

A'( f )  = AI ~xI 2V A 1 + " "  "+ A~ = O ,  

Ak(f)  = A~ + A~2 + . . .  + A~-~x ~ = 0 

(4.13). 

of first-order linear differential equations satisfying, as JACOBI proved, the condi- 
tion 

Ak(Al(f)) -- Al(Ak(f)) = 0.  

To be more precise, it was sufficient to find one solution of the system which 
included Pi. JACOBI offered a simple method for obtaining such solutions based 
essentially on a relation between POISSON brackets: 

(f(~vg)) + @(gf)) + (g(.fq))) = O. 

This is JACOBI'S identity (as it was subsequently called), which he discovered in 
passing. 

The new method of integrating equation (4.1.1), and, consequently, equation 
(3.2.8), opened up a new direction of research, viz, the study of systems of such 
equations. 

4.2. Jacobi's bequest to the subject. A profound penetration into ideas of his 
predecessors (LAGRANGE, PFAFF), an indissoluble connection of studies of struc- 
tures belonging to mathematical analysis and analytical mechanics, and, finally, 
an exceptional breadth of views--these were the distinctive features of JACOBI'S 
work. They enabled JACOBI to attain important achievements in mechanics and 
to enrich mathematical analysis advancing the study of equations of the  first 
order. He thus closely approached the ideas which later on constituted the essence 
of LIE'S 'theory'. Judging by his Vorlesungen [5] and, also, by his articles [4; 6] 
posthumously published in 1862 and 1866, respectively, JACOBI came close to the 
concept of contact transformations, to the understanding of their leading Part in 
the construction of the theory of first-order differential equations. H e  regarded 
contact transformations as the most general conversions possible for these equa- 
tions; moreover, especially in one of his posthumous publications [6, § 42], he 
offered a general analytical representation of such transformations. 

Only one step separated JACOBI from a perfect understanding of contact 
transformations: he did not reveal their geometric interpretation. Still, his actual 
use of these transformations proved the need to consider equations (e.g., equation 
(4.1.1)) in connection with R 2n+x rather than R n+l. 

Finally, JACOBI came near to the theory of infinitesimal transformations 
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subsequently developed by LIE. Studying systems of linear partial differential 
equations, he singled out differential expressions of  the type 

2 os 
A ( D  = ,=1 A,(xl . . . . .  x . )  7 x , '  

considering them as differential operators performed on a function f For  two 
such operators he introduced expressions 

A(aq))  -- B(Aq)) 

which proved to be operators of  the same kind. 
JAcom also noticed the connection of these operators with POISSON brackets: 

(f~) = i--1 ~ ~Pi 8qi 8q, ~Pi " 

In  his Vorlesungen [5, lecture 34] he treated the latter as a result of  the performance 
of  some differential operator on a function f :  A(f) = (f~0), or, as LIE preferred 
to say later on, as a result of  sub jec t ingf to  an infinitesimal transformation asso- 
ciated with ~p. 

Thus JACOBI'S works included all conditions prerequisite to the creation of 
a 'general theory'  of  equations of  the first order, a theory worked out by LIE. 
The sole ingredient lacking in the former 's  construction was a unified geometric 
view, a fruit yielded only in the 1870s by the entire development of  mathematics 
in the 19 TM century. 

As I mentioned in § 4.1 and above, JACOm'S memoirs on this subject were 
published posthumuosly, many years after he wrote them. Some of his achieve- 
ments became known by word of mouth through his former students at Krnigs-  
berg (K. W. BORCHARDT and others) and from letters written by JACOBI himself. 1 s 
Even so, taken as a whole, JACOBI'S findings in the theory of first-order equations 
and his closely connected achievements in mechanics remained unknown for a 
long time. Other scholars (OSTROGRADSKY, BERTRAND, LIOUVILLE, E. BOUR, 
W. P. DONKrN and others) discovered some of them anew. 

4.3. The situation just before Lie. Most  of  JACOBI'S works on this subject were 
published during the 1850s and 1860s, at once attracting general attention. Interest 
in them revealed the need for a new viewpoint such as to furnish a clear and 
unified understanding of JACOm'S ideas, to discover interconnections between his 
constructions and previous theories due to LAGRANGE, PFAFF and CAUCHY. 

In 1865 V. G. IMSCHENETSKV [1] published a model description of the achieve- 
ments (those due to JACOBI in the first place) attained by that time. 16 However, 

as LiotrvmL~ published one of them in his Journal de mathdmatiquespures et appli- 
qudes. 

16 A French edition of his Russian monograph appeared in 1869. One of the motives 
for its compilation was BERTRAND'S influence. At the beginning of the 1860s BERTRAND 
delivered lectures on partial differential equations and, in one of them, he (IMScHE- 
NETSKY [1, Introduction]) attempted to communicate the "possible degree of simplicity" 
to JACOBI'S theory. 
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IMSCHENETSKY did not  show the way to the construction of a 'general theory',  
the theory which LIE worked out a few years afterwards. Neither did the former 
describe the notions which were to become the premisses for the development of  
the central ideas of  this theory, viz, the notions of  

1. A new space element, of a manifold of  such elements and of  the corres- 
ponding generalization of the concepts of an equation and its solution. 

2. Contact transformations. 
3. Infinitesimal transformations. 

J. PLt3CKER was the first to come to the idea of  choosing a new space element, 
the idea which beginning f rom 1828 [1] runs all through his works including the 
very last of  them [2] published posthumously by CLEBSCH and KLEIN. The notion 
o f  a space element is due to LIE, but he himself repeatedly acknowledged (e.g., 
LIE [9, pp. 1 and 98]) its derivation f rom PLflCKER'S ideas. The space element, LIE 
stated, was a concrete expression of these ideas for the situation under his consi- 
deration. 

I have noticed (see my § 4.2) that JACOBI came close to the concept of  contact 
transformations. Independently of  this fact, two distinct lines of development 
led to the same idea: 
(1) The practice of  integrating differential equations. In this connection I mentioned 
isolated achievements due to EULER (see my § 2.3), LAGRANGE, LEGENDRE and 
AMPERE (§ 3.6) and I now shall additionally refer to A. DE MORGAN and P. D o  
BoIs REYMOND whose writings on this subject were published in 1849 and 1864 
respectively. 
(2) Geometric investigations carried out by MONGE (in 1809), M. CIaASLES (in 
1837) and, especially, PLCICKER (in 1831). 17 As LIE and ENGEL noted (LIE [7, Bd. 2, 

pp.  17-18]), " . . .  very little need be added [to PL~)CKER'S achievements] to arrive 
a t  the starting point of  the geometric theory of contact transformations on the 
plane." 

Thus by the end of the 1860s contact transformations potentially entered 
mathematics and, in the beginning of the next decade, LIE indeed used them in 
his works. 

The concept of  infinitely small transformations has a long history (BouR- 
BAKI [2, pp. 411-412]). At  any rate, even DESCARTES discovered the instantaneous 
centre of  rotation assuming that "in the infinitely small" every plane movement 
might be considered as some rotation. Similar ideas are found in the analytical 
mechanics of  the 18 th and 19 th centuries. 

In 1895 or 1896, in a letter to V. G. ALEKSEEV, LIE (ANDREEV et al [1, p. 457] wrote: 
"IMSCHrNETSKY'S Arbeit tiber partielle Differentialgleichungen erster Ordnung war 

mir soweit bekannt wie die erste systematische Zusammenfassung yon LAGRANGE'S, 
CAUCHY'S und JACOBI'S Untersuchungen auf diesem Gebiete. Jedenfalls lernte ich diese 
Theorien dutch IMSCHENETSKY'S Werk kennen, das sich nach meiner Ansicht durch klare 
Darstellung und exacte Form auszeichnet." 

17 I should also mention DARBOUX. He came to the idea of contact transformations 
by the end of the 1860s (see his later letters to LIE (LIE [8, p. 18; 9, p. 5]), but he did not 
then publish his findings. 
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SYLVESTER (in 1851) and A. CAYLEY (somewhat later) (BoURBAKI [2, pp. 411-- 
412]) used infinitely small transformations in connection with differential operators 
of the type 

A(f) ~ 2 Ai(xl . . . .  , xn) 8-~" 
i = 1  

The commutator 

A ( B ( f ) )  - -  B (A( f ) )  

of such operators also appeared in their works. See my § 3.2 for the use of the 
same operators and commutator by JacoBi in his study of systems of first-order 
partial linear equations. 

In 1868 JORDAN [1] considered infinitely small transformations from a geo- 
metric point of view. He (BouRBAKI [2, p. 412]) came to the idea of one-parameter 
continuous groups "generated" by such transformations, and he thus anticipated 
LIE'S discovery of the connection of these transformations with finite continuous 
groups. In its turn, this discovery was conducive to the development, again by 
LIE, of his concept of infinitely small transformations. 

Thus, by the end of the 1860s, all obstacles against the creation of a 'general 
theory' were surmounted. Only one 'small' point, the development of the most 
general geometric concepts was left to be achieved. By the beginning of the 
1870s two young mathematicians, F. KLEIN and LIE, the latter to become the 
principal hero of the following period, took this decisive step. But of course it 
was prepared by revolutionary changes in geometry during the whole 19 th century. 

5. Lie's 'theory' 

5.1. Sophus Lie. LIE combined an unusual creative potential with a keen 
interest in the works of his predecessors. His penetration into the ideas, and his 
perfect knowledge of the achievements, of EULER, LA6RANGE, MON6E, PVAFF, 
HAMILTON , PLgrCI(ER and JAcoat is witnessed by numerous remarks scattered 
around in footnotes and in the main body of his works and, also, in his letters. 
Coming across these comments in LIE's writings, one finds oneself in a state of 
perpetual astonishment, the more so as his study of the pertinent literature took 
place at the same time as, and in thorough connection with, the development of 
his own general geometric views. Thus, forging a new standpoint, LIE added the 
geometric dimension to previous concepts, combining and relating ideas expressed 
in various forms or even scarcely outlined during more than a century of develop- 
ments in the field of partial equations. 

LIE'S first works devoted to contact transformations appeared in 1871-1872. 
These included a short note [1] in Norwegian written in 1870, a more detailed 
version of his [2], again in Norwegian, and an article in German [3]. Then, in 1873, 
LII~ [5] presented an extremely concise and rather obscure outline (written in 1872) 
of the 'theory' of equations of the first order which he then began to develop. 
Somewhat later LIE compiled another article [4]. It was published in 1872 and con- 
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tained a solution of the problem of local equivalence for equations of the first: 
order. Given without proof, the solution constituted one of the principal proposi- 
tions of the new 'theory' (see below). Finally, a series o f  publications on the same 
subject followed in the next years culminating in 1890 in Volume 2 of LIE'S, 
remarkable book [7] written in collaboration with ENGEL. 

5.2. The Equation and its Solution. Interpreting equation (3.1.1) 

f ( x ,  y ,  z, p ,  q) = 0 

and its solutions in geometric terms, mathematicians before LIE used the three- 
dimensional coordinate space R a. For his part, LIE followed PLOCKER'S idea of a 
"generalized space element" supposing it more convenient to consider the space. 
R 5 and regarding the set (x, y,  z , p ,  q) as a point in it. In this case equation (3.1.1). 
defines a four-dimensional manifold M~ in space R s. According to LIE, integration 
of this equation means the determination of all manifolds M k  (k  ~ 2) 

x = x ( t l  . . . . .  tk), Y = Y ( h  . . . . .  tk), z = z ( h  . . . . .  tk), 

P = P ( h  . . . . .  tk), q = q ( h  . . . . .  tk) 

whose points satisfy both the equation and the condition 

dz - -  p dx  - -  q dy = 0. (5.2.1). 

However, it can be proved that the integration is reduced to the discovery o f  
manifolds M2 of only two dimensions. 

The notion of a solution of a differential equation also becomes generalized 
under the interpretation just described. Consider for example the equation 

6z 
- - ' z  0 .  
6x 

Relations 

x = t l ,  y --= 0, z = 0, p = 0, q ~ -  t 2 

define an integral manifold M2 which in R a corresponds to a straight line coincid- 
ing with axis O x  and a set of planes passing through it. 

Even equations themselves, the object of  the theory, assumed a more general 
meaning. Mathematicians before LIE included in the field of the theory only such_ 
equations (3.1.1) as involved at least one derivative, p or q, while the new interpre- 
tation made it possible to consider equations f ( x ,  y, z) =-0, and in particular,. 
the equation 

z = 0. (5.2.2) 

5.3. Contact Transformations. LIE called a transformation a contact transfor- 
mation if, in R 5, 

x '  = x ' ( x ,  y ,  z,  p ,  q), y '  = y ' (x ,  y ,  z, p,  q), z" = z ' (x ,  y ,  z, p,  q) ,  

p '  = p ' (x ,  y ,  z, p ,  q), q' =- q'(x,  y ,  z, p,  q) ,  
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the relation 

dz' - -  p '  dx '  - -  q '  dy '  = o(dz - -  p dx  - -  q dy) 

being satisfied identically. Here, ~, a non-vanishing function of x, y, z, p and q, 
depended on the transformation. Indeed, the invariant property of  such transfor- 
mations was tangency. Classical transformations introduced by LEGENDRE and 
AMP/3RE were examples of contact conversions. 

One of the first ensuing inquiries was the study of  equivalence, i.e. of the possi- 
bility of reducing a given equation to another one by means of  contact transfor- 
mations. In 1872 LIE himself formulated the corresponding problem in one of his 
first articles [5] and solved it, at least in principle, in his following work [4]. It 
turned out that there was a contact transformation such as to reduce a given equa- 
tion to any other given equation, in particular, to equation (5.2.2). Thus this 
simplest equation became capable of representing any partial equation of the first 
order!  Integral manifolds of equation (5.2.2) offered an elegant description of  
LAGRANGE'S 'theory'. 

From a modern point of  view LIE'S solution of  the equivalence problem is 
unconvincing. First, he did not point out the local nature of  the result obtained: 
contact  transformations ensure an isomorphic relation between some neighborhood 
of  a point belonging to the manifold f ( x ,  y ,  z , p ,  q) = 0 and a certain neighborhood 
o f  an arbitrary point on another variety f ( x ' ,  y ' ,  z ' , p ' ,  q')-----0. Second, LIE 
did not notice that contact transformations are impossible in the neighborhood 
o f  non-regular points (a necessary condition for non-regularity is p2 -k q2 = 0). 

Regarding my first remark, there is no doubt that LIE knew about the restric- 
-tion just formulated, but he never made any mental reservation. As to the second 
item, I think that LIE'S failure to state it himself was due rather to a manner typical 
of  mathematicians of the 19 th century. Indeed, it was then a prevailing custom 
to formulate facts correct "in general" and to ignore their being invalid in some 
isolated cases. It is easy to show that in this particular instance non-regular 
points belonging to manifold f ( x ,  y, z, p, q) ----= 0 constitute a closed subset of a 
lesser dimension so LIE'S inference is correct "almost always", i.e. "in the general 
case". 

The theory of characteristics and characteristic manifolds made essential 
progress within the framework of the new 'theory'. Accordingly, LIE developed 
a general method for solving equations, including as special cases the methods 
due to CAUCHY and JACOBI (more precisely, JACOBI'S "second method"). 

The new 'theory' also ensured a still more transparent connection between 
problems in mechanics and equations of  the first order. 

5.4. Infinitesimal Transformations. The concept of infinitely small transfor- 
mations played an important part in LIE'S study of  equations of first order. 
In a work (see for example his and KLEIN'S article (KLEIN & LIE [1])) published 
in 1871, LIE associated such transformations with systems 

d x  i 
- - ~  ~ ~i(Xl ,  X2, . . . ,  Xn), i = 1 , 2  . . . .  , n .  
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Indeed, these transformations carried the point x(xl ,  x2 . . . .  , x .)E R n into 
-p t t Xt 
.X(X1, X 2 . . . . . .  ) E R n, 

x't = xi + 8i(xa, x2 . . . . .  xn) 6t. 

Suppose that at the point ~(xl, x2 . . . . .  x.) at least some ~i survive. Then 
a transformation of the described type generates a one-parameter group 

x'i = f / ( x l ,  x2 . . . . .  x., t), i ---- 1, 2 . . . . .  n, 

xi = f i ( x l ,  x2 . . . . .  x , ,  0). 

Even JORDAN [1, p. 243] (see also BOURBAKI [2, p. 412]) regarded this group 
as a set of conversions resulting from a "suitably repeated" infinitely small trans- 
formation. 

Consider an arbitrary function f(~). I f  terms which involve powers of Ot 
higher than the first are neglected, its increment under such transformation is 

~f = X f  ~t, X f  = i=,~-~ ~i ~fxi" 

From 1874 onward LIE [6] called operators X f  symbols of infinitely small 
transformations or simply infinitely small transformations. Studying equations 
of  the first order, LIE discovered the connection between continuous r-parameter 
groups of  transformations and the corresponding totalities of r such operators 
Xlf ,  X2f, . . . .  Xrf. Denoting by [XiX A the commutator X i X j -  XjXi (first con- 
sidered by JACOBI; see my § 4.2), LIE established the following relations between 
the operators of these totalities (of these "groups )(1, )(2 . . . . .  Xr" as he called 

them): [X~Xj]---- ~ c~Xk (c~ are constants), 
k=l  

[[X/J/j] Xm] ~- [[Xjz~m] Xi] -~- [[XmXi] X j ]  = O. 

The latter equality is JACOBI'S identity written out in terms of commutators. 
LIE [7, Bd. 3, pp. 563, 590, 597] explicated the connection between "groups of 

infinitely small transformations" ~ 8 and finite continuous groups of transformations 
in three theorems which make the foundation of the theory of LIE algebras. LIB 
(ibidem, p. 665) discovered the connection while studying integration of linear 
partial homogeneous equations of the first order. Thus these equations came to 
be the field on which the theory of LIE groups originally rooted itself. 

One of  the best known facts discovered by LIE (ibidem, pp. 708-709; CHEBO- 
TAREV [1, p. 212]) concerning the theory of integration is this: if the equation 

r+l  cqf 
A f  ---- Y~ Ai(xl . . . . .  x~+1)-C7.. = 0 

i=1 C,v~ i 

admits an r-term resolvable group G whose infinitely small transformations 
Xaf, Xzf, .... X~f together with the operator A f  constitute an independent system, 
then the integration of this equation reduces to quadratures. 

~s Or LIE algebras, as they came to be known. Their history is described elsewhere 
(BoURBAKI [2]; HAWKINS [11). 
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5.5. Further Development of the 'Theory ' .  LIE furthered subjects studied or even 
scarcely broached by his predecessors during more than a century of intensive 
work. His 'general theory'  is the summit of  classical research done in the 19 th 
century in the field of  equations of  the first order. Moreover,  his ' theory' ,  as 
unfolded in a monograph  written by LIE himself in collaboration with ENGEL 
(LIE [7]), in separate treatises by other authors (notably, by GOURSAT [1]) and in 
essays (WEBER [1]), became one of the most remarkable mathematical achieve- 
ments of  that century. 

Having accomplished his studies of  equations of  the first order, LIE began his 
research in the field of  second-order equations. Taken as a whole, his work on 
differential equations opened up an entire direction. E. CARTAN, H. GOLD- 
SCHMIDT, S. STERNBERG and other mathematicians 19 followed in LIE'S steps, 
and their inquiries eventually produced an important  part  of  the theory of smooth 
manifolds. 

Contemporary invariant definitions (independent of  the choice of  coordinate 
systems) of  partial differential equations and their solutions are connected with 
the notions of  jet (or spray; see BOURBAKI [1]) spaces introduced by CH. EHRES- 
MANN. An equation of the first order is now considered as a closed submanifold 
E of codimension 1 belonging to manifold J'(M) of 1-jet smooth functions on 
variety M (VINOaRADOV [1]). A solution of such an equation is a smooth submani- 
fold X which belongs to the equation E and identically (on X) reduces some uni- 
versal 1-form U1 E A'(JM) to zero. VINOGRADOV [1] proposed the problem of  
classifying nonlinear partial differential equations, and LICHAGIN [1] solved it 
for equations of  the first order. For  them the problem is reduced to the classifi- 
cation of germs of hypersurfaces in J'(M) with respect to the group of contact 
diffeomorphisms. 

Acknowledgements. This is a modified version of my article [5] published in 1980 in 
Russian. With other authors I have described in more detail some of the points outlined 
in this paper. Thus I have elsewhere [2] studied the role played by D'ALnMBZRT and EULnR 
in the origination and initial development of the theory of partial differential equations 
and also discussed the method of multipliers and its application to specific equations. 
My article [1] was devoted to D'AL~MBERT'S works on partial differential equations, 
including those of first order. I have treated [4] methods of integrating equation (3.2.8) 
due to PFhrr and CAUCHY. Finally, I explained [3] the origin and development of LIE'S 
'theory' with special reference to the prehistory of the notion of contact transformations 
(in particular, to the first isolated applications of some transformations by EUI~ER, 
LAaRA~E, LEa~NDRn, AMP/~RE, and to JACOBI'S gradual approach to the concept). 

Dr. S. ENG~LSMAN turned my attention to the forgotten publications of SALTYKOW 
[1; 2], and I have also followed to a considerable extent ENGELSMAN'S work [1] in my 
§ 3.1. Likewise, I owe my § 5.4 to the same extent to BOURBAKI [2]. Acknowledgements 
are also due to Professor A. P. YOUSHK~VlTCH for his lasting interest in my work and to 
Dr. A. N. PARSHIN for his friendly assistance rendered me on many occasions. Dr. O. B. 
SHEYNIN translated my manuscript from Russian and offered a number of comments. 

19 I should also mention EGOROV. Along with important mathematical findings, his 
doctoral dissertation [1 ] contains an interesting essay on the history of partial differential 
equations. 
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Note added in proof" Several points discussed in § 5.4 are somewhat extended and 
clarified in my latest contribution, Des paranth~ses de Poisson aux algkbres de Lie, in: 
S.D.  Poisson et la science de son temps, edited by M. M~TIVI~R et al. Paris, 1981, 
133-150. 
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