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The study of the foundations of mathematics comprises
investigations, though probably not all possible investiga-
tions, that consist of general reflection on mathematics.
The subject naturally proceeds by singling out certain
concepts and principles as “fundamental” and concen-
trating attention on them, but of course the identification
of fundamental concepts and principles is itself based on
foundational research or may be revised in the light of it.

In this entry considerable emphasis will be placed on
philosophical questions about mathematics, which
undoubtedly belong to foundations. However, many, per-
haps most, foundational investigations are mainly math-
ematical. In the last hundred years an important role has
been played by mathematical logic. We shall not give a
detailed exposition of mathematical logic, but we hope
that our discussion will give an idea of the relation
between the logical problems and results and the philo-
sophical problems and an idea of some of the results of
recent work in logic.

Two of the main qualities for which mathematics has
always attracted the attention of philosophers are the
great degree of systematization and the rigorous develop-
ment of mathematical theories. The problem of system-
atization seems to be the initial problem in the
foundations of mathematics, both because it has been a
powerful force in the history of mathematics itself and
because it sets the form of further investigations by pick-
ing out the fundamental concepts and principles. Also,
the systematic integration of mathematics is an impor-
tant basis of another philosophically prominent feature,
its high degree of clarity and certainty. In mathematics
systematization has taken a characteristic and highly
developed form—the axiomatic method—which has
from time to time been taken as a model for systematiza-

tion in general. We shall therefore begin our main expo-
sition with a discussion of the axiomatic method.

Foundational research has always been concerned
with the problem of justifying mathematical statements
and principles, with understanding why certain evident
propositions are evident, with providing the justification
of accepted principles that seem not quite evident, and
with finding and casting off principles which are unjusti-
fied. A natural next step in our exposition, then, will be to
consider mathematics from an epistemological point of
view, which leads us to examine mathematics as a pri-
mary instance of what philosophers have called a priori
knowledge. In this connection we shall give some logical
analysis of two very basic mathematical ideas, class and
natural number, and discuss the attempts of Gottlob
Frege and Bertrand Russell to exploit the intimate rela-
tion between these two ideas in order to prove that math-
ematics is in some way a part of logic. We shall also
discuss Immanuel Kant’s views on the evidence of math-
ematics and other conceptions of a priori knowledge.
(The word evidence will often be used in this entry in a
way that is unusual outside philosophical writings influ-
enced by the German tradition, to mean “the property of
being evident”—German, Evidenz.)

The growth of modern mathematics, with its
abstract character and its dependence on set theory, has
caused the problem of evidence to be focused on the
more particular problem of platonism. It is in this devel-
opment and the accompanying growth of mathematical
logic that modern foundational research has centered.

Throughout the nineteenth century, mathematicians
worked to make arithmetic and analysis more rigorous,
which required axiomatization and an attempt to use the
concepts of the theory of natural numbers as a basis for
defining the further concepts of arithmetic and analysis.
The manner in which this axiomatization and definition
was undertaken was platonist, in the sense that both
numbers and sets or sequences of numbers were treated
as existing in themselves. The development of set theory
by Georg Cantor provided a general framework for this
work and also involved even greater abstraction and even
stronger platonist assumptions.

The growth of mathematical logic introduced as fur-
ther elements the axiomatization of logic (the basic step
in which was completed by Frege in 1879), the effort to
incorporate the axiomatization of logic into that of math-
ematics, and the accompanying tendency, on the part of
Frege and Giuseppe Peano, to interpret rigorous axioma-
tization as formalization. Frege carried the development
much further by undertaking to develop the whole of
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arithmetic and analysis in a formal system that is essen-
tially a system of set theory.

At the turn of the twentieth century the entire devel-
opment reached a crisis with the discovery of the para-
doxes of set theory, which showed that the concept of
class or set as it was then being used had not been suffi-
ciently clarified. Much of the foundational research of the
early twentieth century—and not only in the axiomatiza-
tion of set theory—was directed at problems posed or
believed to have been posed by the paradoxes.

In that period emerged three general viewpoints,
each of which had its own program based on a distinctive
attitude toward the question of platonism. The most rad-
ical was intuitionism, based on L. E. J. Brouwer’s critique
of the whole idea of platonism. In contrast to Brouwer,
David Hilbert had a firm commitment to the patronizing
tendency in mathematics, but he held epistemological
views that were fundamentally in accord with Brouwer’s
critique of platonism. Making use of the fact that no mat-
ter how platonist the mathematics formalized, questions
of provability in a formal system are meaningful from a
narrow constructivist point of view, Hilbert’s school
sought to secure the foundations of platonist mathemat-
ics by metamathematical investigation of formalized
mathematics—in particular, by a proof of consistency.
This viewpoint was called formalism, although the desig-
nation is misleading, since Hilbert never maintained that
even platonist mathematics could be simply defined as a
“meaningless” formal system.

Proponents of the third viewpoint, logicism, whose
leading figure was Russell, continued to believe in Frege’s
program of reducing mathematics to logic. Accepting this
program involved taking some platonist assumptions as
intuitively evident.

A great deal of work in mathematical logic was
directed toward clarifying and justifying one or another
of these points of view. We might mention Brouwer’s
(informal) results on the impossibility of constructively
proving certain theorems in analysis, Arend Heyting’s
formalization of intuitionist logic, the development of
finitist proof theory by Hilbert and his coworkers, and
Russell and A. N. Whitehead’s Principia Mathematica as a
much further development of mathematics within a sys-
tem of set theory.

Nonetheless, the trichotomy of logicism, formalism,
and intuitionism has probably never been the best classi-
fication of points of view in foundations. It does not take
account of one of the philosophically most important
problems, that of predicativity, or of some mathematical

developments—such as the development of the seman-
tics of logic by Leopold Löwenheim, Thoralf Skolem,
Kurt Gödel, and Alfred Tarski—which were crucially
important for later work. At any rate the schools no
longer really exist. All of them had programs that
encountered serious difficulties; further experience with
set theory and the axiomatizations of Ernst Zermelo and
Russell deprived the paradoxes of their apparently apoca-
lyptic character; and specialized work in mathematical
logic led more and more to the consideration of problems
whose significance cut across the division of the schools
and to looking at the results of the schools in ways which
would be independent of the basic controversies. A deci-
sive step in this development came in the early 1930s,
with the discovery of Gödel’s incompleteness theorem
and the coming of age of formal semantics.

Some areas of the foundations of mathematics will
be passed over here—in particular, we shall not go far
into the significance of the fact that mathematics has
applications to the concrete world, although historically
the relation between mathematics and its applications has
been very close, and the present sharp distinction
between pure and applied mathematics is a rather recent
development. For instance, we shall omit a special con-
sideration of geometry. If the pre-twentieth-century view
that geometry is a purely mathematical theory that
nonetheless deals with actual space is correct, then the
omission is unjustified. However, even the question
whether this view still has something to be said for it is
more intimately related to the philosophy of physics than
to the problems on which we shall concentrate. Geometry
as understood today by the pure mathematician, as the
general study of structures analogous to Euclidean space,
raises no philosophical problems different from those
raised by analysis and set theory.

§1. the axiomatic method

As we said, we shall begin our discussion with the axi-
omatic method. Consideration of the notion of an infor-
mal axiomatic system leads to the notions of formaliza-
tion and formal system. Through this process, especially
through the last step, mathematical theories become
themselves objects of mathematical study. The exploita-
tion of this possibility is perhaps the specifically modern
move in the study of the foundations of mathematics and
has led to an enormous enrichment of the subject in the
last hundred years.

1.1. AXIOMATIZATION. Ever since Euclid, axiomatizing a
theory has meant presenting it by singling out certain
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propositions and deducing further ones from them; if the
presentation is complete, it should be the case that all
statements which could be asserted in the theory are thus
deducible. Axiomatization has also come to mean a simi-
lar reduction of vocabulary, in that certain notions
should be taken as primitive and all further notions
which are introduced in the development of the theory
should be defined in terms of the primitive ones. In
essence this is the conception of an axiomatized theory
that prevails today, although it has been developed in dif-
ferent directions.

There are important ambiguities concerning the
means of deduction and definition to be admitted in the
development of the theory. Here informal axiomatics
always makes use of some general background that can be
used in developing the theory but is not itself included in
the axiomatization. In modern mathematics this back-
ground typically includes logic and arithmetic and usu-
ally also analysis and some set theory. For example, in an
axiomatic theory concerning objects of a certain kind,
one permits oneself very quickly to make statements
about sequences and sets of those objects, to introduce
concepts defined in terms of the primitives of the theory
by means of these general mathematical devices, and to
make inferences that turn on laws of arithmetic, analysis,
or set theory. Such notions often enter into the statement
of the axioms themselves. We shall presently say more
about the significance of this procedure.

It might seem natural to require provisionally that
the means of deduction and definition be restricted to
those of pure logic, for logic is supposed to contain those
rules of correct inference which have the highest degree
of generality and which must be applied in all sciences.
We would then regard an axiomatization as only partial if
deductions from it required the use of methods of the
special sciences—in particular, branches of mathematics
(likewise if, in addition to the primitives, notions other
than purely logical ones entered into the definitions). An
axiomatic theory would then consist of just those state-
ments that are deducible by purely logical means from a
certain limited set of statements and of the statements
that can be obtained from these by definitions expressible
purely logically in terms of the primitives.

It seems possible that such an axiomatic system was
the objective toward which Euclid was striving. He evi-
dently did not intend to allow himself general mathemat-
ical notions, such as arithmetical ones, for he included
propositions involving such notions among his axioms
and undertook to develop some of number theory from
the axioms in Books VII–IX. Even some of Euclid’s well-

known failures to achieve this degree of rigor—for exam-
ple, his assuming in his very first proof that two circles
with the center of each lying on the circumference of the
other will have two points of intersection—might have
arisen because he saw them as immediate deductions
from the meaning of the concepts involved. Of course, a
rigorous theory of definition would require definitions to
be given or axioms to be explicitly stated in such a way
that such deductions do proceed by mere logic.

A perfectly satisfactory axiomatization in this form
certainly was not possible in Euclid’s time; it proba-
bly had to wait for two developments that did not 
take place until the late nineteenth century, Frege’s dis-
covery and axiomatization of quantification theory 
and the Dedekind-Peano axiomatization of arithmetic.
(Nonetheless, considerable progress was made prior to
these developments.)

This remark points to a limitation of the conception
we are considering, for it does not give a meaning to the
idea of an axiomatization of logic itself, although such
axiomatization has played a vital role in modern founda-
tional studies. Appreciation of this point leads to the con-
cept of a formal system, but before we consider this
concept let us observe a consequence of the axiomatiza-
tion of a theory.

1.2. THE ABSTRACT VIEWPOINT. Suppose a theory is so
completely axiomatized that all concepts of the special
theory which are used in statements and deductions are
explicitly given as primitives and all special assumptions
underlying the proofs are disengaged and either stated
among or deduced from the axioms. This means that the
validity of the deductions does not at all depend on the
actual meaning of the primitive terms of the special the-
ory. It follows that the formal structure determined by the
primitive concepts and the axioms can have a more gen-
eral application than they have in the given special theory,
in the sense that we could by any choice of interpretation
of the primitive terms obtain a deductive system of
hypotheses concerning some subject matter, even though
the hypotheses will in many cases be false.

This fact is of crucial importance in the study of
axiom systems. We can then think of a model of an
axiomatic theory as a system of objects and relations that
provides references for the primitive terms so that the
axioms come out true. We can think of axiomatization as
having proceeded with a particular model in mind, but
this need not have been the case; at any rate, interest
attaches to the study of other possible models. (Although
we may, in this discussion, allow means of deduction that
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go beyond pure logic, it ought to be the case that if a
proposition is deducible from the axioms of the theory,
then it must be true in all models of the theory. It might
be reasonable to take this as a sufficient condition of
deducibility, but if so it seems that the notion of model
will have to have a relativity comparable to that of the
notion of deducibility.)

For example, suppose we consider absolute geome-
try—that is, Euclidean geometry without the parallel
postulate. Then any model either of Euclidean geometry
or of the standard non-Euclidean geometries will be a
model of absolute geometry. If the parallel postulate is
deducible from the other axioms of Euclidean geome-
try—that is, from the axioms of absolute geometry—
then it must be true in every model of absolute geometry.
The construction of models for non-Euclidean geome-
tries showed that this is not the case. We call an axiom of
a system independent if it is not deducible from the oth-
ers. Thus, if the theory obtained by dropping an axiom �
has a model in which � is false, then � is independent.

Another possibility, which has been much exploited
in modern mathematics, is to replace a system of primi-
tive terms and axioms by what amounts to an explicit def-
inition of a model of the axioms. Thus, suppose
Euclidean geometry is formulated with two primitive
predicates (following Alfred Tarski in “What Is Elemen-
tary Geometry?,” 1959):

“b(x,y,z)”,

meaning “x, y, and z are collinear, and y lies between x and
z or y = x or y = z,” and

“d(x,y,z,w)”,

meaning “x is the same distance from y as z is from w.”
(The variables here range over points, which in the infor-
mal theory must be thought of as a primitive notion.)
Then we can define a Euclidean space as a triple ·S,B,DÒ,
where S is a set of entities called “points,” B a ternary rela-
tion on S, and D a quaternary relation on S, such that the
axioms of Euclidean geometry hold. Then to any theorem
proved from these axioms corresponds a statement of the
form “Every Euclidean space is such that … .” A number
of attempts to characterize mathematical structures
axiomatically have led in a similar way to explicit defini-
tions of abstract types of structure. This is regarded, for
more than historical reasons, as a fruit of the axiomatic
method. The search for an axiomatic basis for a mathe-
matical theory is also the search for a formulation of the
arguments in a fashion which will make them more gen-

erally applicable, giving them a generality which can be
expressed in the definition of a general type of structure.

1.3. FORMALIZATION. Whereas one development of the
axiomatic method tends to the replacement of axioms by
definitions, another leads to the conception of a formal
system. One result of the axiomatization of a theory was
that the meaning of the primitive terms became irrele-
vant to the deductions. If we carry this abstraction from
meaning to its limit, we can cover the case of axiomatiza-
tions of logic and resolve once and for all the question of
what means of deduction are to be allowed. That is, we
put into the construction of an axiom system a complete
specification of all the means of inference to be allowed
(for example, logic and basic mathematics) in the form
both of further axioms and of rules of inference that
allow us to infer from statements of certain given forms a
statement of another given form. If this is done with
utmost rigor, so that use can be made of only as much of
the meaning of the terms as is specified in axioms and
explicit definitions, then the system is specified simply in
terms of the designs of the “linguistic” forms in which it
is expressed. “Linguistic” is put in quotation marks
because, invariably, much of the language has been
replaced by an artificial syntax. We are left with a specifi-
cation of certain strings of symbols as “axioms” and cer-
tain rules, each of which allows us to “infer” a new string
from certain prior ones. The strings which we can obtain
from axioms by successive application of the rules can be
called theorems.

A proper explanation of the concept of a formal sys-
tem requires somewhat more apparatus. The exactness of
this procedure requires that the strings of symbols used
be constructed out of preassigned material, which we can
assume to be a finite list of symbols. Among the strings of
these symbols we single out a subclass that we call for-
mulae (or well-formed formulae, wffs), which are those
strings to which, in an interpretation, we would give a
meaning. (The non-wffs correspond to ungrammatical
sentences.) Then a certain class of formulae is singled out
as the axioms. The class of theorems can be defined as the
closure of the axioms under certain operations; that is,
rules of the following form are specified:

(Ri). If �1, · · ·, �ri
are theorems and �i(�i, · · · �ri

),
then � is a theorem, where �i is some relation on

strings of the symbols of the system.

So the definition of theorem is an inductive definition
with the clauses (Ri) and

every axiom is a theorem.
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In this setting we can resolve another ambiguity of
our original rough conception of axiomatization. The
question arises concerning what conditions a class of
statements must satisfy to be appropriate as the axioms of
an axiomatic theory. Various epistemological desiderata,
such as self-evident truth for the intended model, are put
aside once we take the abstract point of view. Another
requirement that has been found natural in the past is
that both individual axioms and the class of axioms as a
whole should have a certain simplicity. What there is in
the way of general theory about the simplicity of individ-
ual axioms has not played much of a role in investigations
of the foundations of mathematics, although much effort
has been expended in replacing individual axioms with
simpler ones or in finding systems of axioms which have
particular advantages of “naturalness” for intended appli-
cations.

In order to characterize the important axiom systems
which have been used in the past we shall have to place
some limitation on the class of axioms. In the traditional
cases the class has been finite. However, the formalization
of such an axiomatic system can give rise to an infinite
system—for example, if we take as axioms all instances of
a certain schema.

The limitation which is used instead of a finite class
of axioms is based on the fact that the notions of formula,
axiom, and theorem are to be syntactically specified.
Then the requirement is that there be a mechanical, or
effective, procedure for deciding whether a given formula
is an axiom and whether a given inference (of a formula
from finitely many premises) is correct according to the
rules of inference. This requirement is natural in the light
of the idea that a proof of a statement in an axiomatic
theory should contain all the mathematically significant
information needed to show that the statement is indeed
assertible in the theory. That would not be the case, it is
argued, if something beyond mechanical checking were
needed to determine the correctness of the proof. (It
should be pointed out, however, that generalizations of
the concept of formal system in which this condition is
not satisfied are frequently used in mathematical logic.)

The notion of a formal system gives the highest
degree of generality, in that there is no element of the
symbolism whose interpretation is restricted. Indeed, it
permits much of what we might want to say about an
axiomatic theory to be formulated without reference to
interpretation, since the formulae, axioms, and rules of
inference are specified without reference to interpreta-
tion, and what is a theorem is then defined, again without
such reference. An entire division of the theory of formal

systems—what is usually called syntax—can thus be built
up with no more than a heuristic use of interpretation. In
particular, the intensional notions—concept, proposi-
tion, etc.—relied on so far in the informal exposition can
be eliminated.

The concept of a formal system also brings to the for-
mulation of the theory the highest degree of precision, at
the cost of a still further idealization in relation to the
concrete activities of mathematicians. Furthermore, the
concept not only gives a refined formulation to axiomati-
zations and allows a mathematical study of axiom sys-
tems of a more general scope than was possible without it
but also makes possible a precise formulation of differ-
ences about mathematical methods. Carrying the
axiomatic method to this limit makes possible a new
approach to a wide variety of questions about the foun-
dations of mathematics.

Inasmuch as axiomatization is a rendering of a the-
ory in a more precise formulation (if not a singling out of
some particular aspect of the theory), the axiomatized
theory cannot be identified in every respect with what has
gone before. It can replace, however, what has gone before
and actually has done so in many cases. The passage from
axiomatization to formalization is in an important
respect more radical than the various stages of informal
axiomatization, and we can therefore regard a formaliza-
tion of a theory as not so much a more precise formula-
tion of the theory as an idealized representation of it. The
process of replacing expressions of natural language by
artificial symbols, which goes on in all mathematical
development, is here carried to an extreme. For example,
we lay down by a definition what are “formulae” and
“proofs” in the system, whereas informally we rely for the
notion of sentences on our more or less unanalyzed lin-
guistic sense, and for proofs we rely on this sense, on
mathematical tradition, and on intuitive logic. In partic-
ular, formulae and formal proofs are of unbounded
length and complexity, without regard to the limits of
what we can perceive and understand.

With this goes the fact that the basic general notions
with which we operate in formulating and reflecting on
theories—sentence, proposition, deduction, axiom, infer-
ence, proof, definition—are replaced in the formalized
version by specifically defined, more or less simplified
and idealized substitutes. In particular, although we
“interpret” formalized theories, the relation between a
sign or a formal system and its reference in some model
is a “dead” correspondence, an aspect of a purely mathe-
matical relation between two systems of objects. This
enables one to avoid the intractable problems of how lin-

MATHEMATICS, FOUNDATIONS OF

ENCYCLOPEDIA OF PHILOSOPHY
24 • 2 n d  e d i t i o n

eophil_M2  10/25/05  8:22 AM  Page 24



guistic expressions come to have “meaning” and, with it,
reference and is therefore an extremely valuable piece of
abstraction. But it is an abstraction; moreover, it does not
mean that the informal linguistic and intellectual appara-
tus disappears altogether, since it will still be used in the
setting up and investigation of the formalized theory. In
fact, one of the results of formalization is a sharper sepa-
ration between what is within the theory and what
belongs to discourse about it—that is, to the metatheory.
If the metatheory is in turn axiomatized and then for-
malized, the same situation arises at the next-higher level.

The importance of this observation is difficult to
assess, but it is relevant to a number of problems we shall
discuss later—in particular, attempts to argue from
results of mathematical logic to philosophical conclu-
sions.

§2. epistemological discussion

2.1. A PRIORI KNOWLEDGE. We shall now put the mat-
ter of axiomatization and formalization aside and con-
sider mathematics from the point of view of general
epistemology. The guiding thread of our discussion will
be the fact that a powerful tradition in philosophy has
regarded mathematics, or at least a part of it, as a central
case of a priori knowledge. This means that reflection on
mathematics has been at the center of philosophical dis-
cussion of the concept of a priori knowledge.

The characteristics of mathematics which have led to
the conclusion that mathematics is a priori are its abstract
character and accompanying enormous generality and its
great exactitude and certainty, which, indeed, have tradi-
tionally been considered absolute. Thus, even before set-
ting forth a developed logical analysis of the concept of
number, we find that the effort to interpret “2 + 2 = 4” as
a hypothesis that can be checked by observation runs into
obvious obstacles. It is perhaps not so vital that the state-
ment refers to abstract entities, numbers, which are not
the sort of thing we observe. The concept of number cer-
tainly does apply to empirically given objects, in the sense
that they can be counted and that the numbers thus
attributed to them will obey such laws as “2 + 2 = 4.”
Therefore, the proposition could so far be taken as a law
concerning such entities. Even then its range of applica-
tion is so enormous, extending over the entire physical
universe, that it seems evident that if it were taken as a
hypothesis, it would be stated and used in a more quali-
fied way, at least by critically minded scientists. In other
words, the certainty that we attribute to elementary arith-
metical propositions would be quite unwarranted if they
were laws based on observation. Even in the case of math-

ematical principles to which we do not attribute this
degree of certainty, such as the axiom of choice and the
continuum hypothesis, the possible “contrary evidence”
would arise from the deductive development of the the-
ory involved (in the examples, set theory), not from
observation.

Moreover, it seems that we ought to be able to con-
ceive of a possible observation which would be a counter-
instance. Although it is perhaps not evident that this is
impossible, the ideas that come to mind lead either to
descriptions of doubtful intelligibility or to the descrip-
tion of situations where it seems obviously more reason-
able to assume some other anomaly (such as miscounting
or the perhaps mysterious appearance or disappearance
of an object) than to admit an exception to “2 + 2 = 4.”

Another difficulty is that the concept of number
must apply beyond the range of the concrete entities
which are accessible to observation; such abstract entities
as mathematical objects must be subject to counting, and
this seems also to be the case for transcendent entities.

The foregoing considerations could be developed
into decisive arguments only with the help of both a more
developed formal analysis of number and a more detailed
discussion of the relation between arithmetical laws and
actual counting and perhaps also of the role of mathe-
matics in empirical science. In any case, they do not tell
against another form of the denial that arithmetic is a pri-
ori, the view that arithmetical laws are theoretical princi-
ples of a very fundamental sort, which we are therefore
far more “reluctant to give up” in a particular situation
than more everyday beliefs or impressions or even than
fundamental theoretical principles in science. Such a view
would nonetheless take it to be conceivable that in
response to some difficulty in, say, particle physics a new
theory might be formulated which modified some part of
elementary arithmetic.

2.2. MATHEMATICS AND LOGIC. The above considera-
tions show why it is necessary to add technical analysis to
the epistemological discussion. We shall take as our guid-
ing thread the attempt to show that mathematics—in
particular, arithmetic—is a part of logic. This attempt has
led to some of the most important results in the logical
analysis of mathematical notions. The view that mathe-
matics can be reduced to logic is one of the principal gen-
eral views on the foundations of mathematics which we
mentioned earlier; it goes generally by the name of logi-
cism, and its classic expression is in the writings of Frege
and Russell.
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Even if successful, the reduction of mathematics to
logic could not by itself give an account of how there can
be a priori knowledge in mathematics, for it would only
reduce the problem of giving such an account to the cor-
responding problem with regard to logic. Nonetheless,
the a priori character of mathematics has traditionally
been found perhaps slightly less certain than that of logic.
The obvious fact that one of the primary tasks of mathe-
matics is the deductive development of theories has been
found to be one of the most powerful supports of the
claim that mathematics is a priori. We can expect that a
successful reduction of mathematics to logic will simplify
the problem of a priori knowledge, and not only by
replacing two problems by one. Logic is more unavoid-
able: We cannot get anywhere in thinking without using
logical words and inferring according to logical rules.
This would suggest that logic is in fact more basic than
mathematics and more certainly a priori. (It would also
suggest that philosophical treatments of logic are more
liable to circularity.) Moreover, in the course of history
philosophers have invoked sources of evidence for math-
ematics which are at least apparently special, such as
Kant’s pure intuition. Thus, a reduction of mathematics
to logic might make superfluous certain difficult episte-
mological theories.

The claims of logicism are based in large part 
on mathematical work in axiomatics. A number of
nineteenth-century investigations showed that the basic
notions of analysis—for example, rational, real, and com-
plex number—could be defined, and the basic theorems
proved, in terms of the theory of natural numbers and
such more general notions as class and function. At the
same time, axiomatic work was done in the arithmetic of
natural numbers, culminating in the axiomatization of
Richard Dedekind (1888) and Peano (1889). The move-
ment toward formalization began somewhat later, with
the work of Frege and of the school of Peano.

Thus, the effort to reduce mathematics to logic arose
in the context of an increasing systematization and rigor
of all pure mathematics, from which emerged the goal of
setting up a comprehensive formal system which would
represent all of known mathematics with the exception of
geometry, insofar as it is a theory of physical space. (But
of the writers of that generation only Frege had a strict
conception of a formal system.) The goal of logicism
would then be a comprehensive formal system with a nat-
ural interpretation such that the primitives would be log-
ical concepts and the axioms logical truths.

We shall be guided by Frege’s presentation, although
he did not go very far in developing mathematics within

his system and of course the system turned out to be
inconsistent. Nonetheless, it is already clear from Frege’s
work how to define the primitives and prove the axioms
of a standard axiomatization of arithmetic. We shall
begin with some discussions of the notions of number
and class, which are crucial for the reduction and for the
foundations of mathematics generally.

2.3. COUNTING AND NUMBER. In order to be clearer
about the concept of number, we might start with the
operation of counting. In a simple case of carefully
counting a collection of objects, we perhaps look at and
point to each one successively, and with each of these
directions of the attention we think of or pronounce one
of a standard series of symbols (numerals) in its place in
a standard ordering of these symbols. We are careful to
reach each of these objects once and only once in the
process. We thus set up a one-to-one correspondence
between the objects and a certain segment of the series of
numerals. We say that the number of objects in the col-
lection is __________, where the blank is filled by the last
numeral of the series.

Before pursuing this matter further, let us examine
the series of numerals itself. We have certain initial sym-
bols and rules for constructing further symbols whose
application can be iterated indefinitely. We could simplify
the situation in actual language and suppose that there is
one initial symbol, say “|,” and a generating operation,
concatenation of another “|,” so that the numerals will be
|, ||, |||, ||||, · · ·, It is not clear, however, that it is merely a
matter of “practical convenience” that ordinary numerals
are, in the long run, considerably more condensed: If a
string of several million “|’s” were offered as a result of
counting, one would have to count them to learn what
the number was.

However, it is worth asking whether the pure notion
of natural number requires more than the possibility of
generating such a string of symbols. By “symbols” do we
mean here blobs of ink? Only with certain reservations.
The particular blobs which we have produced are not at
all essential; if we write others—|, ||, |||, ||||, · · · —they will
do just as well. In fact, we could have chosen symbols of
quite different forms and still have produced something
equivalent for our purposes, such as +, ++, +++, · · ·, or
something not consisting of marks on paper at all, such as
sounds, which are, of course, actually used. As long as it is
capable of representing to us the process of successive
generation by which these sequences of symbols are pro-
duced, anything will do—any collection of perceptible
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objects that can be placed in one-to-one order-preserving
correspondence with our first sequence of symbols.

Thus, the blobs of ink serve as the representatives of
a quite abstract structure. This abstraction allows us
(even on a subordinate level) to disregard some limita-
tions of the blobs besides their particularity and accom-
panying boundedness to a particular place and time.
They are constructed according to a procedure for gener-
ating successive ones, and what matters is the structure
embodied in the procedure, not any particular limitations
that might be encountered in carrying it out. On a suffi-
ciently abstract level we say that we can continue to gen-
erate symbols indefinitely, although life is too short,
paper and ink run out, the earth perhaps disintegrates,
etc.

Here we have already taken the step of introducing
abstract entities. In a weak form this could be represented
as taking certain abstract equivalence relations between
entities (e.g., marks on paper) as criteria of identity for
new kinds of entities (e.g., symbols as types or, further,
numbers). But we have already reached a point where
more is involved, since the abstract entities which are rep-
resented by all the marks of a given equivalence class
belong to a series which can be continued far beyond any
practical possibility of constructing representatives. We
can create a “pseudo-concrete” model by appealing to
space, time, and theoretical physics, but then we are
already depending on abstract mathematical objects.
Given that we do think of numerals as referring to num-
bers, it is natural to introduce the apparatus not only of
identity but also of quantification. Certain uses of such
quantification, however, will involve still stronger presup-
positions than we have uncovered up to now, and we shall
discuss these when we consider platonism and construc-
tivism.

2.4. AXIOMS OF ARITHMETIC. We have so far taken for
granted that the natural numbers are obtained by starting
with some initial element 0 and iterating an operation of
“successor” or “adding 1.” This is the basis for an espe-
cially simple axiomatization of the theory of natural
numbers, that of Dedekind and Peano, in which the
primitives are “0,” “number” (“NNx”), and “successor”
(which we shall give as a relation: “Sxy” means “y is suc-
cessor of x”). Then the axioms are

(1) NN0.

(2) NNx � ($!;y)(Nny & Sxy).

(3) ÿS0x.

(4) Sxz & Syz. � x = y.

(5) (F)[F0 & (x)(y)(Fx & Sxy . � Fy) . � (x)(NNx �
Fx)].

In (5), “(F)” may be read “for all properties F,” but for the
present we shall not discuss just what this means. We do
not need to suppose that precisely what properties there
are is determined in advance, but we have to acknowledge
that if it is not determined what properties there are, then
it may not be determined precisely what natural numbers
there are.

We could think of the natural numbers as given by a
kind of inductive definition:

(a) NN0.

(b) If NNx, then NN(Sx).

(c) Nothing is a natural number except by virtue of
(a) and (b).

However, in this case we have to suppose that the succes-
sor relation is given in such a way that axioms (2), (3),
and (4) are evident. We might think of “0” as represented
by “|” and the successor function as represented by the
addition of another “|” to a string. Then there is appar-
ently an appeal to spatial intuition in regarding these
axioms as evident. In that event the induction principle
(5) will be in some way a consequence of (c). It could be
regarded simply as an interpretation of (c), or one might
argue, as Ludwig Wittgenstein apparently did at one time
(see Friedrich Waismann, Introduction to Mathematical
Thinking, Ch. 8), that the meaning of all natural numbers
is not given to us by such specifications and our inde-
pendent concept of “all” and that the induction principle
functions as a criterion for a proposition’s being true of
all natural numbers.

2.5. THE CONCEPT OF CLASS (SET). Before we discuss
further the notion of number it is necessary to give some
explanation of the notion of class or set. We shall consider
two explanations, one suggested by Cantor and one sug-
gested by Frege.

2.5.1. Frege’s explanation. Instead of the term class or
set, Frege used the phrase “extension of a concept.” Frege’s
usage is based on the tendency to regard the predicates of
a language as standing in quantifiable places—

John is a Harvard man.

Henry is a Harvard man.

\ John and Henry have something in common—
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and the tendency to derive from general terms abstract
singular terms, which are usually explained as referring to
properties or attributes.

These two tendencies can be separated. Frege
regarded predicates in context as in fact referring, but to
concepts, not to objects. Concepts, like the predicates
themselves, have argument places; Frege called both pred-
icates and concepts “unsaturated” because only with the
argument place filled by an object (in the case of a predi-
cate, a proper name) could they “stand by themselves.” A
notation which expresses his conception is that of the 
second-order predicate calculus, in which the above con-
clusion might be symbolized (misleadingly) as
($F)[F(John) & F(Henry)]. An expression which is syn-
tactically appropriate for denoting an object cannot
denote a concept, and vice versa.

The extension of a concept, then, is simply an object
associated with the concept in such a way that if two con-
cepts apply to the same objects, they have the same exten-
sion—that is,

(6) xFx = xGx. ∫ (x)(Fx ∫ Gx),

where xFx is the extension of the concept F. This is essen-
tially Frege’s famous axiom V (Grundgesetze der Arith-
metik, Vol. I, p. 36; Frege’s notion of concept can interpret
the quantifiers in our axiom 5).

2.5.2. Cantor’s explanation. Cantor characterized a
set as “jedes Viele, welches sich als Eines denken lässt, d.h.
jeden Inbegriff bestimmter Elemente, welcher durch ein
Gesetz zu einem Ganzen verbunden werden kann”
(“every many, which can be thought of as one, that is,
every totality of definite elements which can be combined
into a whole by a law”; Gesammelte Abhandlungen, p.
204). “Unter einer ‘Menge’ verstehen wir jede Zusam-
menfassung M von bestimmten wohlunterschiedenen
Objekten m unserer Anschauung oder unseres Denkens
(welche die ‘Elemente’ von M genannt werden) zu einem
Ganzen” (“By a ‘set’ we understand any collection M of
definite well-distinguished objects of our intuition or
thought, which are called the ‘elements’ of M, into a
whole”; p. 282).

It is virtually impossible to explain Cantor’s idea of
set without using words of the same general type, only
vaguer (“collection,” “multitude,” Inbegriff). We can per-
haps approach it by mentioning a few ways in which mul-
titudes are thought of as unities: by being thought of by
means of a predicate—that is, by being brought under a
concept in Frege’s sense—so that Frege’s extensions could
perhaps be regarded as sets, or by being in some way
brought to the attention at once, even without the inter-

vention of language; in particular, a finite number of
objects of perception can constitute a set. That the objects
must be “determinate and well-distinguished” means that
it must be determinate what the elements are, that iden-
tity and difference be well-defined for the elements, and
that a set must be determined by its elements.

One is inclined in this connection to think of a set as
“composed” of its elements, but this is not essential and
might lead to confusion of a set with a spatiotemporal
sum, but a portion of space or time (for example, a geo-
metric figure) can be partitioned in a number of ways, so
the sets of the parts will be different but the sum will
always be the same.

The picture of finite sets can be extended in such a
way that one might imagine an “arbitrary” infinite set
independent of any predicate. Suppose it is to be a set S of
natural numbers. We go through the natural numbers
one by one deciding for each n whether n is a member of
S (n � S) or not. Although the determination takes infi-
nitely long, it is determined for each n whether n � S. (Or
we might imagine its being done all at once by God.)

2.5.3. Difficulties in these conceptions. Both Cantor’s
and Frege’s conceptions of sets have difficulties which did
not come clearly to the consciousness of logicians and
set-theorists until the discovery of the set-theoretical
paradoxes, discussed below. We shall merely mention
here a source of difficulty. In both theories a set or exten-
sion is supposed to be an object, capable of being itself a
member of sets. Cannot this give rise to circularities—
that is, that a set is formed from or constituted by certain
objects, among them itself?. (Or, in Frege’s terms, among
the objects in the range of the quantifiers on the right side
of formula 6 are xFx and xGx themselves, so that the
identity condition for these objects, which from Frege’s
point of view was part of their essence, seems to depend
on particular facts about them.)

We shall not say anything at the moment about the
particular form the difficulties take or about how to
resolve them. We shall continue to use second-order
quantification somewhat vaguely; one can interpret the
variables as ranging over Frege’s concepts, in most cases
over classes or even over intensional entities, as might
have been suggested by our original word “property.”

2.6. FREGE’S ANALYSIS OF NUMBER. We can now pro-
ceed to the main steps of Frege’s argument for the thesis
that arithmetic is a part of logic. Frege observed that a
necessary and sufficient condition for, say, the number of
F’s (which we shall write as “NxFx”) to be the same as the
number of G’s is that there should be a one-to-one corre-
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spondence of the F’s and the G’s. (In that case we say they
are numerically equivalent.) This criterion, which is quite
general—that is, not restricted to the case where there are
only finitely many F’s or G’s—had already been exploited
by Cantor to generalize the notion of cardinal number to
infinite classes. It can be justified by our discussion of
counting and number, above.

On the basis of a one-to-one correspondence
between the F’s and {1, · · ·, n} we are prepared to say that
the number of F’s is n. But no such correspondence can
then exist with {1,· · ·,m} for any m π n, and if by the same
criterion there are n G’s, then by composition we can set
up a one-to-one correspondence between the F’s and the
G’s. If there are m G’s for m π n, we cannot. So we say that
there are n F’s if and only if a one-to-one correspondence
exists between the F’s and {1, · · ·, n}, and in that case there
are n G’s if and only if there is a one-to-one correspon-
dence between the F’s and the G’s. Writing “there are n
F’s” as “($x)nFx,” we have that if ($n)[($x)nFx],

(7)NxFx = NxGx. ∫ the F’s and the G’s are numerically
equivalent.

Since we have no independent criterion for the case
where there are infinitely many F’s, we take (7) to be true
by definition in that case. We then have Frege’s criterion.

Frege then defined a relation H as a one-to-one cor-
respondence of the F’s and the G’s if and only if for every
F there is exactly one G to which it bears the relation H
and vice versa—in symbols,

(8)(x)[Fx � ($!y)(Gy & Hxy)] & (y)[Gy � ($!x)(Fx &
Hxy)],

where “($!x)(· · · x · · ·)” can be defined in first-order logic:

(9)“($!x)(· · · x · · ·)” for “($x)[· · · x · · · & (y)(· · · y · · ·
� y= x)]”.

Thus, numerical equivalence can be defined by a formula
“($H)�(H,F,G),” where “�(H,F,G)” is an abbreviation for
a first-order formula, namely, the expansion of (8) in
terms of (9).

The relation of numerical equivalence is an equiva-
lence relation; Frege’s idea was, in effect, to define cardi-
nal numbers as the equivalence classes of this relation.
This definition, however, requires a powerful use of the
notion of extension which is allowed by his axiom (6). In
other words, NxFx is to be the extension of the concept
concept numerically equivalent to the concept F—that is,
we define

(10) “NxFx” for “V($H)�(H,G,F)”.

(In fact, in the Grundgesetze, Frege avoided applying
the extension operator to a second-order variable by
appeal to formula 6: G can be replaced by its extension.
We define “Vˆ(G)” as y($G)[y = xGx . ˆ(G)]”.)

Formula (10) gives a definition of Cantor’s general
concept of cardinal number, so we can prove (7); no fur-
ther use of axiom V is needed for the definition of the
natural numbers and the proof of the axioms (1)–(5). We
now define Peano’s primitives—“0,” “Sxy” (“y is the suc-
cessor of x”), and “NNx” (“x is a natural number”):

(11) “0” for “Nx(x π x),”

for then (7) yields NxFx = 0 ∫ ÿ($x)Fx.

Intuitively, n + 1 = Nx(x = 0 ⁄ · · · ⁄ x = n); this result
will be reached if we define “Sxy” as follows:

(12)“Sxy” for “($F){y = NwFw & ($z)[Fz & Nw(Fw & w π
z) = x]}”.

Intuitively, the number of F’s is one more than the num-
ber of G’s if there is an F such that the number of the rest
of the F’s is precisely NxGx. Definition (12) implies that in
this case S(NxGx,NxFx).

The remaining primitive is defined by an ingenious
device (already present in Frege’s Begriffsschrift), which
yields mathematical induction: we want to define “NNx”
so that something true of 0 and of the successor of any-
thing of which it is true is true of every natural number—
that is,

(13) F0 & (x)(y)(Fx & Sxy. � Fy) . � (x)NNx � Fx).

But this will be immediate if we define “x is a natural
number” as “x falls under every concept F which 0 falls
under and which is such that any successor of whatever
falls under it also falls under it”—that is,

(14)“NNx” for “(F){F0 & (x)(y)(Fx & Sxy. � Fy) . �

Fx}”.

To prove the other axioms: (1) is immediate from (14);
that S is one-to-one and that 0 is not the successor of any-
thing follow from (12) together with (7).

2.7. DIFFICULTIES IN LOGICISM. The first difficulty
with Frege’s construction is certainly the use Frege made
of the notion of extension. We have alluded to difficulties
with the ideas of set theory; they affected Frege’s system
through Russell’s deduction in 1901 of a contradiction
from (6). (For Russell’s initial exchange of letters with
Frege, see van Heijenoort, 1967). We shall discuss Rus-
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sell’s paradox and other paradoxes and the difficulties of
the concept of class below.

Nonetheless, it turns out that a reasonably secure sys-
tem of set theory can be developed in any one of a num-
ber of ways that are more than sufficient for the
definition of Peano’s primitives and proof of his axioms.
In fact, no part of the axiomatic apparatus of a system of
set theory which gives rise to any doubts as to consistency
is really necessary for this reduction; we can say that if the
development in set theory of a branch of mathematics
necessarily involves the stronger and more problematic
parts of set theory, this is due to the nature of the branch
of mathematics itself, not the reduction to set theory.

This success is not without loss for the development
of arithmetic: it seems that in the more natural set-theo-
retical systems (the theory of types, Zermelo’s set theory)
no definition of “NxFx” can be given with the same
appearance of naturalness as in (10). The consequences
of Russell’s theory of types are more serious: The num-
bers must be duplicated at each type. What one usually
ends up doing is identifying the numbers in a somewhat
arbitrary way with a sequence of sets of the required
order type.

Given that all this has been done, in what sense is the
enterprise a reduction of arithmetic to set theory, and in
what sense is it a reduction to logic? To take up the last
question first, obviously the construction does not reduce
arithmetic to logic unless the principles of the set theory
involved can count as logical principles. The notion of
class is not very far removed from concepts which played
a role in traditional logic; from that point of view it is not
at all evident why the first-order predicate calculus, which
is already a considerable extension of the traditional for-
mal apparatus, should count as logic and the theory of
classes should not.

One difference is that whereas a valid formula of
first-order logic will yield a truth if the quantifiers are
interpreted to range over any domain of objects whatso-
ever, and without regard to its cardinal number in partic-
ular, set theory involves existence assumptions, so the
domain over which the quantifiers range must be large
enough to contain representatives for the sets whose exis-
tence is implied by the formula in question. In Frege’s
procedure these assumptions were embodied in the
admission as a term of an abstract “ xFx” for any predi-
cate “F,” and simple nonparadoxical instances of (6)
already require that Frege’s universe contain infinitely
many objects.

Frege, of course, regarded (6) as a logical principle, a
view which was fairly well refuted by its inconsistency. It
would be much more reasonable to regard set theory as
logic if its existence assumptions all followed from a sin-
gle general principle, such as (6). But the analysis of the
foundations of set theory stimulated by the paradoxes
points to the opposite conclusion: Any very definite sys-
tem of existential postulates will prove incomplete in the
sense that it is always possible to construct further exis-
tential postulates that are stronger (in the sense of first-
order, or even second-order, logic). Moreover, these
postulates assume a character not unlike principles of
construction, so it is at least as natural to consider them
hypothetical and analogical extensions of “constructions
in pure intuition” as it is to consider them principles of
logic. At any rate, if logic consists of the necessary princi-
ples of all coherent reasoning, then it seems evident that
the stronger principles of set theory do not have this
character; it is far from certain even that the weaker ones
have it (perhaps even that all of first-order logic does).
This being so, a reduction of arithmetic to set theory does
little to increase the security and clarity of the founda-
tions of arithmetic.

2.8. KANT’S VIEW. One of the purposes that Frege, Rus-
sell, and many later proponents had in mind in seeking to
reduce arithmetic to logic was to show that no appeal to
sensible intuition was necessary in arithmetic, as had
been claimed by such empiricists as John Stuart Mill and
by Kant in his theory of a priori intuition. Let us consider
whether this purpose has been accomplished. Since
Kant’s view constitutes an independent effort to explain
the a priori character of arithmetic, and since it is part of
an extremely influential general philosophy, it deserves
special mention.

Kant began by insisting that mathematical judg-
ments (at least the most characteristic ones) were syn-
thetic, rather than analytic. We shall not enter into the
question of just what he meant by that. Provided that one
remembers that the scope of logic was much narrower for
Kant than it is for us, it is plausible to suppose that his
claim that mathematical judgments are synthetic implies
that the propositions of a mathematical theory cannot be
deduced from logical laws and definitions. The case of
Kant’s principal example, the geometry of space, seems
clear, given, for instance, the fact that there are consistent
geometrical theories which differ with respect to certain
fundamental principles, such as the parallel postulate.
(Even here, however, one might claim that the difference
in principles corresponds to a difference in the meanings
of the primitive terms. In application to real space this
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comes down to the question of “conventionalism” in
geometry. W. V. Quine is probably right in holding that
one cannot, in general, decide the question whether such
a difference is merely a difference of meaning.)

The case of arithmetic presents a certain similarity if
we deny that set theory is logic. The proofs in the set-
theoretic development even of such elementary arith-
metical laws as “2 + 2 = 4” depend on existential axioms
of these theories. However, this does not mean that we
can come as close to clearly conceiving the falsity of these
principles as we can for the principles of geometry.
Although we can easily enough set up a domain in which
the existence postulates will fail, it is not clear that this
counts as conceiving that the numbers 0, 1, 2, · · · should
not exist.

Kant went on to maintain that the evidence of both
the principles of geometry and those of arithmetic rested
on the “form of our sensible intuition.” In particular, he
said that mathematical demonstrations proceeded by
“construction of concepts in pure intuition,” and thus
they appealed to the form of sensible intuition. Mathe-
matical proof, according to Kant, required the presenta-
tion of instances of certain concepts. These instances
would not function exactly as particulars, for one would
not be entitled to assert anything concerning them which
did not follow from the general concept. Nonetheless,
conclusions could be drawn which were synthetic,
because the construction of the instance would involve
not merely the pure concept as of an abstract structure
but also its “schematism” in terms of the general structure
of our manner of representing objects to ourselves.

Thus, geometric figures would obey the axioms of
geometry even though these axioms were not provable by
analysis of the concepts. At the same time, the construc-
tions would serve to verify any existence assumptions
involved. (Indeed, instead of existential axioms Kant
spoke of postulates asserting the possibility of certain
constructions.)

In the case of arithmetic Kant argued that in order to
verify “7 + 5 = 12” one must again consider an instance,
this time in the form of a set of five objects, and add each
one in succession to a given set of seven. It seems that
although the five objects may be quite arbitrary, even
abstract, they will, if not themselves present to percep-
tion, be represented by symbols which are present and
which exhibit the same structure. In fact, we find this
structure even in the symbolic operations involved in the
formal proofs of “7 + 5 = 12” either within a set theory or
directly from axioms for elementary number theory—or
even in the proof of the formula of first-order logic

(15)($x)7Fx & ($x)5Gx & (x)ÿ(Fx . Gx) . � ($x)12(Fx ⁄
Gx),

which is the key to the proof of “7 + 5 = 12” in Frege’s
construction. We think of “($x)n(Fx)” expanded as fol-
lows:

“($x)0Fx” for “ÿ($x)Fx”.

“($x)n+1Fx” for “($x)[Fx & ($y)n(Fy & y π x)]”.

The arguments for the claim that intuition plays an
essential role in mathematics are inevitably subjectivist to
a degree, in that they pass from a direct semantical con-
sideration of the statements and of what is required for
their truth to a more pragmatic consideration of the
operations involved in understanding and verifying them
(and perhaps even “using” them, in a broad sense) and to
a metalinguistic reflection on formulae and proofs as
configurations of symbols. Gottfried Wilhelm Leibniz
had already emphasized the essential role of calculation
with symbols in mathematics, and to Kant this role
became an argument for the dependence of mathematics
on sensible intuition.

We can see why the arguments must have this sub-
jectivist character if we notice the complete abstractness
of both set theory and arithmetic, which talk of objects in
general in terms of logical operations (propositional
combination, quantification) which are equally general.
Even the specifically mathematical objects (sets and num-
bers) are subjected by the theory only to certain struc-
tural, relational conditions, so that they are not, as it were,
individually identified by the theory. The content thus
does not suggest any direct sensory verification; indeed, it
seems that any proposition which is susceptible of such
verification must contain some particular reference to
space or time or to objects or properties which by nature
occur only in space and time. Although it is Frege’s con-
struction and the development of set-theoretic mathe-
matics which make this fact clear, Kant apparently was
aware of it in the case of arithmetic, which he related
closely to the pure categories and therefore to logic.

Nevertheless, it does not seem, at least in the light of
philosophical and mathematical experience, that we can
directly verify these propositions, or even understand
them, independently of the senses. Determining the pre-
cise nature of the dependence of the operations of the
mind in general on the senses is one of the central diffi-
culties of all philosophies. But it is hard to maintain that
we understand mathematical structures, or even the gen-
eral notion of object which underlies them, without at
least starting with a sensible representation, so that con-
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crete explanations make use both of embodiments of the
structures by perceptible objects and of reflection on
symbolism. For instance, explanations of the notion of
class can either make use of an appeal to language, as
Frege’s explanation does, or begin with the notion of a
group of perceptible objects. (Indeed, it seems that even
in the second case an appeal to language is sooner or later
indispensable.)

Perhaps more decisive than these rather vague con-
siderations is the fact that we cannot carry on any even
fairly elaborate reasoning in mathematics without, as it
were, placing ourselves at the mercy of a symbolic repre-
sentation. Prior to the construction of a proof or calcula-
tion we do not know the answer to any substantial
mathematical question. That the proof can be con-
structed, that the calculation turns out as it does, is, as it
were, brute fact without which one cannot see any reason
for the mathematical state of affairs being what it is. In
Über die Deutlichkeit der Grundsätze der natürlichen The-
ologie und der Moral, Kant gave this as his principal rea-
son for asserting that mathematics proceeds by
representing concepts in intuition, and in the Critique of
Pure Reason the idea is again suggested in the discussion
of “7 + 5 = 12” and the remarks about “symbolic con-
struction” in algebra.

One might argue that the existence of a natural num-
ber n is verified by actually constructing a sequence of
numerals up to that point. Such a construction provides
a representation for the numbers up to n. It is noteworthy
that either it or a mental equivalent is necessary for a full
and explicit understanding of the concept of the number
n. This gives some plausibility to the view that the possi-
bility of such a representation rests on the “form of our
sensible intuition,” since everything belonging to the 
content of the particular realization is nonessential. It 
is perhaps permissible to speak, as Kant did, of “pure
intuition,” because we are able to take the symbols as rep-
resenting or embodying an abstract order. This concep-
tion could be extended to the intuitive verification of
elementary propositions of the arithmetic of small num-
bers. If these propositions really are evident in their full
generality, and hence are necessary, then this conception
gives some insight into the nature of this evidence.

However, the above description already ceases to
apply when we pass to the construction, by a general rule,
of the sequence of natural numbers and therefore when
we consider large numbers, which we must describe in
terms of general rules. Besides the “factor of abstraction”
signalized in our being able to use sensory representa-
tions in thinking about the abstract structures they

embody, there is also a factor of higher generality and the
accompanying possibility of iteration, so that the
sequence of natural numbers extends far beyond those
represented by numerals it is possible actually to con-
struct. Here the sense of the notion of “form of intuition”
is less clear. Kant’s idea, however, must surely be that the
larger numbers are conceived only as an extension of the
structures of our actual experience. The fact that the
forms in question are, according to Kant, those of space
and time means that the abstract extension of the math-
ematical forms embodied in our experience parallels an
extension of the objective world beyond what we actually
perceive.

Kant connected arithmetic with time as the form of
our inner intuition, although he did not intend by this to
deny that there is no direct reference to time in arith-
metic. The claim apparently was that to a fully explicit
awareness of number goes the successive apprehension of
the stages in its construction, so that the structure
involved is also represented by a sequence of moments of
time. Time thus provides a realization for any number
that can be realized in experience at all. Although this
view is plausible enough, it does not seem strictly neces-
sary to preserve the connection with time in the necessary
extrapolation beyond actual experience. However, think-
ing of mathematical construction as a process in time is a
useful picture for interpreting problems of constructivity
(discussed below).

Kant’s view enables us to obtain a more accurate pic-
ture of the role of intuition in mathematics, but, at least
as developed above, it is not really satisfying, because it
takes more or less as a fact our ability to place our per-
ceptions in a mathematically defined structure and to see
truths about this structure by using perceptible objects to
symbolize it. The great attraction of Kantianism comes
from the fact that other views seem unable to do any bet-
ter: Frege, for example, carried the epistemological analy-
sis less far than Kant in spite of his enormously more
refined logical technique.

2.9. CONVENTIONALISM. Attempts to avoid dogma-
tism completely while still affirming the existence of a
priori knowledge in mathematics have been made on the
basis of conventionalism, the characteristic logical posi-
tivist view of a priori knowledge. This view in effect
rejects the question of evidence in mathematics: Mathe-
matical statements do not need evidence because they are
true by fiat, by virtue of the conventions according to
which we specify the meanings of the words occurring in
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mathematics. Mathematics is therefore “without factual
content” or even “empty.”

Before we proceed to discuss this view we should dis-
tinguish it from two others which are associated with log-
ical positivism, the view that mathematical statements are
true by virtue of the meanings of the words in them and
the view that they are analytic. The doctrine that mathe-
matical statements are true by virtue of the meaning of
the words they contain is somewhat vague and is likely to
reduce to the doctrine that they are analytic, to conven-
tionalism, or to something compatible with Kantianism
or even with some form of direct realism. If there are
objective relations of meaning which hold not merely by
fiat, then there is as much need in this view for an account
of the evidence of our knowledge of them as there is for
the evidence of mathematics itself.

The view that mathematics is analytic has generally
been associated on one side with logicism and on the
other with conventionalism. The definitions of “analytic”
that have been given have been such that logical truths
were automatically analytic. If the thesis that mathemat-
ics is analytic was to say more than the thesis of logicism,
the definitions had to be taken as explicating a concept
which had a more direct epistemological significance,
usually truth by virtue of meanings or truth by conven-
tion. (Once this has been done, the connection with logi-
cism seems less important, in spite of the importance that
the logical positivists attributed to it. Thus, one may
explain the claim that the axioms of set theory are ana-
lytic by saying that they are “meaning postulates” in Car-
nap’s sense, but one could argue equally well that the
axioms of number theory are meaning postulates. Logi-
cism was important to the logical positivists for other rea-
sons: the reduction served as a methodological paradigm;
it served the “unity of science.”)

That the propositions of mathematics should be true
by convention in a strong sense, that one should actually
have set up conventions which determine that they
should be true, seems possible only for “rational recon-
structions” of mathematics by explicit construction of an
axiom system and identification of the system with math-
ematics. If such a procedure could be carried out, there
would still be room for discussion of the sense in which it
showed that the mathematics practiced by those who are
not interested in foundations is true by convention.

The usual conventionalist position appeals to rules
specifying that certain propositions are to be true by con-
vention or, more often, to rules of another sort (such as
semantical rules of an interpreted formal system), from
which it can be deduced that certain statements are true,

the nature of the premises being such that they can be
called conventions governing the use of expressions. (For
example, the truth of any statement that is a substitution
instance of a theorem of the classical propositional calcu-
lus can be deduced from the information contained in the
truth tables for the propositional connectives. Then if the
truth tables are regarded as semantical rules specifying
the meanings of the connectives, then the theorems of
classical propositional logic thus become true by virtue of
these rules.)

In the simplest case—that of simply laying down, by
rules or in individual instances, that certain sentences are
to be taken as expressing true statements—something
more seems to be required to justify this procedure as
attributing “truth” to “statements.” No serious philoso-
pher, however, has been content to leave the matter at
that.

Nonetheless, the procedure of specifying by rules
runs into a difficulty essentially independent of the form
of the rules and the manner in which they are interpreted.
This difficulty, which was pointed out forcefully by Quine
early in his career (in “Truth by Convention”) and is per-
haps implicit in remarks by Frege, is that the passage from
the general statements which are the actual explicit con-
ventions to the truth by convention of specific statements
involves inference. So something essentially logical is not,
on the face of it, reduced to convention by the analysis.
The inferences will assume properties of generality (for
example, the properties of the universal quantifiers) and
of the conditional, since the rules will in all probability be
of the form of conditionals—for instance, they may say
that if a statement satisfies certain conditions, then it is
true by convention. In the example that we gave, one
needs in addition the laws of contradiction and of
excluded middle: Application of the truth tables already
supposes that each statement has one, and only one, of
the two truth-values.

Quine showed that the attempt to regard the rules by
which this inference proceeds as themselves valid by con-
vention leads to an infinite regress. For example, suppose
a rule is modus ponens: from “p” and “p � q” infer “q”.
This could be stated as the convention:

(16) If A and C are true and C is the result of sub-
stituting A for “p” and B for “q” in “p � q”, then B is to

be true.

Now, suppose that for some A' and B' we have proved
that A' and C' are true by convention, where

(17) C' is the result of substituting A' for “p” and B' 
for “q” in “p � q”.
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Then we have also

(18) A' is true;

(19) A' � B' is true.

Therefore, by (16) and modus ponens, B' is true. However,
in order to represent this inference as proceeding accord-
ing to the convention, it is necessary to make another
application of modus ponens, and so on.

The above argument would not prevent this form of
conventionalism from being applied to further parts of
mathematics, particularly to existential axioms. In view of
the equivalences between derivability statements in logic
and elementary propositions in number theory, as well as
the above-mentioned element of brute fact in the exis-
tence of a derivation, it is not likely that such an approach
will work for elementary number theory. But with the
stronger axiom systems for set theory the view is on
somewhat firmer ground, in that such axioms are often
not justified by appeal to direct evidence and “pragmatic”
criteria have played a role in the selection of axioms.

Nonetheless, the procedure also has much in com-
mon with the setting up of a hypothetical theory in sci-
ence, and, indeed, as Alfred North Whitehead and Russell
already emphasized, the axioms are subject to a sort of
checking by their consequences, since some propositions
deducible from them are decidable by more elementary
and evident mathematical means. It is not evident that if
a system of axioms is replaced by another because its con-
sequences come into conflict with intuitive mathematics,
the meaning of “set” has changed and the original axioms
can be interpreted according to a previous meaning so as
to remain true. Moreover, set theory proceeds on the
assumption that the truth-value of statements is determi-
nate in many cases where it is not determined by the
axioms—that is, by the conventions.

Quine, in fact, now argues, apparently even in the
case of elementary logic, that there is no firm ground for
distinguishing between making such principles true by
convention and adopting them as hypotheses (“Carnap
and Logical Truth”). This is as much an extension of con-
ventionalism to the whole of science as a rejection of it in
application to mathematics.

2.9.1. Wittgenstein’s view. At this point we must con-
sider the possibility that a priori truths, even the elemen-
tary ones, are thought of as true by convention, not in the
sense that they may be made so by an explicit convention
actually set up but in the sense that the conventions are,
as it were, implicit in our practice with the logical and
mathematical vocabulary. It might still be argued that the

principles of mathematics are not in that way sufficiently
distinguished from the principles of natural science or
from other rather deep or fundamental principles that we
firmly accept. But this objection could be met by a more
detailed descriptive analysis of how logical and mathe-
matical words are used.

However, this type of conventionalism must be care-
ful not to slip into the situation of the more explicit con-
ventionalism of requiring a necessary connection
between general intentions and their application in par-
ticular statements which is not itself accounted for by the
conventions. It appears that the only philosopher who has
really faced these challenges has been Ludwig Wittgen-
stein, in his later period. In connection with Wittgenstein
it would probably be better to speak of “agreement” than
convention, since the reference to explicit conventions or
to “decisions” seems metaphorical, as a picture which is
contrasted with that against which he is arguing rather
than as a fundamental theoretical concept. It is agreement
in our actions—e.g., what we say follows from what—
that is essential. We should also be cautious in attributing
to Wittgenstein any explanatory theory of logical and
mathematical knowledge, in view of his disclaimers of
presenting a theory.

Even with these qualifications Wittgenstein’s view
seems highly paradoxical, for in order to avoid the above-
mentioned pitfall the analysis in terms of agreement must
extend even to the connection between general rules and
their instances. This seems to be the point of the famous
discussion of following a rule in Wittgenstein’s Philosoph-
ical Investigations. What ultimately determines what is
intended in the statement of a rule are facts of the type of
what is actually accepted in the course of time as falling
under it.

Wittgenstein (I, 185) gave the example of instructing
someone in writing down the terms of the sequence of
natural numbers 0, 2, 4, · · ·, 2n, · · ·. At the start the
instructor does not actively think that when the time
comes the pupil is to write 1,000, 1,002, 1,004, · · ·, rather
than 1,000, 1,004, 1,008, · · ·. Wittgenstein regarded it as
conceivable that the pupil might do the second on the
basis of a misunderstanding which we just could not clear
up. Moreover, it is, as it were, just a fact of natural history
that normally, in such a case, we accept the first and reject
the second—indeed, continue in that way ourselves. It
appears, further, that the same issue can arise for steps in
the sequence which have been written before, since the
recognition of symbols as tokens of an already under-
stood type is itself an application of a rule (see I, 214).
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Wittgenstein’s criticism seems directed particularly
against certain psychological ideas associated with pla-
tonism and Kantianism. The manner in which the steps
of writing numerals are determined by the rule cannot be
explained by appealing to one’s understanding of the
relations of abstract entities expressed in the rule or even
to the intentions of the instructor. According to Wittgen-
stein the criterion of how the pupil does understand the
rule lies in the steps which he in fact takes. And what
makes them right or wrong is their agreement or dis-
agreement with what we do.

The steps are indeed determined by the rule, in the
sense that at each stage there is only one number we
accept as correct, and the force of social custom directs us
to expand the series in the way we do. But this does not
mean that Wittgenstein considered his appeals to custom
and training as constituting a fully satisfactory explana-
tion of either the agreement that exists or the fact that we
feel “compelled” by the rule, for it is because we are made
as we are that we react to custom and training as we do.

The paradoxical nature of Wittgenstein’s position
can perhaps be brought out by considering the case of a
complex mathematical proof which contains steps which
no one has thought of before. The proof may lead to a
quite unexpected conclusion. Yet each step is recognized
by every trained person as necessary, and their combina-
tion to form the proof is entirely convincing. (This is, of
course, not inevitably the case: proofs as published can be
obscure or doubtful and can rest on principles about
which there are difficulties.) In spite of the fact that it is
in principle possible for an irresolvable disagreement to
arise at each point, this does not happen: Irresolvable dis-
putes among mathematicians are only about fundamen-
tal principles and about taste. Nonetheless, Wittgenstein,
in Remarks on the Foundations of Mathematics, used the
metaphor of decision in speaking of our acceptance of
the proof and spoke of the proof as providing a new cri-
terion for certain concepts; his terminology suggests
change of meaning.

The vast extent of the agreement on which mathe-
matics rests seems to have astonished Wittgenstein;
indeed, it is hard to understand, on his view, how such
agreement is possible and why contradictions arise so sel-
dom. We may be faced here with natural facts, but they
are facts which show an extremely regular pattern.

Wittgenstein devoted a good deal of attention in the
Remarks to discussions of calculation and proof, their
relation to mathematical truth, and the ways in which
they resemble and differ from experiment. In a number of
examples he revealed an outlook which resembles Kant’s

in seeing a construction either of figures or of arrange-
ments of formulae or propositions as essential to a proof.
To the problem concerning how such a singular con-
struction can serve to establish a universal and necessary
proposition Wittgenstein suggested a quite different
answer: In accepting the proof we accept the construction
as a paradigm for the application of a new concept, so
that, in particular, we have new criteria for certain types
of judgments. (For example, if we have determined by
calculation that 25 ¥ 25 = 625, then a verification that
there are 25 ¥ 25 objects of a certain kind is also accepted
as verifying that there are 625.) The same question arises
in connection with the possibility of conflict in these cri-
teria as arose in connection with agreement.

We shall close at this point our discussion of the a
priori character of mathematics and the attempts to jus-
tify and explain it. In the sense that the concepts of math-
ematics are too general and abstract to refer to anything
particular in experience, their a priori character is evi-
dent, at any rate after a certain amount of logical analysis
of mathematical concepts. The a priori evidence of math-
ematics, on the other hand, is perhaps not raised, by our
discussion, above the level of a somewhat vague convic-
tion. In the case of the more powerful forms of set theory
one is probably forced to admit that the evidence is less
than certainty and therefore to admit that there is an
analogy between the principles involved and the hypothe-
ses of a scientific theory. In the case of arithmetic and ele-
mentary logic, however, this conviction can withstand the
objections that might be posed, but in view of the diffi-
culties we have discussed in relation to various accounts,
it seems still not to have been analyzed adequately.

§3. platonism and

constructivism

The discussion in the preceding section suggests that the
problem of evidence in mathematics will appear to differ
according to the part of mathematics being emphasized.
The form which discussion of these differences has
tended to take is a distinction between two broad
methodological attitudes in mathematics, which we shall
call platonism and constructivism. This section will be
devoted to a discussion of these attitudes.

3.1. PLATONISM. We begin with platonism because it is
the dominant attitude in the practice of modern mathe-
maticians, although upon reflection they often disguise
this attitude by taking a formalist position. Platonism is
the methodological position that goes with philosophical
realism regarding the objects mathematics deals with.
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Mathematical objects are treated not only as if their exis-
tence is independent of cognitive operations, which is
perhaps evident, but also as if the facts concerning them
did not involve a relation to the mind or depend in any
way on the possibilities of verification, concrete or “in
principle.”

This is taken to mean that certain totalities of math-
ematical objects are well defined, in the sense that propo-
sitions defined by quantification over them have definite
truth-values. Thus, there is a direct connection between
platonism and the law of excluded middle, which gives
rise to some of platonism’s differences with construc-
tivism.

It is clear that there is a connection between platon-
ism and set theory. Various degrees of platonism can be
described according to what totalities they admit and
whether they treat these totalities as themselves mathe-
matical objects. These degrees can be expressed by the
acceptance of set-theoretic existence axioms of differing
degrees of strength.

The most elementary kind of platonism is that which
accepts the totality of natural numbers—i.e., that which
applies the law of excluded middle to propositions
involving quantification over all natural numbers. Quite
elementary propositions in analysis already depend on
this law, such as that every sequence of rational numbers
either tends to the limit 0 or does not, which is the basis
for the assertion that any real number is either equal to 0
or not. We shall see that not even this assertion is immune
to constructivist criticism.

What is nowadays called classical analysis advances a
step further and accepts the totality of the points of the
continuum or, equivalently, the totality of subsets of the
natural numbers. The equivalence between these totali-
ties and their importance in mathematics were brought
out by the rigorous development and “arithmetization” of
analysis in the nineteenth century. We recall that the the-
ories of (positive and negative) integers and rational
numbers can be developed from the theory of natural
numbers by means of the notion of ordered pair alone
and that this notion can in turn be represented in num-
ber theory. A general theory of real numbers requires
general conceptions of a set or sequence of natural num-
bers to which those of a set or sequence of rational num-
bers can be reduced.

Following Paul Bernays (“Sur le platonisme dans les
mathématiques”) we can regard the totality of sets of nat-
ural numbers on the analogy of the totality of subsets of
a finite set. Given, say, the numbers 1, · · ·, n, each set is

fixed by n independent determinations of whether a
given number belongs to it or not, and there are 2n possi-
ble ways of determining this. An “arbitrary” subset of the
natural numbers is fixed by an infinity of independent
determinations fixing for each natural number whether it
belongs to the subset or not. Needless to say, this proce-
dure cannot be carried out by a finite intelligence. It
envisages the possibility of sets which are not the exten-
sions of any predicates expressed in a language.

3.1.1. Impredicative definitions. The strength of the
assumption of the totality of arbitrary subsets of the nat-
ural numbers becomes clear if we observe that it justifies
impredicative definitions, definitions of sets or functions
in terms of totalities to which they themselves belong. A
predicate of natural numbers involving quantification
over all sets of natural numbers will have a well-defined
extension, which will be one of the sets in the range of the
quantifier.

Such definitions have been criticized as circular (for
example, by Henri Poincaré), but they do not seem so if
we understand the sets as existing independently of any
procedure or linguistic configuration which defines
them, for then the definition picks out an object from a
preexisting totality. The resistance that impredicative def-
initions met with arose partly because their acceptance
clashes with the expectation that every set should be the
extension of a predicate, or at least of a concept of the
human mind.

Given any definite (formalized) notation, we can by
Cantor’s diagonal method define a set of natural numbers
which is not the extension of a predicate in the notation.
Thus, no procedure of generating such predicates by con-
tinually expanding one’s notation can possibly exhaust
the totality. And the idea that every set is the extension of
a predicate has little sense if it is assumed that in advance
of the specification of notations there is a totality of pos-
sible predicates which can be arrived at by some generat-
ing procedure.

If the statements of classical analysis are interpreted
naively, then quite elementary theorems, such as that
every bounded set of real numbers has a least upper
bound, require impredicative definitions. Nonetheless, in
Das Kontinuum, Hermann Weyl proposed to construct
analysis on the basis of mere platonism with respect to
the natural numbers. He proposed an interpretation
under which the least upper bound theorem is true. Later
interpretations have preserved more of the statements of
classical analysis than Weyl’s, and it is an involved techni-
cal question how much of it can be given a natural pred-
icative interpretation (see below).

MATHEMATICS, FOUNDATIONS OF

ENCYCLOPEDIA OF PHILOSOPHY
36 • 2 n d  e d i t i o n

eophil_M2  10/25/05  8:22 AM  Page 36



3.1.2. Set theory and the paradoxes. Set theory as
developed by Cantor and as embodied in the present
standard systems involves a higher degree, or variety of
degrees, of platonism. The axiom system of Zermelo and
its enlargement by Fraenkel (which is called the Zermelo-
Fraenkel system), for example, allows the iteration of the
process of forming the set of all subsets of a given set and
the collection into a set of what has been obtained by iter-
ated application of this or some other generating proce-
dure. This latter allows the iteration into the transfinite. If
we assume we have transfinite ordinal numbers, then we
can generate a transfinite succession of “universes” U as
follows: Let -(A) be the set of all subsets of the set A.

U0 = a certain class, perhaps empty, of “individuals.”

Ua + 1 = -(Ua) » Ua.

Ua = the union of all Ub , for b < a, if a is a limit ordinal.

Then for certain ordinals a the Ua will form models for
the different systems of set theory (Uw + w for Zermelo’s
set theory, without Fraenkel’s axiom of replacement).

The paradoxes of set theory imply that we must
accept some limitations on forming totalities and on
regarding them in turn as mathematical objects—that is,
as sets. If, for example, the totality of sets is a well-defined
set, then it seems that it will be reasonable to ask of each
set x whether it is a member of itself (x � x) or not and
to form x(x � x), the set of all sets which are not mem-
bers of themselves. This will satisfy

(y)[y � x(x � x) . ∫ y � y],

which implies

x(x � x) � x(x � x) . ∫ . x(x � x) � x(x � x).

a contradiction. This is Russell’s paradox, the most shock-
ing, because the most elementary, of the paradoxes of set
theory.

On the same basis one can ask for the cardinal num-
ber of the set of all sets, which we shall call S. Then -(S),
the set of all subsets of S, will have a cardinal number no
greater than that of S, because -(S) � S. But by Cantor’s
theorem the cardinal number of -(S) is properly greater
than that of S (Cantor’s paradox, 1895).

If the totality O of ordinals is a set, then, since it is
well-ordered, there will be an ordinal number g that rep-
resents its order type. But then O will be isomorphic to
the set of ordinals less than g—that is, to a proper initial
segment of itself. This is impossible: g must be the great-

est ordinal, but there is no obstacle to forming g + 1
(Burali-Forti’s paradox, 1897).

These paradoxes do not imply that we have to stop or
otherwise limit the process, described above, of generat-
ing larger and larger universes. On the contrary, we must
never regard the process as having given us “all” sets. The
totality of sets, and hence the totality of ordinal numbers,
cannot be the terminus of a well-defined generating
process, for if it were we could take all of what we had
generated so far as a set and continue to generate still
larger universes.

Thus, suppose we consider the arguments for the
paradoxes applied to a particular Ua, as if it were the uni-
verse of all sets. The construction precludes x � x, so x(x
� x) is just Ua itself. But Ua � Ua and hence is disquali-
fied as a set. The same consideration applies to Cantor’s
paradox. Burali-Forti’s paradox is avoided because the
passage from Ua to Ua + 1 always introduces well-orderings
of higher order types. Thus, for no a can Ua contain “all”
ordinals, no matter how the ordinals are construed as
sets. (A very natural way of construing them would be
such that a occurs in Ua + 1 but not in Ub for any b ≤ a. But
then only for certain ordinals will Ua contain an ordinal
for each well-ordered set in Ua.)

For some time after they were first discovered, the
paradoxes were viewed with great alarm by many who
were concerned with the foundations of mathematics. In
retrospect this seems to have been because set theory was
still quite unfamiliar; in particular, the distinction
between the customary reasonings of set theory and those
that led to the paradoxes was not very clear. The opposi-
tion that set theory had aroused had not yet died down.
However, the marginal character of the paradoxes has
seemed more and more evident with time; the systems
which were soon devised to cope with the paradoxes
(Russell’s theory of types and Zermelo’s set theory, both
published in 1908) have proved satisfactory in that they
are based on a reasonably clear intuitive idea, and no one
today regards it as a serious possibility that they (or the
stronger Zermelo-Fraenkel system) will turn out to be
inconsistent. This does not mean that the security and
clarity of set theory are absolute; in the sequel some of the
difficulties will become apparent.

The above-described sequence of universes uses gen-
eral conceptions of set and ordinal but applies the char-
acteristic move of platonism only one step at a time. It
renounces what Bernays calls “absolute platonism,” the
assumption of a totality of all mathematical objects
which can be treated as itself a customary mathematical
object—for example, a set. Such a conception seems def-
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initely destroyed by the paradoxes. The totality of sets can
be compared with Kant’s “Ideas of Reason”: it is an
“unconditioned” or absolute totality which just for that
reason cannot be adequately conceived by the human
mind, since the object of a normal conception can always
be incorporated in a more inclusive totality. From 
this point of view there is an analogy between the set-
theoretic paradoxes and Kant’s mathematical antinomies.

If we assume that every set will appear in one of the
Ua, we have a conception which is adequate for all of
modern mathematics except, perhaps, the recent theory
of categories. The conception is by nature imprecise:
there are limitations on our ability to circumscribe both
what goes into the power set of a given set and what ordi-
nals there are. It is perhaps unreasonable to apply classi-
cal logic to propositions involving quantification over all
sets, since such an application seems to presuppose that it
is objectively determined what sets (and a fortiori, on this
conception, what ordinals) there are. Nonetheless, this
additional idealization does not seem to have caused any
actual difficulties.

This way of conceiving sets combines two of Russell’s
early ideas for resolving the paradoxes—the theory of
types and the theory of “limitation of size.” What are
rejected as sets are the most inclusive totalities, such as
the entire universe. (Our talking of “totalities” while
rejecting them as sets is not incompatible with our con-
ception; as John von Neumann observed, all that is nec-
essary is to prohibit them from belonging to further
classes. Von Neumann’s observation was the basis for
some new set theories, the principal one being that of
Bernays and Gödel.) Moreover, the sets are arranged in a
transfinite hierarchy: One can assign to each set an ordi-
nal, its type or, as it is now called, rank, which will be the
least ordinal greater than the ranks of its members. We
have thus a transfinite extension of the cumulative theory
of types. But we have dropped the more radical idea from
which Russell proceeded: that each variable of a system of
set theory should range over objects of a specified type,
and that “x � y” is meaningless unless the range of “y” is
of a type one higher than that of “x,” so that, in particu-
lar, “x � x” is meaningless.

3.1.3. Predicativism. In the first twenty-five years or
so after the discovery of the paradoxes a number of more
radical proposals for their elimination were presented.
These generally amounted to some further attenuation of
platonism. We shall first consider the program of elimi-
nating impredicative definitions, which amounts to a
restriction of platonism to the natural numbers. This was
the outcome of the general views of Poincaré and Russell.

Russell’s original theory, the ramified theory of types,
which formed the basis of Principia Mathematica, was
directed to the elimination of impredicative definitions,
which he held to involve a “vicious circle” and to be
responsible for the paradoxes. The effect was, however,
nullified by his axiom of reducibility.

A greatly simplified version of the ramified theory is
as follows: One has variables, each of which is assigned a
natural number as its level, and the predicates of identity
and membership. The logic is the usual quantification
theory, except that in the rules for quantifiers allowance
must be made for levels. Since the levels can be cumula-
tive, we could have for the universal quantifiers the fol-
lowing:

(20) (xi)Fxi � Fyj if j ≤ i;

(21) From “p � Fyi” infer “p � (xi)Fxi,” where for 
“p” only something not containing free “yi” can be sub-

stituted.

The axioms are those of identity, extensionality, and
the following schema of class existence:

(22) If “F” represents a predicate which does not 
contain free xi + 1, any free variables of level > i + 1, or

any bound variables of level > i,

($xi + 1)(yi)(yi � xi + 1 ∫ Fyi).

One effect of this axiom is that a predicate involving
quantification over objects of level n need not have an
extension of level n. Therefore, the axiom does not assert
the existence of any impredicative classes; in fact, it is
compatible with the idea that classes are constructed by
the construction of predicates of which they are the
extensions.

Russell’s actual theory combined that of a hierarchy
of levels, applied in this case to “propositional functions,”
the objects over which the variables of a higher-order
logic were to range, with the “no class” theory, the intro-
duction of locutions involving classes by contextual defi-
nition in terms of propositional functions. In order to
derive classical mathematics, however, he wanted to avoid
dividing the classes into levels. This he did by postulating
the axiom of reducibility, which asserts that for every
propositional function there is a function of the lowest
possible level (compatible with the nature of its argu-
ments) extensionally equivalent to it. Russell admitted
that this axiom was equivalent to the existence of classes,
and he has never been satisfied with it. In effect, it yields
even impredicatively defined classes and destroys the
effect of the hierarchy of levels.
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A formalization of mathematics on the basis of the
ramified theory is the most natural formalization if a pla-
tonist theory of classes is repudiated but classical logic
admitted. The construction of the natural numbers leads
to the difficulty that the class quantifier needed to reduce
induction to an explicit definition is no longer available.
One must either assume the natural numbers or have a
hierarchy of different concepts of natural number.

A ramified theory with the natural numbers as indi-
viduals and the Peano axioms would be a natural formal-
ization of the mathematics allowed by platonism with
respect to the natural numbers. But there is in principle
no reason not to extend the hierarchy of levels into the
transfinite. The question of the limits of predicative
mathematics has become identical with the question of
the transfinite ordinals that can be predicatively intro-
duced.

We have said that quite elementary proofs in analysis
already require impredicative definitions when naively
interpreted. Nonetheless, from recent work it appears
that a good deal of classical analysis is susceptible of a
natural predicative interpretation, which, however, fails
for some theorems. One can, on this basis, give a good
approximation to classical analysis, but not to the whole
of it. That part of mathematics which depends essentially
on still more powerful set theory is completely lost. It
seems that it would not be reasonable to insist on this
limitation unless there were some quite powerful reason
for rejecting platonism. We shall discuss some possible
reasons later.

3.2. CONSTRUCTIVISM. We shall now consider the com-
plete rejection of platonism, which we shall call construc-
tivism. It is not a product of the situation created by the
paradoxes but rather a spirit which has been present in
practically the whole history of mathematics. The philo-
sophical ideas on which it is based go back at least to Aris-
totle’s analysis of the notion of infinity (Physics, Bk. III).
Kant’s philosophy of mathematics can be interpreted in a
constructivist manner, and constructivist ideas were pre-
sented in the nineteenth century—notably by Leopold
Kronecker, who was an important forerunner of intu-
itionism—in opposition to the tendency in mathematics
toward set-theoretic ideas, long before the paradoxes of
set theory were discovered.

Our presentation of constructivism relies heavily on
the “intuitionism” of Brouwer, presented in many publi-
cations from 1907 on, but the ideas can also be found to
some extent in other critics of platonism, including the
French school of Émile Borel, Poincaré, and Henri

Lebesgue, although in their work predicativity played a
greater role than constructivity. These writers did not
arrive at a very consistent position, but they contributed
mathematically important ideas. L. E. J. Brouwer reached
and developed a conclusion from which they shrank: that
a thoroughgoing constructivism would require the mod-
ification of classical analysis and even of classical logic.

3.2.1. Intuitionism. Constructivist mathematics
would proceed as if the last arbiter of mathematical exis-
tence and mathematical truth were the possibilities of
construction. “Possibilities of construction” must refer to
the idealized possibility of construction mentioned in the
last section. Brouwer insisted that mathematical con-
structions are mental. The possibilities in question derive
from our perception of external objects, which is both
mental and physical. However, the passage from actuality
to possibility and the view of possibility as of much wider
scope perhaps have their basis in intentions of the
mind—first, in the abstraction from concrete qualities
and existence; second, in the abstraction from the limita-
tions on generating sequences. In any case, in construc-
tive mathematics the rules by which infinite sequences are
generated are not merely a tool in our knowledge but part
of the reality that mathematics is about.

Why this is so can be seen from the problem of asser-
tions about the infinite. We have suggested that the gen-
eration of a sequence of symbols is something of which
the construction of the natural numbers is an idealiza-
tion. But “construction” loses its sense if we abstract fur-
ther from the fact that this is a process in time which is
never completed. The infinite in constructivism must be
“potential” rather than “actual.” Each individual natural
number can be constructed, but there is no construction
which contains within itself the whole series of natural
numbers. To view the series sub specie aeternitatis as
nonetheless determined as a whole is just what we are not
permitted to do.

Perhaps the idea that arithmetic rests on time as a
form of intuition lies behind Brouwer’s insistence on
constructivity interpreted in this way. One aspect of sen-
sibility from which we do not abstract in passing from
concrete perception to its form is its finite character.
Thus, whatever one may think of the notion of form of
intuition, Brouwer’s position is based on a limitation, in
principle, on our knowledge: Constructivism is implied
by the postulate that no mathematical proposition is true
unless we can in a nonmiraculous way know it to be true.

Because of its derivation from his own philosophical
account of mathematical intuition Brouwer called his
position, and the mathematics which he constructed on
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the basis of it, intuitionism. We shall use this name for a
species of constructivism which answers closely to
Brouwer’s ideas.

In spite of the “potential” character of the infinite in
mathematics, we shall not renounce assertions about all
natural numbers or even, with some reservations, talk of
infinite classes. A proposition about all natural numbers
can be true only if it is determined to be true by the law
according to which the sequence of natural numbers is
generated. This Brouwer took to be equivalent to its pos-
sessing a proof. Thus, the intensional notions of “law”
and “proof” become part of the subject matter of mathe-
matics.

A consideration of existential propositions connects
the broad philosophical notion of constructivity with the
general mathematical notion. Roughly, a proof in mathe-
matics is said to be constructive if wherever it involves the
mention of the existence of something, it provides a
method of “finding” or “constructing” that object. It is
evident that the constructivist standpoint implies that a
mathematical object exists only if it can be constructed;
to say that there exists a natural number x such that Fx is
to say that sooner or later in the generation of the
sequence an x will turn up such that Fx. If x depends on
a parameter y, this x must be determinable from y on the
basis of the laws of the construction of the numbers and
of the constructions involved in F. Proving ($x)Fx means
showing how to construct x, so one can say that the proof
is not complete until x has been exhibited. (But then
“proof ” is used in an idealized sense.) To prove
(y)($x)Fxy must involve giving a general method for
finding x on the basis of y.

This point of view leads immediately to a criticism of
the basic notions of logic, particularly negation and the
law of excluded middle. That “(x)Fx” is true if and only if
it can be proved does not mean that “(x)Fx” is a statement
about certain entities called proofs in the way in which,
on the usual interpretation, it is a statement about the
totality of natural numbers. According to Brouwer we can
assert “p” only if we have a proof; the hypothesis that
(x)Fx is the hypothesis that we have a proof, and it is a
reasonable extrapolation to deny that we can say more
about what “(x)Fx” asserts than is said in specifying what
is a proof of it. The explanation of “ÿ(x)Fx” as “(x)Fx
cannot be proved” does not satisfy this condition.
Brouwer said instead that a proof of “ÿp” is a construc-
tion which obtains an absurdity from the supposition of
a proof of “p.”

An immediate consequence of this interpretation is
that the law of excluded middle becomes doubtful. Given

a proposition “p,” there is no particular reason to suppose
that we shall ever be in possession either of a proof of “p”
or of a deduction of an absurdity from “p.” Indeed, if the
general statement of the law of excluded middle is taken
as a mathematical assertion, a proof of it will have to yield
a general method for the solution of all mathematical
questions. Brouwer rejected this possibility out of hand.

It is evident that such a point of view will lead to
changes in quite basic parts of mathematics. Many
instances of the law of excluded middle, where the propo-
sitions involved can be shown constructively to be sys-
tematically decidable, will be retained. But Brouwer
rejected even very elementary instances in classical analy-
sis. Let the sequence rn of rational numbers be defined as
follows: if there is no m ≤ n such that the mth, (m + l)st,
(m + 2)d terms of the decimal expansion of p are each 7,
then rn = 1/2n; if there is such an m, then rn = 1/2k, where
k is the least such m. Then rn constructively defines a real
number r. But a proof of either r = 0 or r π 0 would tell
us whether or not there are three 7’s in the decimal
expansion of p. Thus, we cannot assert either r = 0 or r π
0.

For a satisfactory constructivist theory of analysis, an
analysis is needed of the notion of an arbitrary set or
sequence of natural numbers. Brouwer’s analysis gives
additional distinctiveness to intuitionism. Such a
sequence is thought of as generated by a succession of
independent determinations or “free choices,” which may
be restricted by some law. Obviously the succession of
choices must be thought of as never being complete. In
the absence of a law a statement about a sequence can be
true only if it is determined to be true by some finite ini-
tial segment of the sequence. The consequence of this is
that a function defined for all sequences of natural num-
bers whose values are integers must be continuous. It also
leads to sharper counterexamples to the law of excluded
middle: It is absurd that for all sequences a, either
(x)(a(x) = 0) or ÿ(x)(a(x) = 0). We can also sharpen the
result of the preceding paragraph and state generally that
not every real number is equal to or different from 0.

The intuitionist point of view thus leads to a distinc-
tive logic and to a distinctive theory of the foundations of
analysis. The latter contains another distinctive principle,
the bar theorem, obtained by analyzing the requirement
that if a function is defined for all sequences, there must
be a constructive proof of this fact. It is roughly equiva-
lent to the proposition that if an ordering is well-
founded, transfinite induction holds with respect to it.
Nonetheless, intuitionism is far from having shown itself
capable of the same rich development as classical mathe-
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matics, and it is often very cumbersome. Important as it
is in itself, it does not provide a sufficient motive for
renouncing platonism.

3.2.2. Finitism. So far our account of constructivism
has been based entirely on Brouwer’s intuitionism. How-
ever, intuitionism is not the only possible constructivist
development of mathematics. Indeed, it makes some
quite powerful assumptions of its own. As we have said,
the intuitionists make the notions of construction and
proof a part of the subject matter of mathematics, and
the iteration of logical connectives, especially, renders it
possible to make quite elaborate and abstract statements
involving construction and proof. Thus, intuitionist
mathematics seems to rest not merely upon intuition but
upon rather elaborate reflection on the notion of intu-
itive construction. (It also does not obviously exclude
impredicativity, since what counts as a proof of a given
proposition can be explained in terms of the general
notion of proof.) A constructivist might feel that intu-
itionism leads from the Scylla of platonist realism to the
Charybdis of speculative idealism.

A weaker and more evident constructive mathemat-
ics can be constructed on the basis of a distinction
between effective operation with forms of spatiotemporal
objects and operation with general intensional notions,
such as that of proof. Methods based on operation with
forms of spatiotemporal objects would approximate to
what the mathematician might call elementary combina-
torial methods or to the “finitary method” which Hilbert
envisaged for proofs of consistency. Formal systems of
recursive number theory, in which generality is expressed
by free variables and existence by the actual presentation
of an instance or (if the object depends on parameters) a
function, will accord with this conception if the functions
admitted are sufficiently elementary—for example, prim-
itive recursive functions. In such formalisms any formula
will express a general statement each instance of which
can be checked by computation. For this reason classical
logic can be used. Moreover, the concept of free choice
sequence can be admitted so that some analysis can be
constructed.

The precise limits of this conception are perhaps not
clear, although it is evident that some constructive argu-
ments are excluded. The conception does not allow full
use of quantifiers but probably does allow a limited use of
them.

3.2.3. The Hilbert program. If one accepts the idea
that from a philosophical point of view constructivist
conceptions are more satisfactory than platonist concep-
tions—more evident or more intelligible—one is not

necessarily constrained to abandon classical mathemat-
ics. The way is still open to investigating classical mathe-
matics from a constructive point of view, and it may then
prove to have an indirect constructive sense and justifica-
tion.

Such an investigation was the objective of the famous
program of Hilbert, which was the third main animating
force—with logicism and intuitionism—in foundational
research in the period before World War II. The possibil-
ity arises first from the fact that classical mathematics can
be formalized (though not completely; we shall consider
this fact and its implications later). Once it has been for-
malized, one can in principle drop consideration of the
intended meaning of the classical statements and simply
consider the combinations of the symbols and formulae
themselves. Thus, if the proof of a certain theorem has
been formalized in a system S (say Zermelo-Fraenkel set
theory), it is represented as a configuration of symbols
constructed according to certain rules. Whether a config-
uration is a proof can be checked in a very elementary
way.

The concepts by which a formal system is described
belong, in effect, to finitist mathematics. For example, the
consistency of the system is the proposition that no con-
figuration which is a proof will have a last line of a certain
form—for example, � & ÿ�. Nonetheless, although in
the mathematical study we abstract from the intended
interpretation, this interpretation certainly guides the
choice of the questions in which we are interested.

Hilbert sought to establish classical platonist mathe-
matics on a firm foundation by formalizing it and prov-
ing the consistency of the resulting formalism by finitist
means. The interest of the question of consistency
depends on the fact that the formulae of the system rep-
resent a system of statements; that is, even if the meanings
of the platonist conceptions are highly indeterminate,
statements in terms of them are introduced according to
an analogy with “real” (i.e., finitist) statements which is
intended to preserve at least the notions of truth and fal-
sity and the laws of logic.

In fact, Hilbert had a further motive for his interest
in consistency: the fact that platonist mathematics is an
extension of an extrapolation from finitist mathematics.
Certain elementary combinatorial notions are also
embodied in the formalism; formulae involving them
express “real statements.” Hilbert thought of the other
formulae as expressing “ideal statements”—analogous to
the ideal elements of projective geometry—introduced to
give greater simplicity and integration to the theory.
Within the system they have deductive relations to the
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real statements. It would be highly undesirable that a for-
mula of the system should be seen by elementary compu-
tation to be false and yet be provable. One might hope to
prove by metamathematical means that this would not
happen. In the central cases a proof of consistency is suf-
ficient to show that it would not. Thus, suppose we
extend a quantifier-free recursive number theory by
adding quantifiers and perhaps also second-order quan-
tifiers. A proof of the consistency of the resulting system
will show that no false numerical formula (stating a
recursive relation of particular integers) will be provable.
In fact, it will yield a constructive proof of any formula of
the original system provable in the extension, in this sense
showing the use of “ideal” elements to be eliminable.
Since Hilbert it has been pointed out (chiefly by Georg
Kreisel) that many further results relevant to the 
understanding of nonconstructive mathematics from 
a constructivist point of view can be obtained from con-
sistency proofs.

Hilbert hoped to settle the question of foundations
once and for all, which for him meant establishing the
platonist methods of set theory on a firm basis. His hope
was founded on two expectations: that all of mathematics
(at least all of analysis) could be codified in a single for-
mal system and that the consistency of this system could
be proved by methods so elementary that no one could
question them. He was disappointed of both these expec-
tations as a result of Gödel’s incompleteness theorems
(1931). Work on the program has nonetheless continued,
with the limitations that one has to work with formalisms
which embody only part of the mathematics in question
and that the proofs must rely on more abstract, but still
constructive, notions; and the work in finitist proof the-
ory has achieved valuable results, some of which will be
discussed later.

§4. mathematical logic

Our remaining considerations on the subjects of the two
preceding sections fit best into an independent discussion
of mathematical logic as a factor in the study of the foun-
dations of mathematics. Before World War II an impor-
tant part of the work in logic was directed toward
establishing, in the service of some general position such
as logicism or intuitionism, a more or less final solution
to the problems of foundations. Certain particular
results, and probably also a more diffuse evolution of the
climate of ideas, have discouraged this aim. Today nearly
all work in mathematical logic, even when motivated by
philosophical ideas, is nonideological, and everyone

acknowledges that the results of this work are independ-
ent of the most general philosophical positions.

Starting from the axiomatic method in a more gen-
eral sense, mathematical logic has become the general
study of the logical structure of axiomatic theories. The
topics selected from the great variety of technical devel-
opments for discussion here are Gödel’s incompleteness
theorems, recursive function theory, developments
related to Hilbert’s program, foundations of pure logic,
and axiomatic set theory.

4.1. GÖDEL’S INCOMPLETENESS THEOREMS.

Research in mathematical logic took quite new directions
as a result of the discovery by Kurt Gödel, in 1930, of his
incompleteness theorems. According to the first theorem
(as strengthened by J. B. Rosser in 1936) any formalism S
that is sufficiently powerful to express certain basic parts
of elementary number theory is incomplete in the fol-
lowing sense: A formula � of S can be found such that if
S is consistent, then neither � nor ÿ� is provable in S.
The conditions are satisfied by very weak systems, such as
the first-order theory Q whose axioms are the Peano
axioms for the successor function and the recursion
equations for addition and multiplication. (This system is
formalized in first-order logic with equality, having suc-
cessor, addition, and multiplication as primitive function
symbols. The axioms are versions of our axioms (1)–(4),
recursion equations for addition and multiplication, and
an axiom which says that every number not equal to 0 is
the successor of something.) They are satisfied by exten-
sions of systems that satisfy them and therefore by the full
elementary number theory Z (the first-order version of
the Dedekind-Peano axiomatization, obtained from Q by
adding induction: in place of the second-order axiom (5)
one adds all results of substituting a predicate of the for-
malism for “F” in (7), by analysis, and by axiomatic set
theories in which number theory can be constructed.
They are also satisfied by formalizations of intuitionist
theories. Evidently adding further axioms offers no
escape from this incompleteness, since the new theories
will also satisfy the conditions of the theorem.

One of the conditions necessary for some general
statements of the theorem is that which we mentioned
earlier, that proofs can be checked mechanically. This
must be interpreted more precisely in terms of one of the
concepts of recursive function, discussed below.

The technique of Gödel’s proof is of great interest
and has since found wide application. It consists of a
mapping of the syntax of the theory into the theory itself,
through assigning numbers to the symbols and formulae
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of the system. Any syntactical relation will then be equiv-
alent to some relation of natural numbers. For the crucial
relation “� is a proof in S of the formula �” the corre-
sponding relation P(x,a) can be expressed in the theory,
and certain things about it can be proved in S. Then the
undecidable formula � is a formula which has a number
k such that what � says (about numbers) is equivalent to
the unprovability of the formula number k, i.e., �. (1)
Then if only true formulae are provable, � is unprovable.
But then � is true. Therefore, (2) by the same assumption
ÿ� is also unprovable. This appeal to the notion of truth
was replaced in Gödel’s detailed argument by the condi-
tion that S be consistent for (1) and w-consistent for (2).
By changing the formula Rosser showed that the assump-
tion of w-consistency could also be replaced by that of
consistency.

The proof that if S is consistent, then � is unprov-
able is finitist. If S and the mapping of its syntax into S
satisfy some further conditions, the argument can be for-
malized in S. This yields the second theorem of Gödel. If
S is consistent, then the formula which, under the above
mapping, corresponds to the consistency of S is unprov-
able in S.

The first theorem implies not only that mathematics
as a whole cannot be codified in a single formal system
but also that the part of mathematics that can be
expressed in a specific formal notation cannot be so cod-
ified. This fact undermines most attempts at a final solu-
tion to the problem of foundations by means of
mathematical logic. The second theorem was a blow to
the Hilbert program in particular. The methods that the
Hilbert school envisaged as finitary could apparently be
codified in first-order number theory Z; indeed, that they
can be so codified seems fairly certain, even though the
notion of finitary methods is not completely precise.
Therefore, not even the consistency of Z is provable by
finitary means. Moreover, the consistency of stronger and
stronger systems requires stronger and stronger methods
of proof.

There has been much discussion of the broader
philosophical implications of Gödel’s theorem. We shall
not enter into the discussion of such questions as whether
the theorem shows the falsity of any mechanistic theory
of mind. It should be remarked that there are a number
of connections between the surpassing of any given for-
mal system by possible means of proof and the inex-
haustibility phenomena in the realm of mathematical
existence. Gödel’s argument can be viewed as a diagonal
argument parallel to that by which Cantor proved that no
countable set of sets of natural numbers can exhaust all

such sets. Peano’s axioms are categorical if the range of
the quantifiers in the induction axiom (5) includes all
classes of natural numbers, but in the context of a formal
system one can use only the fact that induction holds for
classes definable in the system, of which there are only
countably many. In set theory the addition of axioms
asserting the existence of very large classes can make
decidable previously undecidable arithmetical formulae.

4.2. RECURSIVE FUNCTION THEORY. A number of
problems in mathematical logic require a mathematically
exact formulation of the notion of mechanical or effec-
tive procedure. For most purposes this need is met by a
concept of which there are various equivalent formula-
tions, arrived at by several writers. The concept of (gen-
eral) recursive definition, introduced in 1931 by Jacques
Herbrand and Gödel, was the first. A function of natural
numbers which is computable according to this concep-
tion (the “computation” consists of the deduction of an
evaluation from defining equations by simple rules) is
called a general recursive, or simply a recursive, function.
Other formulations are that of l-definability (Alonzo
Church), computability by Turing machine (A. M. Tur-
ing), algorithms (A. A. Markov), and different notions of
combinatorial system (Emil Post and others).

The concept of recursive definition has proved essen-
tial in decision problems. Given a class of mathematical
problems defined by some parameter, is there an effective
algorithm for solving each problem in the class? As an
example consider the tenth problem of Hilbert: Given a
polynomial with integral coefficients, is there a general
method that tells us whether it has a zero among the inte-
gers? If such a question can be resolved in the affirmative,
the resolution can generally be reached on the basis of the
intuitive conception of an algorithm: If one can invent
the procedure, then it is generally clear that the procedure
is effective. But to give a negative answer to such a ques-
tion one needs some idea of the possible effective proce-
dures. The development of recursive function theory has
made possible a large number of results asserting the
nonexistence of decision procedures for certain classes of
problems. This way of interpreting the results depends on
a principle known as Church’s thesis, which says that the
mathematical conception of an effectively computable
function in fact corresponds to the intuitive idea—i.e.,
that a number-theoretic function is (intuitively) effec-
tively computable if and only if it is recursive.

An important type of decision problem is that con-
cerning provability in formal systems. Given a formal sys-
tem S, is there an algorithm for deciding whether a given
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formula � is a theorem of S? If there is, then S is said to
be decidable. Although quite interesting examples of
decidable systems exist, the systems to which Gödel’s first
incompleteness theorem applies are undecidable. In fact,
Gödel’s type of argument can also be used to prove that
first-order logic is undecidable (as by Church in 1936).

Another important aspect of recursive function the-
ory is the classification of sets and functions according to
different principles related to recursiveness. One such
principle, stated in terms of the complexity of possible
definitions by recursive predicates and quantifiers (the
Kleene-Mostowski hierarchy), not only is of wide appli-
cation in logic but is closely related to older topological
classifications. One can single out the arithmetical sets
(those sets definable from recursive predicates by quan-
tification over natural numbers alone), the hyperarith-
metical sets (a certain transfinite extension of the
arithmetical hierarchy—in effect, those sets definable in
ramified analysis with levels running through the recur-
sive ordinals), and the analytic sets (those sets definable
from recursive predicates by quantification over numbers
and functions, or sets, of natural numbers). The recursive
ordinals, singled out by Church and Kleene, can most
readily be characterized as the order types of recursive
well-orderings of the natural numbers.

The theory of recursive functions is evidently valu-
able for explicating different notions of constructivity
and for comparing classical and constructive mathemat-
ics. A constructive proof of a statement of the form
“(x)($y)Fxy” should yield an effective method of obtain-
ing y from x. For example, Kleene and his collaborators
have shown that any statement provable in formalized
intuitionist number theory and analysis has a property
called “realizability,” which amounts roughly to interpret-
ing “(x)($y)Fxy” as asserting the existence of a recursive
function giving y in terms of x. Although it is also intu-
itionistically meaningful, the construction gives a classi-
cal interpretation of the intuitionist formalisms. It also
allows a sharpening and extension of Brouwer’s coun-
terexample technique. Certain classically provable for-
mulas can be shown not to be realizable and therefore not
to be provable in the intuitionist formalisms Kleene con-
siders.

A problem arises with regard to the relation between
the concept of recursive function and the fundamental
concepts concerning constructivity—for instance, the
concept of intuitionism. One cannot interpret Church’s
thesis as explicitly defining “effectively computable func-
tion” and therefore as giving the meaning of the intu-
itionist quantifiers. For by definition a function is general

recursive if there is a set of equations from which for each
possible argument one can compute the value of the
function for that argument, a statement of the form
“(x)($y)Fxy.” If this is interpreted constructively, the pro-
posed definition is circular. The relation between “func-
tion constructively proved to be everywhere defined” and
“general recursive function” is still not clear. One can ask
whether every intuitionistically everywhere-defined
number-theoretic function is general recursive or
whether every (classically) general recursive function can
be proved constructively to be such. Neither question has
yet been resolved.

4.3. DEVELOPMENT OF THE HILBERT PROGRAM. For
the study of constructivity it is also important to study
more restricted types of recursive definition that can be
seen by definite forms of argument to define functions.
This is particularly important for the extended Hilbert
program.

Gödel’s second incompleteness theorem meant that
the consistency even of elementary number theory Z
could not be proved by the methods envisaged by Hilbert.
A number of consistency results of the sort envisaged by
Hilbert have since been obtained by stronger constructive
methods. Gödel and Gentzen proved independently (and
finitistically) that if intuitionistic first-order arithmetic is
consistent, then so is classical first-order arithmetic. The
proofs were based on a quite simple method of translat-
ing classical theories into intuitionist theories which is of
wide application—for example, to pure logic. One ren-
ders an atomic formula P by ÿÿP (in elementary number
theory, equivalent to P itself). If �, � are translated into
�°, �°, respectively, then � ⁄ � is translated by ÿÿ(�°
⁄ �°), ($x)� by ÿÿ($x)�°, � � � by ÿ(�° & ÿ�°), �
& � by �° & �°, ÿ� by ÿ �°, and (x)� by (x)�°. Evi-
dently the translation not only proves relative consistency
but also gives each provable formula an intuitionist
meaning according to which it is intuitionistically true. If
� is a quantifier-free formula of number theory, or if it is
composed with conjunction, negation, and universal
quantification only, then if it is provable in Z, it is intu-
itionistically provable. This translation can easily be
extended to ramified analysis. Since intuitionistically the
consistency of the intuitionist systems follows from their
soundness under the intended interpretation, the consis-
tency of the classical systems has been intuitionistically
proved.

A sharper result was obtained in 1936 by Gerhard
Gentzen. New proofs, with various advantages and
refinements, have since been found by several workers.
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Gentzen proved the consistency of Z by adding to finitist
arithmetic the assumption that a certain recursive order-
ing of natural numbers, of order type §0 (the least ordinal
greater than w, ww, www, · · ·), is a well-ordering. This
assumption could be proved in intuitionist ramified
analysis using set variables only of level 1 but could not in
elementary number theory.

Gentzen’s result has made it possible to extract fur-
ther information about the power of elementary number
theory. Kreisel obtained information about the relation
between elementary number theory and certain quanti-
fier-free arithmetics and also obtained a characterization
of the functions which can be proved in Z to be general
recursive.

A corresponding result for ramified analysis for finite
levels was obtained by Lorenzen in 1951 and sharpened
by Kurt Schütte. It was extended by Schütte to transfinite
levels.

On the basis of these results we can say that con-
structive consistency proofs are available for all of pred-
icative mathematics. In well-defined senses they are the
best possible results (for instance, the above-mentioned
ordinal §0 cannot be replaced by a smaller one). Nonethe-
less, efforts to give such a proof for impredicative classical
analysis, not to speak of axiomatic set theory, have proved
fruitless.

Results of quite recent research have shed consider-
able light on this situation. Clifford Spector (1962)
proved the consistency of classical analysis relative to a
quantifier-free theory (Gödel 1958) of primitive recursive
functionals of arbitrary finite types, enriched by a new
schema for defining functionals by “bar recursion.” This
amounted to generalizing Brouwer’s bar theorem to arbi-
trary finite types. Such generalized bar recursion has not
found a constructive justification, but the method has led
to consistency proofs by the original bar theorem for sub-
systems of analysis which are, according to a reasonable
criterion, impredicative.

Kreisel (1963) has shown that intuitionist analysis,
with the bar theorem and a strong schema of “generalized
inductive definitions” included, does not suffice to prove
the consistency of classical analysis. Such a proof requires
an essential extension of constructive methods beyond
the established intuitionist ones.

Solomon Feferman and Schütte have given an analy-
sis of the notion of predicativity according to which
established intuitionist methods go beyond predicative
ones. According to their conception, inductive definitions

such as that of the class O of numbers representing the
recursive ordinals are impredicative.

What has been the fate of the Hilbert program? Put
most broadly, its objective was to secure the foundations
of platonist mathematics by a constructive analysis of
classical formal systems. The incompleteness phenomena
have made it impossible, in dealing with stronger and
stronger systems, to avoid the introduction of more and
more abstract conceptions into the metamathematics.
However interesting the information obtained about the
relation between these conceptions and the platonist
ones, it is not evident that these conceptions are in all
respects more secure. Moreover, in the present state of
research it is not certain that strong enough constructive
methods can be found even to prove the consistency of
classical analysis.

This state of affairs is unfavorable to those method-
ological views seeking to restrict mathematics to the
methods which have the greatest intuitive clarity. It is evi-
dent that such methods will not suffice to resolve certain
mathematical questions whose content is extremely sim-
ple, namely those concerning the truth of certain state-
ments of the form “(x)Fx,” where “F” stands for a
primitive recursive predicate of natural numbers. Propo-
nents of the views in question seem forced to admit that
even such questions can be objectively undetermined.

4.4. FOUNDATIONS OF LOGIC. An important result
concerning pure logic obtained in finitist metamathe-
matics is a theorem, or cluster of related theorems—
including Herbrand’s theorem (1931) and Gentzen’s
theorem (1934)—to the effect that the proof of a formula
of first-order logic can be put into a normal form. In such
a normal-form proof the logical complexity of the for-
mulae occurring in the proof is in certain ways limited in
relation to the complexity of the conclusion; for instance,
no formula can contain more nested quantifiers than the
conclusion. The proof is, as it were, without detours, and
modus ponens is eliminated. As a consequence, a quanti-
fier-free formula deduced from quantifier-free axioms
can be proved by propositional logic and substitution,
which implies all the consistency results proved by the
Hilbert school before the discovery of Gödel’s theorem.
Gentzen’s theorem also applies to intuitionist logic and to
other logics, such as modal logics.

These theorems, which are the fundamental theo-
rems of the proof theory of quantification theory, are
closely related to the fundamental theorem of its seman-
tics, Gödel’s completeness theorem. Every formula not
formally refutable has a model—in fact, a model in which

MATHEMATICS, FOUNDATIONS OF

ENCYCLOPEDIA OF PHILOSOPHY
2 n d  e d i t i o n • 45

eophil_M2  10/25/05  8:22 AM  Page 45



the quantifiers range over natural numbers; i.e., there are
denumerably many individuals. This can be strengthened
to the following: If S is any set (finite or infinite) of for-
mulae of first-order logic, it has a denumerable model
unless some finite subset of S is inconsistent—that is,
unless the conjunction of the subset’s members is for-
mally refutable (Skolem-Löwenheim theorem).

This theorem has some quite startling consequences:
in particular, it applies if S is the set of theorems of some
system of set theory. Then if the system is consistent, S
has a denumerable model even though S may contain a
theorem which asserts.the existence of nondenumerable
sets. That is not a contradiction: If n represents a nonde-
numerable set in the model, there will indeed be only
countably many m’s such that m � n is true in the model,
but the assertion “n is nondenumerable” will be true in
the model because the model will not contain an object
representing the function that enumerates the objects m
for which m � n is true in the model. The model is denu-
merable only from “outside.”

This is an example of a model which is nonstandard
in that it differs in some essential way from the intended
one. The Skolem-Löwenheim theorem also implies the
existence of nonstandard models for systems of number
theory. In fact, there is a nonstandard model even for the
set S of all true formulae of elementary arithmetic. The
number sequence cannot be characterized up to isomor-
phism by any countable set of first-order formulae.

The existence of denumerable models of set theory
illustrates how essential the platonist conception of set,
particularly of the set of subsets of a given set, is to set
theory. If there is no more to the platonist conception
than is specified in any particular formal system, then
apparently the cardinal number of a set cannot be objec-
tively determined. Indeed, the cardinal number of a set
depends on what mappings there are and therefore on
what sets there are.

The acceptance of this relativity has been urged by
many, including Skolem. A fully formalist conception
would give rise even to the relativity of the natural num-
bers themselves.

The completeness theorem and the construction of
nonstandard models are fundamental tools in a now rap-
idly developing branch of logic called model theory. This
subject can be viewed as a development of logical seman-
tics, but what is perhaps distinctive about the point of
view underlying recent work is that it regards a model of
a formal theory as a type of algebraic structure and, in
general, that it integrates the semantic study of formal

systems with abstract algebra. Model theory takes mathe-
matical logic a long way from the philosophical issues
with which we have been mainly concerned, in particular
by taking for granted a strong form of platonism. The
leaders of this development have, in fact, emphasized the
application of metamathematical methods to problems
in ordinary mathematics.

There are other investigations concerning the foun-
dations of pure logic. For example, we have mentioned
that there can be no decision procedure for quantification
theory. Nonetheless, there is interest in the question of
what subclasses of formulae are decidable. As a striking
result in this direction we might mention the proof
of A. S. Kahr, E. F. Moore, and Hao Wang (1962) that 
the existence of models of formulae of the form
“(x)($y)(z)M(x,y,z)” (or, equivalently, the provability of
formulae of the form “($x)(y)($z)M(x,y,z)” where
“M(x,y,z)” is an arbitrary quantifier-free formula, is
undecidable. The development of appropriate concepts
of model and completeness proofs for modal logics and
intuitionist logic has come to fruition in recent years. In
the case of the completeness of intuitionist logic, the sit-
uation is unclear. E. W. Beth (1956) has given a construc-
tion of models in terms of which he proves classically the
completeness of intuitionist quantification theory. On
the other hand, Kreisel has shown that the completeness
of intuitionist logic cannot be proved by methods avail-
able in present intuitionist formal systems and, indeed,
that it is incompatible with the supposition that all con-
structive functions of natural numbers are recursive.

4.5. AXIOMATIC SET THEORY. We shall not undertake
here to survey the different axiomatic systems of set the-
ory. We shall, however, mention some developments in
the metamathematics of set theory, developments con-
cerning the axiom of choice and Cantor’s continuum
problem.

The axiom of choice asserts (in one formulation)
that for every set A of nonempty sets no two of which
have a common element, there exists a set B which con-
tains exactly one element from each of the sets in A. This
axiom became prominent when Zermelo used it in 1904
to prove that every set can be well-ordered. Although it
was much disputed, it came to be applied more and more,
so that entire theories of modern abstract mathematics
depend essentially on it. Naturally the question arose
whether it was provable or refutable from the other
axioms of various systems of set theory. A. A. Fraenkel
(1922) showed that it could not be proved from Zer-
melo’s axioms, provided that the axioms allowed individ-
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uals—that is, objects which are not sets—in the range of
the quantifiers.

The continuum problem appears to be an elemen-
tary problem in the arithmetic of cardinal numbers: Is
there a cardinal between ¿0, the cardinal of the integers,
and 2¿0, that of the continuum; stated otherwise, does the
continuum contain subsets of cardinal number different
from that of the continuum and that of the integers? If
the answer is negative, then 2¿0 = ¿1, the first cardinal
larger than ¿0, and the cardinal of the first noncountable
well-ordering. Cantor’s conjecture that 2¿0 = ¿1 is called
the continuum hypothesis.

Gödel, in 1938, proved that the axiom of choice and
a generalization of the continuum hypothesis are consis-
tent with the other axioms. The argument applies to a
number of different systems, including the Zermelo-
Fraenkel system (ZF). What is proved (finitistically) is
that if, say, ZF is consistent, it is likewise consistent with a
new axiom, the axiom of constructibility, which implies
the axiom of choice and the generalized continuum
hypothesis. For the constructible sets, which are the sets
obtained by extending the ramified hierarchy of types
through all the ordinals, can be proved in the system to
satisfy all the axioms plus the axiom of constructibility,
which says that every set is constructible. In terms of
models, any model of ZF contains a subclass that is a
model in which all sets are constructible. The con-
structible sets are of interest on their own account; Gödel
has remarked that the idea behind them is to reduce all
impredicativities to one special kind, the existence of
large ordinals. However, he does not consider the axiom
of constructibility plausible.

Thus, it has been known for some time that the
axiom of choice and the continuum hypothesis are not
refutable from the other axioms. More recently, Paul J.
Cohen proved that they are not provable either. That is, if,
say, ZF is consistent, it remains so by adding the negation
of the axiom of choice or by adding the axiom of choice
and the negation of the continuum hypothesis. Starting
from Gödel’s ideas, Cohen developed a quite new method
for constructing models, which has led very quickly to a
large number of further independence results.

The situation with respect to the axiom of choice and
the continuum problem raises anew the question of how
definite our idea of a set is, whether or not such a ques-
tion as the continuum problem has an objectively deter-
minate answer. Most mathematicians today find the
axiom of choice sufficiently evident. But the continuum
hypothesis—perhaps because of its more special charac-
ter and because of the fact that the analogy of the infinite

to the finite on which the conception of the set of all sub-
sets of a given set is based does not suggest a justification
of it—is left much more uncertain by considerations of
intuitive evidence or plausibility. The role of the Skolem-
Löwenheim theorem in Gödel’s and Cohen’s construc-
tions might encourage the idea that the continuum
hypothesis is in fact undetermined. Gödel himself
believes that it is false and hopes that an axiom will be
found which is as evident as the axiom of choice and
which suffices to refute the continuum hypothesis. At
present no one seems to have a good idea of what such an
axiom would be like. It would have to be of a different
character from the usual strong axioms of infinity, to
which the method of Gödel’s consistency proof applies.

The question of the continuum hypothesis is thus
very close to the general epistemological question con-
cerning platonism. If the general conceptions of set and
function are given in some direct way to the mind, if, to
echo René Descartes, the idea of the infinite is in one’s
mind before that of the finite, there is no reason to expect
a comparatively simple question like the continuum
problem to be unanswerable. If, on the other hand, the
platonist conceptions are developed by analogies from
the area where we have intuitive evidence, if they are
“ideas of reason” which, without having an intuition cor-
responding to them, are developed to give a “higher
unity” which our knowledge cannot obtain otherwise,
then it would not be particularly surprising if the nature
of sets were left indeterminate in some important respect
and, indeed, could be further determined in different,
incompatible ways.

supplement (2005)

The period since 1967 has seen considerable work in
all areas of the foundations of mathematics. This is most
notable on the mathematical side. These developments
will be discussed before turning to philosophical work.

§5. mathematical logic

Of the extensive work since the 1960s, that dealing with
formalized axiomatic theories is most central to the foun-
dations of mathematics, although there might now be
more debate than earlier about the centrality of the
axiomatic method. For some time mathematical logic has
been divided into Proof theory, Model theory, Com-
putability (recursion) theory, and Set theory (see the
entries on those subjects), although of course there are
important interconnections. Model theory and com-
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putability theory are more purely mathematical, although
their methods are important for the other two areas, and
some applications (such as nonstandard analysis) are of
foundational interest.

One upshot of work in Proof theory is that strong
subsystems of classical analysis (second-order arithmetic)
have been analyzed by means that are in some sense con-
structive but much more powerful and abstract than was
envisaged in the early history of the subject. A possibly
clearer foundational gain was achieved by another proof-
theoretic program, which can trace its roots to Hermann
Weyl’s (1918) attempt to reconstruct classical analysis
predicatively. The work of Harvey Friedman, Stephen
Simpson, and others, surveyed in Simpson (1998),
showed that many standard theorems of analysis (and of
other branches of mathematics) can, if suitably formu-
lated, be proved in weak systems. The method of Reverse
mathematics (q.v.) made it possible to calibrate exactly
what axiomatic power was needed to prove a particular
theorem.

The most striking developments have been in set the-
ory, where Paul Cohen’s proof in 1963 of the independ-
ence of the axiom of choice and the continuum
hypothesis touched off an explosion of research. Cohen’s
method of forcing proved of wide applicability. In the fol-
lowing years, many more independence results were
found in all areas of set theory and its applications. In
particular, many classical conjectures were shown both
consistent with and independent of the standard axiom
system ZFC (or ZF in cases where the axiom of choice
sufficed to prove a statement).

This body of work might suggest to a philosopher a
vast indeterminacy in the concept of set or of the universe
of sets, a random-seeming collection of logical relations
among statements independent of ZF or ZFC. However,
there is more order than this picture would suggest. The
existence of important independent statements would
suggest seeking new axioms, and in fact progress has been
made by developing the consequences of two kinds of
new axioms: strong axioms of infinity (axioms asserting
the existence of certain large cardinals) and special cases
of the axiom of determinacy.

The large cardinal axioms that have been studied
have turned out to be linearly ordered by consistency
strength (see §6 of the entry on Set theory), and this has
made it possible to determine the consistency strength of
other independent statements. In particular this is true of
the game-theoretic axiom of determinacy. The assump-
tion PD that the latter holds for projective sets of real
numbers (roughly those definable by quantification over

reals) implied solutions to the classical problems of
descriptive set theory, the study of these sets. PD (and
more) was shown to follow from strong large cardinal
axioms.

Although this result left the continuum problem
untouched, it did show that a program of investigating
new axioms along lines proposed by Kurt Gödel in the
1940s could settle an important class of open problems.
The large cardinal axioms implying PD have the desirable
feature that their consequences in second-order arith-
metic cannot be altered by forcing. W. Hugh Woodin’s
(2001) approach to the continuum problem (see §6 of the
entry on Set theory) aims to extend this result to a higher
level. But it is not regarded even by Woodin himself as a
definitive solution, and even the question whether the
continuum hypothesis has a determinate truth-value
remains open.

§6. approaches to philosophy of
mathematics

In 1967 philosophy of mathematics was largely ancillary
to logic, and discussion centered either on logical results
or on the earlier foundational programs that had con-
tributed to the development of mathematical logic. Since
then it has become more a subject in its own right. It has
been influenced by the general tendencies moving the
philosophy of science away from logic. In particular, his-
torical studies have assumed a larger role, and many such
studies have been of developments not close to logic.

In the earlier entry, the philosophical problems dis-
cussed concern the analysis of basic mathematical con-
cepts (such as natural number) and the identification and
justification of mathematical principles. The term foun-
dations naturally suggests that focus. But the philosophy
of mathematics can and does contain inquiries of other
kinds. It has been charged with concerning itself only
with elementary mathematics. This charge is not correct;
for example, identifying the axioms required for conclu-
sions in set theory is a matter of high-level mathematical
research, and in general the justification of axioms is not
independent of knowledge of the theories developed
from them.

But it is true that an inquiry into basic concepts and
principles will be selective in its attention to the elabora-
tion of mathematics in current and earlier research. And
one may well seek philosophical understanding of aspects
of mathematical practice of a different kind. One influen-
tial strand of work of this kind is that inaugurated by
Imre Lakatos, particularly in his book Proofs and Refuta-
tions (1976). Lakatos studied a classic theorem of Leon-
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hard Euler (1707–1783) relating the number of vertices,
faces, and edges of a polyhedron and brought to light dif-
ficulties that had been found with proofs of it over a
period of time and the refinements of the statement of
the theorem that had resulted. An underlying idea was
that mathematical knowledge is more fallible than a cer-
tain traditional picture has it, for a different reason from
those that might be suggested by difficulties with basic
principles. For reasons of space, this sort of inquiry will
not be pursued here, but it should be recognized that this
strand of philosophy of mathematics has grown relative
to the whole since 1967.

§7. logicism and the neo-fregan

program

In §2, much attention is paid to the project of reducing
arithmetic to logic and the analysis of number. Logicism
in its earlier forms has not been revived, but a kind of
neologicism has become an active program. It was
observed that the axioms of arithmetic could be derived
in second-order logic from the criterion (7) in §2.6, with
numerical equivalence defined as in (8). (This is briefly
sketched after (12), but the most difficult case, the proof
that every natural number has a successor, is omitted.)
(7) thus formulated has come (misleadingly) to be called
Hume’s principle (HP). The second-order theory with
the number operator NxFx and HP as a nonlogical axiom
is called Frege arithmetic (FA). In 1983 Crispin Wright
gave the proof that the Dedekind-Peano axioms of
second-order arithmetic are provable in FA using Frege’s
definitions, but this was in essentials proved by Gottlob
Frege and has come to be called Frege’s theorem. Intu-
itively, Frege uses the definition of NxFx in terms of exten-
sions only to derive HP, and then the work is done by that
principle. Richard G. Heck Jr. showed in 1993 that this
was essentially true of Frege’s proofs in Grundgesetze. Sev-
eral logicians showed that FA is consistent if second-
order arithmetic is.

Wright’s neo-Fregean proposal is to take FA as basic
arithmetic. It is a logical construction of arithmetic only
if the notion of cardinal number is a logical notion and
HP is a principle of logic. As a proof that arithmetic is a
part of logic the construction seems to be question-beg-
ging. Still, it generated a lot of discussion by Wright and
others of the status of abstraction principles like HP,
which take an equivalence relation of entities of one kind
as a criterion of identity for entities of another kind.
Wright’s initial idea seems to have been that HP is some-
thing close to a definition, although it is not an explicit
definition and does not meet the usual standard for a

contextual definition, that it should enable the term
introduced to be eliminated by paraphrase of contexts in
which it occurs. A fatal difficulty for this idea is that HP
can be true relative to a domain of individuals only if the
domain is infinite. Wright and his collaborators contin-
ued to argue that HP is analytic. Others have doubted
that a principle that implies the existence of an infinite
sequence of objects could be analytic. Another difficulty
is that Frege’s inconsistent axiom V is an abstraction prin-
ciple, and other abstraction principles that seem plausible
are either inconsistent or can be satisfied only in a finite
domain.

The program of axiomatizing parts of mathematics
by abstraction principles is of independent logical inter-
est, and work has been done on analysis, and preliminary
work on set theory. Kit Fine (2002) carried out an exten-
sive analysis of abstraction principles, to distinguish those
that introduce inconsistency from those that do not.

§8. platonism

Since World War II, the view that classical mathematics is
seriously threatened by the known paradoxes or by other
unknown ones has virtually disappeared. Platonism as
described in §3 has been widely accepted as a mathemat-
ical method. Taking the language of classical mathematics
at face value, as implying the existence of abstract math-
ematical objects, even forming uncountable and still
larger totalities, and allowing reasoning using both the
law of excluded middle and impredicative definitions, is
probably a default position among philosophers and logi-
cians. This can be called default platonism. It is in relation
to such a view, whether accepting it or rejecting it, that
much of the work in the philosophy of mathematics since
1967 has concentrated on ontological problems. How
might this position be rejected?

§9. constructivism

In §3.2, platonism is contrasted principally with con-
structivism. Intuitionism and other forms of construc-
tivism did not accept the reasoning characteristic of
classical mathematics, in the case of intuitionism the law
of excluded middle.

A significant development in this area is the argu-
ment in favor of intuitionist logic based on considera-
tions of the philosophy of language presented by Michael
Dummett (1973). This has, however, had more influence
on discussions of realism as a general philosophy than on
the foundations of mathematics specifically. Important
metamathematical work on intuitionistic theories was
done especially in the 1960s and 1970s. An important
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development is the development of intuitionistic-type
theories that are of much greater expressive power than
traditional intuitionistic theories. That of Per Martin-Löf
(1984) is the most developed. But although intuitionistic
logic has proved to have wide application, intuitionism
has declined significantly as a general approach to math-
ematics, competing with classical mathematics. Another
constructive approach to mathematics, pioneered by
Errett Bishop (1967), has been developed by several
mathematicians. Although it has been more active in the
last generation than intuitionism, philosophers have been
more interested in the latter, perhaps justifiably because
what is philosophically interesting about the Bishop
approach is shared with intuitionism, and L. E. J. Brouwer
and other intuitionists did more to develop philosophical
arguments for their position.

§10. nominalism

The term platonism is also used so that the view contrasts
with nominalism. Since 1980 or so that opposition has
been more prominent among philosophers, especially in
North America. This is perhaps fundamentally due to the
great influence of scientific naturalism on all theoretical
parts of philosophy.

The traditional way in which nominalism rejects
default platonism is by not taking the language of math-
ematics at face value and seeking to paraphrase it in such
a way that commitment to abstract mathematical objects
is avoided. Programs of this kind have been pursued espe-
cially since the 1980s, but it has proved essential to
enlarge traditional nominalist resources in at least one of
two ways: allowing points and possibly regions of space-
time as physical or allowing modality. It is then possible
to reconstruct a considerable amount of classical mathe-
matics, at least if one accepts a controversial thesis of
George Boolos (1998) that his reading of the language of
monadic second-order logic by means of the English plu-
ral does not involve commitment to such entities as sets,
classes, concepts, or pluralities. What has been achieved
in this sort of reconstruction is surveyed in John P.
Burgess and Gideon Rosen, A Subject with No Object
(1997).

A bolder proposal was made by Hartry H. Field
(1980, 1989): Where he parted from default platonism
was in rejecting the view that statements of classical
mathematics, taken at face value with regard to meaning,
are true and even that mathematics aims at truth. He
sought to account for the apparent objectivity of mathe-
matics by viewing it instrumentally, as a device for mak-
ing inferences within scientific theories. The role of truth

is taken over by conservativeness: Given a nominalistic
scientific theory T, a mathematical theory M is conserva-
tive if adding its resources to those of T does not enable
the derivation of conclusions in the language of T that
were not already derivable. This committed him to giving
nominalistic versions of scientific theories, and (with the
previously mentioned assumption about points and
regions of space-time) he was able to give such a version
of the Newtonian theory of gravitation. Difficulties stand
in the way of carrying out this program for modern phys-
ical theories.

§11. structuralism

Two related intuitions about modern mathematics are
widely expressed: that it is the study of (abstract) struc-
tures and that mathematical objects have no more of a
nature than is expressed by the basic relations of a struc-
ture to which they belong. The structuralist view of
mathematical objects is a development of the second
intuition. Its relation to default platonism is ambiguous.
Some versions, which can be called eliminative struc-
turalism, reject one part of that view, taking the language
of mathematics at face value, by proposing paraphrases
that eliminate reference to mathematical objects or at
least to the most typical mathematical objects. Others
take the structuralist idea as an explication of what the
reference to objects in standard mathematical language
amounts to. This noneliminative type of structuralism
offers an ontological gloss on default platonism rather
than a modification or rejection of it.

A simple case of an eliminative structuralist analysis
is a translation of the language of second-order arith-
metic into that of pure second-order logic. Suppose A is a
sentence of second-order arithmetic. Since arithmetical
operations such as addition and multiplication are sec-
ond-order definable, it can be assumed that A contains as
only primitives N (natural number), S (successor), and 0.
The structure of the natural numbers is characterized by
a second-order sentence with these primitives, the con-
junction P of these axioms. If A is provable, the sentence
P r A is provable by pure logic. If A is true, it is valid in
the standard semantical sense. One can regard P r A (or
the result of replacing N, S, 0 by variables) as a translation
of A that eliminates reference to numbers. The transla-
tion has the difficulty that if there is no structure satisfy-
ing the axioms, then P r A and P r ÿA are both
vacuously true. The translation seems to presuppose that
P is satisfiable.

One version of structuralism would allow sets as
basic objects. This would be a natural way of developing
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the first intuition, understanding structures as set-theo-
retic constructs. But a general structuralist view of math-
ematical objects would naturally aim not to exempt sets
from structuralist treatment. At this point modality has
been introduced. In the previous example, the assump-
tion that it is possible that there are N, S, and 0 satisfying
P is sufficient, since P r A can be strengthened to ~(P r

A). The modal structuralism of Geoffrey Hellman (1989)
is a version of eliminative structuralism relying on this
idea. It includes a detailed treatment of set theory. (An
approach had been sketched earlier by Hilary Putnam
[1967].)

What these constructions accomplish depends on
the status of second-order logic, a question that arises
also for the neo-Fregean program and for nominalism.
Concerning this there has been much debate. Regarding
set theory, there is the additional problem that the pre-
supposition of the possibility of the structure is of a
structure of such large cardinality that it could not be wit-
nessed by objects that are in any sense concrete or physi-
cal, so that the claim of the construction to eliminate
reference to mathematical objects can be questioned.

Other versions of structuralism are suggested by
remarks of Willard Van Orman Quine (1969) and of
some earlier writers. Noneliminative structuralisms have
been worked out in some detail by Michael D. Resnik
(1997), Stewart Shapiro (1997), and Charles Parsons
(1990). Concerning these views, there is debate about the
status of structures, as well as about questions about
identity.

§12. robust platonism?

A more robust type of platonism is expressed in Gödel’s
remark that “the set-theoretical concepts and theorems
describe some well-determined reality, in which Cantor’s
conjecture must be either true or false” (1964, p. 260).
Such a view would be supported by whatever general con-
siderations support philosophical realism. But something
more is demanded, a certain clarity and unambiguity of
set-theoretical concepts and quantification over sets.
Gödel wished to argue that the continuum hypothesis
(CH) must be either true or false, even though he was
unable to determine which. What might reinforce his
claims would be a development (such as the work of
Woodin [2001]) that determines the truth-value of CH.
However, the assumptions of such a result might then be
incorporated into a less robust platonist view. Perhaps the
greater value of Gödelian realism is as a regulative princi-
ple: one is more likely to find answers to mathematical

questions if one assumes at the outset that there are
answers to be found.

That decisive philosophical arguments can be given
for such a realistic stance is unlikely. An alternative is to
say that default platonism applied to mathematics as it
develops represents the limit of what one should claim
about the determinateness of the reality described by
mathematical theories. This would be the application to
mathematics of the naturalistic stance recommended by
Quine in many writings, but without his privileging of
empirical science. Such a view was advanced by Hao
Wang (1974) and more recently by Penelope Maddy
(1997).

Gödel’s confidence in set-theoretic concepts has not
been universally shared; in particular Solomon Feferman
(1998, 1999) has defended a skeptical view, influenced by
the earlier predicativist tradition.

§13. epistemological problems

In the 1967 entry, the epistemological discussion centered
on the question whether mathematics can be shown to be
a priori. It seems that there has been no decisive advance
on this question, so others will be concentrated on here.

Paul Benacerraf (1973) raised in rather abstract
terms a problem about mathematical knowledge: If
default platonism is true, how can one have mathematical
knowledge? One response would be to start from the fact
that one evidently does have mathematical knowledge
and then question the assumptions that generate the
problem. One assumption made in Benacerraf ’s original
formulation, the causal theory of knowledge, is relatively
easy to reject. To demand a causal relation between
objects referred to in a proposition for knowledge of that
proposition seems to stack the deck in advance against
abstract objects, and the causal theories that were current
when he wrote have not stood up well in general episte-
mology. But one can see the problem in more general
terms: Can one give an epistemology for mathematics
that is naturalistic? The most fruitful approach might
then be to examine actual mathematical knowledge and
to consider what sort of explanation of it makes sense and
whether it then meets some standard of naturalism.

No explicit program of this kind has been carried far.
One place where one might naturally look for naturalis-
tic explanation is psychology, and there has been a con-
siderable amount of research on the development of
concepts of number in young children. Although the
questions are often framed in terms of the concept of set,
it is not clear that that is essential or that ontology is at all
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central to the formulation of the problems. It can be
argued that mathematical ontology only arises at a more
advanced state of the development of mathematical com-
petence than the children investigated have reached.

When one does consider even the mathematics
taught in elementary college courses, then what one has
to go on is history and the reflection of mathematicians
(and sometimes philosophers) on the justification of
their claims. That some basic statements and inferences
are rationally evident seems an inescapable assumption.
Examples would be simple logical inferences and the
most elementary axioms of set theory, such as the pairing
axiom. It does not mean that this evidence does not get
crucial reinforcement from the development of theories
based on these evident starting points or that the latter
can never be revised in the light of the further develop-
ment of knowledge. Other assumptions might become
evident when an edifice of knowledge has been built up;
that might be true of higher-level set-theoretic axioms
such as power set and choice. What possible explanations
of rational evidence would count as naturalistic is a ques-
tion that has not been much explored. But now any
grounds for holding that no acceptable explanation is
possible would have to rely on a priori presuppositions.

A less abstract and perhaps more interesting episte-
mological question arises particularly for higher set the-
ory. It is suggested by the indispensability argument
mentioned earlier. Whatever one thinks of rational evi-
dence in general, it is already diminished when one
reaches the usual axioms for the mathematics applied in
science, as is indicated by the issues about the law of
excluded middle raised by Brouwer, and those about
impredicativity raised by Poincaré (1908) and Weyl
(1918, 1919). However, a long history of successful appli-
cation convinces one, for example, that the classical
mathematics of the continuum is necessary for science
and at least as well established as basic physics itself. This
is the claim made by the indispensability argument, and
it had been suggested earlier by Bertrand Russell and then
Gödel that axioms could derive their evident character
from the theory they give rise to. Among the applications
of mathematics, however, are those within mathematics.
Gödel’s view apparently was that much of mathematics
(including some higher set theory) could be seen to be
evident in an a priori way, not contaminated by evidence
derived from application in empirical science. However,
particularly in higher set theory axioms could obtain
additional justification through the theories constructed
on their basis, and such justification would be possible for
stronger axioms, such as the stronger large cardinal

axioms that have been proposed, where a convincing
intrinsic justification is not available.

Gödel’s view and the indispensability argument have
in common that the justification of mathematical axioms
can rest at least to a certain degree on their consequences.
However, for Gödel this is compatible with the status of
mathematics as rational knowledge independent of expe-
rience, whereas for the main proponents of the indis-
pensability argument, Quine and Putnam (1971), it is
not. The indispensability argument clearly runs out
before higher set theory. Empirical science makes no use
of it, and indeed it has been argued that from the proof
theorist’s point of view the mathematical theories that are
applied in science are weak.

Since few are satisfied with intrinsic justifications for
the strongest axioms of infinity, and little such justifica-
tion is claimed for determinacy axioms, the accepted
solution to the classical problems of descriptive set theory
rests on assumptions whose justification depends on the
theory they give rise to (see Martin 1998). The same
would have to be admitted for any solution to the contin-
uum problem that can be expected in the forseeable
future.

§14. historical studies

Practically every aspect of the history of the foundations
of mathematics has seen some intensive scholarly study
in the period since 1967. With respect to Immanuel Kant,
a decisive development was Michael Friedman’s Kant and
the Exact Sciences (1992), which integrated Kant’s philos-
ophy of mathematics with his philosophy of physics and
gave the strongest version of the logical view of the role of
intuition in mathematics pioneered by Evert Willem Beth
(1959) and Jaakko Hintikka (1974). Younger scholars
have followed up Friedman’s work, often criticizing
aspects of it. In particular they have explored the relation
of Kant’s thought about mathematics to the mathematics
of his own time and earlier and to the philosophy of his
immediate predecessors.

One strand of work on Frege, of which Boolos and
Heck (see Demopoulos 1995) have been the leaders, has
worked out perspicuously the mathematical content of
Frege’s work, particularly in Grundgesetze. Another strand
has emphasized his conception of logic and how it differs
from our own conception of logic. A third has drawn
connections of Frege to nineteenth-century develop-
ments in mathematics, particularly geometry.

The foundations of mathematics as an object of spe-
cial study arose from the revolution in mathematics in
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the nineteenth century, particularly developments in its
second half: the rigorization of the methods of analysis,
the beginning of set theory and of abstract methods, the
rise of modern logic, and the role assumed early in the
twentieth century by the paradoxes. Every aspect of this
development has been the subject of scholarly study. The
same holds of later developments such as Russell’s logic,
Brouwer’s intuitionism, the Hilbert program, and the
work of the Vienna Circle. Space does not permit describ-
ing this work, but in the bibliography selective references
have been given.

See also Aristotle; Brouwer, Luitzen Egbertus Jan; Cantor,
Georg; Carnap, Rudolf; Church, Alonzo; Construc-
tivism and Conventionalism; Descartes, René; First-
Order Logic; Frege, Gottlob; Geometry; Gödel, Kurt;
Gödel’s Theorem; Hilbert, David; Infinity in Mathe-
matics and Logic; Intuitionism and Intuitionistic
Logic; Kant, Immanuel; Knowledge, A Priori; Logic,
History of; Logical Paradoxes; Mill, John Stuart; Modal
Logic; Neo-Kantianism; Neumann, John von; Nomi-
nalism, Modern; Peano, Giuseppe; Poincaré, Jules
Henri; Proof Theory; Quantifiers in Formal Logic;
Quine, Willard Van Orman; Realism and Naturalism,
Mathematical; Russell, Bertrand Arthur William;
Second-Order Logic; Set Theory; Structuralism, Math-
ematical; Tarski, Alfred; Turing, Alan M.; Types, Theory
of; Weyl, (Claus Hugo) Hermann; Whitehead, Alfred
North; Wittgenstein, Ludwig Josef Johann.
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mather, cotton
(1663–1728)

Cotton Mather, scholar, clergyman, and author, was the
oldest son of Increase Mather, one of the leading figures
in the Puritan theocracy in Massachusetts. The younger
Mather was so precocious that he entered Harvard Col-
lege at the age of twelve and was graduated at fifteen.
Because he stammered, he felt unqualified to preach and
therefore began to study medicine. After a few years, how-
ever, he overcame his speech handicap and became the
assistant to his father at the Second Church, Boston.
Ordained in 1685, he remained in the service of the Sec-
ond Church for the rest of his life.

Mather was disappointed in many of the major
quests of his life. Partly because he associated himself
politically with the unpopular royal governor, Sir William
Phips, partly because of the diminished prestige of the
Puritan clergy, and partly because of his own often
unpleasant personal qualities he lost the power to wield
significant influence in public affairs. When he greatly
desired to succeed his father, who retired in 1701 as pres-
ident of Harvard College, he was not selected. Convinced
that Harvard no longer represented the true Calvinist

faith, he threw himself energetically into the foundation
of Yale College, but its presidency was not offered to him
until 1721, when he declined the position because of his
age.

Mather’s intellectual attitudes during his earlier years
were extremely narrow, for he moved within the confines
of a strict Puritan worldview; later, however, he became
more tolerant of the differing beliefs of others. Finally,
especially in his Christian Philosopher (1721), he moved
close to the natural religion characteristic of the Age of
Reason. He interpreted the theological doctrine of divine
Providence in philosophical terms by asserting that the
order of the universe was planned for man’s good by an
all-wise, all-good God. Man’s appreciation of natural
Beauty and his application of reason to observations
drawn from nature are sufficient to prove the existence
and beneficence of God. His scientific communications
to the Royal Society of London led to his election as a fel-
low in 1713, one of the first Americans to be so honored.
He was one of the earliest in the colonies to advocate
inoculation against smallpox, and he ably defended his
position in several pamphlets. The change in his mental
attitude thus epitomizes the alteration in the intellectual
life that pervaded his milieu.

Nowhere is this duality more apparent than in
Mather’s involvement in the witchcraft epidemic in
Salem. He attempted to make a “scientific” study of the
cases, but he came to the conclusion that they could be
treated by prayer and fasting. He warned the judges in
witchcraft trials to proceed very cautiously against the
suspects and to be particularly careful in admitting “spec-
tral evidence,” yet in his Wonders of the Invisible World
(1693) he argued that the verdicts in the Salem trials were
justified. By 1700, however, he changed his mind about
the fairness of the trials. In regard to the suspicion of
witchcraft, as in other respects, Mather stood uneasily
between traditional faith and the new scientific outlook.

See also Philosophy of Religion, History of; Scientific
Method.
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are Magnalia Christi Americana, or the Ecclesiastical History
of New England (London, 1702); Essays to Do Good (Boston,
1710; originally titled Bonifacius, Boston, 1710); and
Christian Philosopher (London: E. Matthews, 1721). Kenneth
B. Murdock has edited, with introduction and notes,
Selections from Cotton Mather (New York: Harcourt Brace,
1926; new ed., 1960).

Discussion of Mather may be found in Ralph P. and Louise
Boas, Cotton Mather, Keeper of the Puritan Conscience (New
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